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Abstract
A relevant fraction of human interactions occurs on online social networks. In this context, the freshness of content plays 
an important role, with content popularity rapidly vanishing over time. We therefore investigate how influencers’ generated 
content (i.e., posts) attracts interactions, measured by the number of likes or reactions. We analyse the activity of influencers 
and followers over more than 5 years, focusing on two popular social networks: Facebook and Instagram, including more 
than 13 billion interactions and about 4 million posts. We investigate the influencers’ and followers’ behaviour over time, 
characterising the arrival process of interactions during the lifetime of posts, which are typically short-lived. After finding 
the factors playing a crucial role in the post popularity dynamics, we propose an analytical model for the user interactions. 
We tune the parameters of the model based on the past behaviour observed for each given influencer, discovering that fitted 
parameters are pretty similar across different influencers and social networks. We validate our model using experimental 
data and effectively apply the model to perform early prediction of post popularity, showing considerable improvements 
over a simpler baseline.

Keywords Online social networks · Temporal dynamics · Popularity evolution · User engagement · Facebook · Instagram

1 Introduction

Billions of people use online social media applications such 
as Facebook (FB) and Instagram (IG) as part of their daily 
activities. Social media applications indeed make possible 
to exchange opinions, get news and maintain social interac-
tions through posts, comments, and likes. In particular, FB 
has been the most popular social media application for quite 
a long time, while IG has experienced a surge in popular-
ity in the last few years. In both Facebook and Instagram, 

influencers (i.e., popular users, groups, newspapers, or com-
panies) post content (i.e., the so-called posts) in the form of 
photos, videos or texts. Users of these social networks can 
follow influencers and interact with posts by liking, reacting, 
sharing, or commenting them.

Several studies on online social networks (OSN) have 
analysed content popularity as a function of the total number 
of interactions (views, likes, etc.), measured at the time data 
was crawled. Many works focus on predicting the popularity 
of posts, often given their intrinsic characteristics as well 
as the characteristics of the influencers and their followers. 
Few works, instead, focus on understanding the temporal 
dynamics of the popularity of content generated in OSNs. 
While it has been largely recognised that content popularity 
decreases over time, different models have been proposed 
for the decay rate of popularity, depending on the platform 
and content itself. Sometimes popularity is modelled by a 
negative exponential function, sometimes by heavy-tailed 
functions, and in other cases simply as constant (see Sect. 2).

However, a large-scale characterisation of the temporal 
evolution of the popularity of posts in OSNs is still missing. 
In this work, we aim at filling this gap by (i) providing an 
experimental analysis of the time evolution of interactions 
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with user-generated content, both on a per-post and per-
influencer basis, and (ii) developing an analytical model 
capturing the main aspects of user interactions on OSNs.

To this end, we focus on two popular social networks, 
Facebook and Instagram. These applications currently have 
a large ecosystem of influencers that try to gain popularity 
in different ways, e.g., by increasing the number of posts, 
by posting content of large or mixed interest, by debating 
or posting a reply on others’ posts (Kim et al. 2017). In this 
work, we analyse, model, and compare user engagement and 
interactions by leveraging a dataset of more than 13 billion 
interactions over approximately 4 million posts of 651 Ital-
ian influencers on FB and IG. The collected dataset covers 
a period of more than 5 years, from January 1, 2016 to June 
1, 2021.

We analyse such data aiming at answering the following 
fundamental questions. What are the main factors impacting 
on temporal dynamics of posts published by the influencers? 
How do followers interact with such posts? In particular, 
what is the time evolution of the reactions to these posts? 
Can we develop a model of these dynamics and exploit it for 
practical applications?

Our main findings can be summarised as follows:

• Both influencers’ activity and users’ activity exhibit a 
characteristic daily pattern, but with a different shape;

• The inter-arrival time of posts has a long-tail distribution, 
reasonably fit by a log-normal;

• On average 50% of user interactions occur within the 
first 4 h after content creation on FB, and after 2 h on 
IG; interactions arrival rate exhibits approximately an 
exponential temporal decay;

• Most of the posts are short-lived, with a lifetime between 
20 and 50 h, after which they no longer attract interac-
tions;

• The fraction of total interactions obtained within a given 
time interval is affected by the number of newly pub-
lished posts in the same interval;

• The distribution of the total number of interactions (likes, 
reactions, comments, and shares) is well fit by a log-
normal distribution;

• The average number of interactions received by posts is 
roughly linear with the number of followers of the pub-
lishing influencer;

• The total number of interactions gathered by a post can 
be well predicted by measuring the interactions received 
within the first hour or even from the first few minutes.

Our exploratory data analysis identifies the main features 
that should be incorporated into an analytical model trying 
to capture the temporal evolution of interactions received 
by a post. We first attempt to develop such a model, fitting a 
small set of parameters to the specificity of posts published 

by a given influencer. Interestingly, we discover that many 
of these parameters do not vary significantly from influencer 
to influencer; moreover, they only weakly depend on the 
considered social network (IG or FB).

Our model can provide an accurate prediction of the total 
number of interactions gathered by a post (and an estimate 
of the prediction error) by observing only the initial phase 
of its lifetime. We believe this ability of our model can have 
interesting applications. Finally, we mention that a prelimi-
nary version of our work, presenting a subset of the results 
obtained from our dataset, has appeared in Vassio et al. 
(2021). This paper extends the data analysis and introduces 
a novel model for the temporal evolution of interactions with 
posts, which is then validated and applied to early prediction 
of post popularity.

The remainder of the paper is organised as follows. Sec-
tion 2 summarises some relevant related work. Section 3 
describes the methodology we used to extract and process 
the data, while Sect. 4 presents the results of our data analy-
sis. Section 5 describes the complete analytical model that 
we have developed, which is then evaluated and compared 
to a baseline. Finally, Sect. 6 concludes the paper.

2  Related work

Social media provide a powerful and effective platform for 
the exchange of ideas and rapid propagation of informa-
tion (Al-Garadi et al. 2018). Hence, their study is of para-
mount importance to understanding the opinion trends in our 
society and the main actors, i.e., the influencers (Conover 
et al. 2012; Gorkovenko and Taylor 2017; Pierri et al. 2020).

Although a large body of literature has analysed OSNs, 
the temporal dynamics of posts and interactions are still 
not well understood. Indeed, the majority of existing stud-
ies ignore such temporal dynamics, focusing on the “spa-
tial” analysis of a single, large snapshot. A few works have 
focused on predicting content popularity, considering con-
tent intrinsic characteristics and social interactions features 
(Li et al. 2013; Rizos et al. 2016). The main factors that 
impact the popularity of posts on FB are identified in Sabate 
et al. (2014), using an empirical analysis involving multiple 
linear regressions. Similarly, (Ferrara et al. 2014) highlights 
the characteristics related to the dynamics of content produc-
tion and consumption in IG, while (Gayberi and Oguducu 
2019) and (Carta et al. 2020) predict the popularity of a 
future post on IG by combining user and post features.

Instead, few studies have analysed the time dynamics of 
content generated in OSNs. The decay in popularity over 
time, i.e., the rate of new interactions, of Internet memes 
(Leskovec et al. 2009) is shown to be well modelled by a 
negative exponential function. The work in van Zwol (2007) 
measures the time evolution of the popularity of images in 
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Flickr, finding that heavy-tailed distributions can represent 
the decay in rate of new interactions over time. Instead, (Cha 
et al. 2009b) observe that the most popular Flickr pictures 
exhibit a close-to-constant interaction rate. The study in Has-
san Zadeh and Sharda (2014) models the popularity evolu-
tion of posts by Hawkes point processes, using Twitter data 
to fit the required parameters. Gabielkov et al. (2016) ana-
lyse and predict clicks on Twitter posts. They find that while 
posts appear as bursts in a short-time frame, clicks appear 
and decay at larger time scales, with a long tail. The authors 
leverage early interactions to predict future clicks, as in our 
work. They show that a simple linear regression based on the 
number of clicks received by tweets during its first hour cor-
rectly predict its clicks at the end of the day, with a Pearson 
correlation of 0.83. Ramachandran et al. (2018) propose a 
model that reproduces the clicks created by social media. 
In particular, the authors consider news posted on Twitter, 
and observe that hourly impressions decrease geometrically 
with time. They model information diffusion to determine 
current and future clicks, using a memoryless generative 
model with a few time-invariant parameters. Finally, Ferrara 
et al. (2014) show that the distribution of likes to posts on 
IG is best fit by a power-law, suggesting that popularity of 
media as measured by the number of likes might grow by a 
preferential attachment mechanism. However, Ferrara et al. 
(2014) provide no evidence of this kind of evolution.

Other works analyse the temporal dynamics of particular 
user-generated content, outside of OSNs. For example, vid-
eos on YouTube exhibit various popularity decay patterns 
over time (Cha et al. 2009). For some videos, the decay can 
be modelled with heavy tail distributions, while for others 
with an exponential distribution. Similarly, Ahmed et al. 
(2013) show that user generated videos have distinct pat-
terns of popularity growth (in terms of views) over time.

Our previous studies (Ferreira et al. 2020; Ferreira et al. 
2021) focus on the peculiarity of user interactions with polit-
ical profiles on IG during the 2018 European and Brazilian 
elections, with the goal of identifying the structure emerg-
ing from the co-interactions. We studied the appearance 
and evolution of communities of users, obtained through a 
probabilistic model that extracts the backbone of the inter-
action networks. Interestingly, politicians are able to attract 
more persistent communities over time than non-politicians. 
Related to the topic of popularity prediction, we proposed 
(Bertone et al. 2021) a parallel between the OSN world 
and the stock market: influencers can be viewed as stocks 
while users are investors. The study shows how this mar-
ket-like approach successfully estimates short-term trends 
in influencers’ followers from external variables, such as 
Google Trends. Finally, our previous study (Trevisan et al. 
2021) investigates the changes in habits in OSNs during the 
COVID-19 outbreak. It is shown how people, during the 
lockdown, due to restrictions enforced to in-presence social 

activities, changed their interaction patterns, shifting more 
towards the night.

We emphasise that a large-scale characterisation of the 
temporal evolution of post popularity in OSNs is still miss-
ing. In this work, we aim to fill this gap by providing (i) 
an experimental analysis of the time evolution of interac-
tions with user-generated content, both on a per-post and 
per-influencer basis, and (ii) an analytical model that can 
accurately represent user interactions on OSNs.

3  Data collection

In FB and IG, a profile can be followed by other profiles, 
i.e., its followers. A profile with a large number of followers 
is also called an influencer. Influencers post content (i.e., 
posts), consisting of either a photo or a video, or plain text. 
The profile’s followers, and anyone registered on the plat-
form in the case of public profiles, can view the influencer’s 
posts, like/react to them, comment on them, and share them 
with their contacts. Notice that, by the term influencer, we 
refer not only to individuals, but also to groups, football 
teams, newspaper, and companies.

We monitored the activities triggered by top Italian influ-
encers on the two aforementioned social networks. To this 
end, we built lists of the most popular Italian influencers, 
including different categories, like politicians, musicians, 
and athletes. Those marked as Italian are the ones that com-
municate on the online social platform mainly using the Ital-
ian language.

To get popular profiles, we exploited the online analytics 
platform www. hypea uditor. com for IG, and www. socia lbake 
rs. com and www. pubbl icode lirio. it for FB. The analysis has 
been restricted to the influencers with at least 10, 000 fol-
lowers on June 1, 2021. The lists of influencers we used are 
publicly available.1

For each monitored profile, we downloaded the corre-
sponding metadata, i.e., the profile information, and all the 
generated posts, using the CrowdTangle tool and its API.2 
CrowdTangle is a content discovery and social analytics tool 
owned by Meta,3 which is open to researchers and analysts 
worldwide to support research, upon subscription of a part-
nership agreement. Furthermore, for each post, we down-
loaded the number of associated interactions, along with 
their timestamp. Monitored posts are sampled by CrowdTan-
gle within the first 20 days (480 h), with a higher sampling 
rate (up to few minutes) closer to the publication time of the 

1 https:// smart data. polito. it/ tempo ral- dynam ics- social/.
2 https:// github. com/ Crowd Tangle/ API.
3 https:// www. faceb ook. com/ forme dia/ tools/ crowd tangle.

http://www.hypeauditor.com
http://www.socialbakers.com
http://www.socialbakers.com
http://www.pubblicodelirio.it
https://smartdata.polito.it/temporal-dynamics-social/
https://github.com/CrowdTangle/API
https://www.facebook.com/formedia/tools/crowdtangle
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post. Notice that, on IG, users can like posts, whereas on FB, 
they can react to posts with a thumbs up or other five pre-
defined emojis. Thus, for each post, we collected the number 
of likes/reactions the post received, hereinafter referred to as 
interactions, which CrowdTangle provide in an anonymized 
manner. Moreover, we also collect statistics about number of 
comments per post for FB and IG and number of times posts 
are shared for FB. Finally, we have stored the data, which 
takes around 110 GB of disk space, on a Hadoop-based clus-
ter, and we have used PySpark for scalable processing.

For each influencer, we downloaded all the data related 
to the posts published between January 1, 2016 and June 
1, 2021. Table 1 reports the main features of our dataset, 
separately for each OSN. In total, we monitored 651 pub-
lic profiles, which published approximately 4 million posts, 
accounting for more than 13 billion interactions. The num-
ber of comments and shares of the posts are also reported. 
Notice that while the influencer’s posts are widely shared by 
their followers (around 1.3 billion times, hence on average 
370 times per post), our analysed influencers rather rarely 
repost other influencers’ posts. Indeed, we observed only 
around 24 thousand shared posts by the influencers on FB, 
accounting for only about 0.7% of all the posts.

Figure 1 depicts the empirical Cumulative Distribution 
Function (CDF) of the number of posts per influencer. The 
651 influencers show a large variability in the distribution 
of number of posts: some influencers published few tens 
of posts, while others, such as newspapers pages, up to 105 
posts. Also, in the period under study, influencers on FB 
published more than those on IG. The main reasons are 
twofold: i) on FB more influencers are actually pages or 
organisations, rather than single individuals, and ii) many 
popular IG influencers did not exist at the beginning of the 
considered time period (i.e., in 2016), or have become active 

much later. Figure 2 depicts the Cumulative Distribution 
Function (CDF) of the number of followers per influencer, 
as recorded on June 1, 2021. The number of followers per 
influencer varies between 10k and tens of millions. Also, 
the profiles in the set chosen for IG are usually more popular 
than those selected for FB.

4  Temporal user engagement with posts

In this section, first we characterise the patterns of the influ-
encers’ and followers’ activity (Sect. 4.1), then we study the 
time evolution of interactions (Sect. 4.2) and their relation 
with the number of followers (Sect. 4.3). Finally, we inves-
tigate the correlation between the interactions a post attracts 
and the number of newly published posts (Sect. 4.4).

4.1  Activity of influencers and followers

We first characterise the daily patterns of influencers’ 
and followers’ activity. Figure 3 presents the influencers’ 
hourly activity, obtained considering the time instants at 
which posts were published. The activity is normalised by 
their maximum in both social networks to have compara-
ble results. The plot accounts for all the analysed 4 million 
posts, and it is reported using a 24-hour local-time clock 
(using the Italian time zone), according to the ISO 8601 
standard.

Similarly, Fig. 4 shows the daily activity distribution of 
the followers, considering the timestamps of the follow-
ers’ interactions (considering all 13 billion likes/reaction). 
Note that, due to our particular selection of influencers, we 
can reasonably expect that the vast majority of posts and 

Table 1  Features of the 
influencers dataset we built, as 
recorded in June 2021

a On Instagram it is not possible to share/repost a post on the feed

Influencers Avg followers Posts Interactions Comments Shares

Instagram 244 1.19 mil. 0.31 mil. 9.36 bil. 0.12 bil. NAa

Facebook 407 1.55 mil. 3.57 mil. 4.02 bil. 0.63 bil. 1.32 bil.

Fig. 1  CDF of the number of posts for the considered influencers Fig. 2  CDF of the number of followers for the considered influencers, 
in June 2021
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interactions occur in the same time zone (the Italian time-
zone). This is also supported by the results in Benevenuto 
et al. (2012), where authors show that followers/friends 
interacting in social networks are usually within close geo-
graphical proximity of the influencer.

We observe that influencers’ and followers’ activities 
exhibit similar patterns over FB and IG: they significantly 
decrease during the night, and exhibit two peaks during 
the day. However, it is interesting to notice that followers 
tend to be more active later in the evening with respect to 
influencers.

Moreover, looking at the behaviour of specific influenc-
ers on FB and IG (the results are omitted for brevity), we 
observed that their followers’ activity over time tend to be 
similar to that in Fig. 4, although the single influencer’s daily 
activity might deviate significantly from the one shown in 
Fig. 3. This is confirmed by the results in Fig. 5, showing 
that the average followers’ activity per new post maintains 
a similar shape to the ones in Fig. 4. Although influencers 
generate very few posts late at night, such posts are typically 
fresher and encounter less ‘competition’. Nonetheless, they 
still collect very few interactions during the night.

We now investigate the distribution of the inter-arrival 
time between different posts. In particular, we focus on the 
tail of the distribution, considering time-scales of several 
tens of hours, i.e., time-scales at which the impact of the 
day-night activity pattern is negligible. Figure 6 depicts the 

tail of the intertime of all posts generated by the influenc-
ers, including the best fitting log-normal distribution. The 
log scales in the plot suggest that the log-normal distribu-
tion provides a substantially better fit than what would be 
obtained by an exponential distribution (i.e., under a Poisson 
process assumption). This is due to the fact that influencers 
sometimes remain silent for (quite) long periods. We also 
analysed single influencers and found that, for the median 
influencer, the average posts inter-arrival time is equal to 19 
hours on FB, and 57 hours on IG. Then, fitting separately 
each influencer with a log-normal distribution, on aver-
age, we obtained as parameters of the log-normal � = 2.0 , 
� = 1.4 on FB, and � = 3.1 , � = 1.3 on IG.

4.2  Temporal dynamics of interactions

We now analyse the temporal evolution of the interactions to 
a post, considering up to 20 days (480 h) after the creation 
of the post itself. We compute, for all the 4 million posts and 
for every sample-time (rounded to the closest integer hour), 
the fraction of received interactions with respect to the total 
number of interactions obtained by a post after 20 days. We 
consider fractions in order to compare different posts, and 
different influencers. Finally, we compute the average over 
all posts.

Fig. 3  Normalized daily activity (i.e., creation of posts) of the sam-
pled influencers

Fig. 4  Normalized daily followers’ activity (i.e., their interactions 
with the influencers)

Fig. 5  Normalized daily followers’ activity (i.e., their interactions) 
per new post by the influencers

Fig. 6  CCDF of the intertime of the posts produced by the influencers 
(loglog scale), along with their log-normal fitting
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The results, representing the dynamics of the average 
fraction of interactions over the first 3 days since the crea-
tion of the post, are shown in Fig. 7. One can notice that 
the majority of the interactions occur within the first few 
hours. On average, the first hour accounts for 31% of all 
of the interactions on FB (40% on IG), reaching over 80% 
after 1 day. Moreover, on average, 50% of user interactions 
occur within the first 4 h since content creation on FB, and 
after 2 h on IG. It is thus clear that the freshness of a post 
has a significant impact on the level of attractiveness of the 
post. Interestingly, the growth of the number of user inter-
actions is faster on IG than on FB, although both curves 

converge after around 30 h. Studying the evolution of the 
rate of new interactions, we found that, at least in the first 
24 h after the post creation, this rate is well approximated 
by a negative exponential decay function (with mean equal 
to 5.4 for FB, and 8.7 for IG).

As expected, individual posts can have widely different 
patterns in terms of their accumulation of interactions over 
time. As an example, we show the results related to two 
specific posts on FB published by a well-known Italian 
influencer (namely, Giuseppe Conte, former Italian Prime 
Minister). The temporal dynamics of interactions over the 
first 3 days since the post creation are represented by red 
marks in Fig. 8a and 8b. We notice the presence of periods 
in which the number of interactions is almost constant, 
after which it increases again. We verified that this behav-
iour is essentially due to the non-stationary behaviour 
of users’ activity during the day (see Fig. 4 and 5), i.e., 
quasi-flat portions of the curves correspond to night hours. 
Green vertical lines highlight newly published posts (see 
Sect. 4.4). For the first example trace (left plot), many 
posts are published within the first three days; for the sec-
ond trace (right plot), no new post is published before the 
first 62 h.

We now turn to the interesting question of whether the 
total number of interactions collected by a post can be 

Fig. 7  Average evolution of a post in terms of interactions, over 3 
days (72 h)

Fig. 8  Two examples of the 
evolution over 3 days of the 
interactions to a post. Newly 
published post timestamps are 
highlighted with vertical lines

(a) (b)

Fig. 9  Total number of interac-
tions n∞ vs. number of interac-
tions received after 30 min, con-
sidering physical time (left plot) 
and virtual time (right plot)
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forecast by observing just the interactions received during 
an initial interval after publication. A first, strong indication 
that such prediction is indeed feasible is illustrated in Fig. 9, 
showing a scatterplot of roughly 3,000 points, each corre-
sponding to a post published on IG by a given influencer (in 
this case, the Italian politician Matteo Salvini): the y axes 
provide the total number of interactions, while the x axes 
correspond to the number of interactions received after half 
an hour.4

The left plot corresponds to measurements n(t) collected 
at physical time, while the right plot correspond to measure-
ments n(t�) transformed into virtual time to remove daily 
effects (see Sect. 5.1). Despite the large variability in the 
number of interactions (notice the log scale), we observe a 
strong correlation, resulting in a Pearson correlation coef-
ficient of about 0.90 (in physical time) and 0.92 (in virtual 
time). Similar strong correlations was observed for other 
influencers, on both IG and FB, and considering different 
measurement times (e.g., even after just a few minutes after 
post creation). This result motivated us to develop the model 
that will be presented later in Sect. 5.

In addition, we computed the mean arrival time, defined 
as the average time after which an interaction occurs, after 
post creation. The average is computed over 480 h, for a 
given post of a given influencer, using the empirical distribu-
tion of all interaction arrival times. Figure 10 depicts (in log 
x-scale) the CDF (among different posts of the same influ-
encer) of the mean arrival time of interactions. We consider 
posts with at least 1,000 interactions and focus on the first 
480 h. We can observe that posts on FB are characterised by 
a higher mean arrival time with respect to IG: 15 h for FB, 
and 11 h for IG. The faster dynamic in IG confirms what 
Fig. 7 already suggested.

Finally, we investigate the lifetime of posts. To this end, 
we consider that a post basically no longer attracts interac-
tions after 20 days, and thus we define as total number of 
interactions received by a post the number of interactions 

received after 20 days. Then, for a given post, we compute 
its lifetime as the time at which the post has received 95% 
of its total interactions (as defined above). We consider only 
posts that collect at least 1000 interactions to get statistically 
meaningful results. Figure 11 depicts the distribution of the 
post lifetime in hours, using a log scale on the x-axis; by 
construction, the maximum lifetime is 480 h, i.e., 20 days. 
Interestingly, the difference between the two OSNs is small, 
even though on average FB attracted a smaller fraction of 
interactions than IG within the first hours (see Fig. 7). The 
median value of the lifetime is 33 h for both FB and IG, 
while the mean lifetime is 50 h for FB and 55 for IG.

4.3  Followers’ dynamics

Influencers do not have a constant number of followers 
over time. Rather, such a number typically increases mono-
tonically over time, with IG exhibiting a more significant 
increase in the analysed time period (2016–2021) than FB. 
This is likely because FB is an older OSN, already largely 
widespread in 2016 (i.e., the first year we monitored).

Fig. 10  Post mean (expected value) of post interaction-time Fig. 11  Lifetime of a post computed as 95-th percentile of interac-
tions

Fig. 12  Temporal evolution of the number of followers of Salvini 
(Influencer 1) and Colombari (Influencer 2) on IG

4 Due to limited granularity of available measurements, we consid-
ered time instants in the range [0.45, 0.55] hours after post creation.



 Social Network Analysis and Mining           (2022) 12:96 

1 3

   96  Page 8 of 17

Figure 12 shows the temporal dynamic of the number 
of followers for two sample influencers on IG.5 Influencer 
1 is Matteo Salvini (an Italian politician), while Influencer 
2 is Martina Colombari (an Italian actress). Figure 12 sug-
gests that the change in the number of followers can be very 
different for the influencers. Influencer 1 started using the 
social network much later (late 2017), and his increase rate 
varies wildly over time, likely due to reasons unrelated to 
the operation of the OSN (elections, new laws, etc.). The 
increase in the number of followers of Influencer 2 is instead 
smoother over the considered time span.

Figure 13 shows the distributions of the total number of 
interactions per post (represented by vertical boxplots), con-
sidering all posts published when the number of followers is 
comprised within the bins specified along the x axes (notice 
that the extremes of the considered bins increase geometri-
cally with ratio ≈ 3 ). All posts published on IG available 
in our dataset are here considered. We notice a strong cor-
relation, suggesting a linear dependence of the mean total 

number of interactions with the number of followers (we will 
exploit this dependency in our model in Sect. 5).

We found that the distribution of the total number of 
interactions per post is well fit by a log-normal distribution, 
see the CDFs on Fig. 14. Again, in the figure, we considered 
the influencers Salvini (Influencer 1) and Colombari (Influ-
encer 2) on IG. Comparing the empirical distribution with 
the fit, we obtain a Kolmogorov distance of the log-normal 
of 0.10 and 0.03, respectively for Influencer 1 and 2 (with 
parameters of the log-normal � = 10.2 , � = 0.7 for Influ-
encer 1 and � = 8.7 , � = 0.9 for Influencer 2). Considering 
the (almost linear) dependency with the number of follow-
ers, as suggested by results in Fig. 13, we also computed a 
normalized total number of interactions, dividing it by the 
number of followers at each post creation timestamp. We 
call this number interactions per follower. As expected, the 
log-normal fit is even better when we consider this normal-
ized number, see CDFs in Fig. 15, especially for influencers 
whose number of followers varies significantly over the con-
sidered period (e.g., Influencer 1). Indeed the Kolmogorov 
distance decreases to 0.05 for Influencer 1, with parameters 
of the log-normal � = −3.9 , � = 0.8 (Kolmogorov distance 
0.03 for Influencer 2, with parameters � = −4.6 , � = 0.8 ). 
In Appendix 1 we report analogous results related to other 
kinds of interactions, i.e., shares and comments on FB.

All in all, considering the followers’ dynamics helps to 
disentangle the impact of the users that potentially interact 
with the post (i.e., the followers) and the variability of the 
post intrinsic attractiveness.

4.4  Impact of newly published content

As observed in Sect. 4.2, the arrival rate of new interactions 
decays roughly exponentially with time. To better under-
stand the nature of the arrival process of interactions gener-
ated by a specific post, we asked ourselves whether this is 
affected by the fact that, meanwhile, new posts are published 
by the same influencer, thus reducing the ‘novelty’ of the 
post. For example, Fig. 8a shows a case in which many new 

Fig. 13  Relation between followers and interactions. Each boxplot 
represents the distribution of the number of interactions per post, for 
a given range of the number of followers. Both axes are represented 
in log scale

Fig. 14  CDF of total number of interactions per post for Salvini 
(Influencer 1) and Colombari (Influencer 2) on IG at the end of the 
posts’ lifetime, along with their log-normal fit

Fig. 15  CDF of interactions per follower for Salvini (Influencer 1) 
and Colombari (Influencer 2) on IG at the end of the posts’ lifetime, 
along with their log-normal fit

5 We do not report analogous results for FB since, according to 
CrowdTangle, “Follower data prior to September 16, 2020, is incom-
plete and does not include either unfollows or Page-to-Page follows”.
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posts are published within the first three days after post crea-
tion, while in the case of Fig. 8b no new post is published 
within the first 62 h. On the other hand, after 12 h the first 
post sample has already collected 91% of its total interac-
tions, while the second post, after the same amount of time, 
has collected just 62% of its total interactions, due to the fact 
that its interaction rate decays more slowly. This suggests 
that the number of newly published content might affect the 
growth rate of the number of interactions received by a post.

To verify this, we consider a fixed period of 12 h since 
the post creation, and compute the number of new posts 
published within this period. Figure 16 shows the average 
fraction of interactions collected by a post after 12 h, as a 
function of the number of newly published posts in the same 
period, for all posts published by the previously considered 
influencer Giuseppe Conte. We observe a clear correla-
tion between the two quantities: the higher the number of 
new posts published within the first 12 h, the faster the post 
approaches the end of its lifetime. Indeed, in the absence 
of newly generated posts, a post on average collects 72% 
of its total interactions within the first 12 h. When 7 newer 
posts are generated in the same period, the average fraction 
of collected interactions increases to 82%. This shows that 
the arrival rate of interactions also depends on how many 
new posts are published since the post creation, as newly 
published content can slow down the interaction arrival rate 
(this can be attributed to the limited budget of attention of 
users).

5  Modelling user interactions

From our measurements and analysis, we learnt several 
important lessons that can help us model the temporal evo-
lution of the number of interactions collected by a post: 

 (i) Posts are characterised by an intrinsic initial ‘attrac-
tiveness’, which varies significantly even across the 
posts published by the same influencer;

 (ii) The growth rate of interactions naturally decays over 
time, but the decay rate is itself highly diverse from 
post to post, besides depending on the considered 
OSN;

 (iii) The interaction rate should be modulated by the daily 
pattern of user activity, which appears to be inde-
pendent of the particular online platform;

 (iv) On average, there is a linear dependency between 
the total number of interactions received by a post, 
and the current number of followers (which can be 
considered constant during the short post lifetime);

 (v) The distribution of the total number of interactions, 
normalised by the number of followers, is well fit by 
a log-normal distribution, whose parameters depend 
on the specific influencer and OSN;

 (vi) The generation of new posts by the same influencer 
progressively reduces a post’s attractiveness level. 
This can be explained by the fact that users focus 
their attention on the posts at the top of the timeline.

Despite the intrinsic difficulties in incorporating all of the 
above features into a simple and tractable model, our pre-
liminary investigation (see Fig. 9) suggests that it is feasible 
to accurately predict the total number of interactions after 
observing the very initial phase of the post lifetime. With 
this objective in mind, we propose the analytical methodol-
ogy described in the following sections.

5.1  Removal of daily activity effects

Given a trace (i.e., time evolution data) of users interactions 
{ti} , ti > 0 with a given post published at time 0, we can eas-
ily derive a modified trace {t�

i
} in which the impact of vari-

able daily activity is removed. Let �(t) ∶ [0, 24] → R
+ be the 

daily followers’ activity averaged across all posts of a given 
influencer (here t is in hours), similar to what is shown for 
all influencers in Fig. 4. Let �̄� =

1

24
∫ 24

0
𝜆(t)dt be the average 

user activity across the day.
Assuming that the post was published at hour T0 ∈ [0, 24] , 

we define the modulating function g(t), t ≥ 0 , as:

which is simply a shifted and replicated version of �(t) pro-
viding the expected activity of users at an arbitrary time 
t after the post publication. Then, an interaction which 
occurred at real time ti is shifted to virtual time t′

i
:

Note that the above transformation preserves the ordering of 
interactions, i.e., if ti > tj then t′

i
> t′

j
 , while removing the 

g(t) = �((t + T0)mod 24)

(1)t�
i
=

∫ ti
0
g(t)dt

�̄�
.

Fig. 16  Average fraction of interactions vs no. of published posts, 
after 12 h since their creation
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impact of variable daily activity by diluting (densifying) 
interactions occurring in periods of high (low) activity.

We expect the virtual trace {t�
i
} to be more regular than 

the real trace {ti} , and thus easier to model and predict.
At last observe that if g(⋅) is assumed to be continuous, 

previous equation can be rewritten as:

for some � ∈ [ti−1, ti] . In particular, if g(⋅) is sufficiently 
slowly varying, we can approximately write:

Figure 17 shows some examples of traces of the number of 
interactions accumulated over time by four posts, published 
roughly at 1am (purple), 8am (black), 4pm (blue), and 12pm 
(green). Thick curves refer to physical time t, while thin 
curves refer to virtual time t′ , and were obtained by applying 
transformation (1). We observe that the virtual time trans-
formation removes the ‘plateau’ due to low user activity late 
at night (purple and green curves). Similarly, it allows us 
to distribute more smoothly over time interactions accumu-
lated over periods of high user activity, like at midday (black 
curve), or early at night (blue curve).

From now on, we will only reason in terms of virtual 
time, assuming that any measurement N(T0, t) of the num-
ber of interactions collected by a post published at time T0 , 
within time t, has passed through transformation (1), pro-
ducing an equal number N(T0, t�) , shifted at virtual time t′.

5.2  Modelling the generation of interactions

Let us assume that each post is characterised by an intrin-
sic level of attractiveness described by a positive real-
valued mark X ∈ R

+ . Marks associated with posts of a 
given influencer are assumed to be i.i.d. with PDF fX() . 

t�
i
= t�

i−1
+

∫ ti
ti−1

g(t)dt

�̄�
= t�

i−1
+

g(𝜓)

�̄�
(ti − ti−1)

t�
i
≈ t�

i−1
+

g(ti−1)

�̄�
(ti − ti−1)1, .

We can consider some simple law for fX() , incorporating 
long-tail behaviour, e.g., a log-normal distribution with 
parameters �X , �X.

We assume that the final number N∞ of interac-
tions received by a post is equal to F(0)X, where 
F(0) is the number of followers at the time of the 
post creation. Note that, if X ∼ Lognormal(�X , �

2
X
) , 

F(0)X ∼ Lognormal(�X + log(F(0)), �2
X
).

Let N(t�) be the number of interactions received within 
(virtual) time t′ after the post creation. First, we condition 
on N∞ = n∞:

where 1 is the indicator function. We assume that follow-
ers access the platform (independently from each other) 
according to a Poisson process of rate Λ , which is itself a 
random variable with probability density function fΛ(�) . Let 
FΛ(s) = �[e−sΛ] be the Laplace transform of fΛ(�) . Then:

is a Bernoulli random variable with mean 1 − e−�t
� . It fol-

lows that

Moreover, we note that

does not depend on N∞ ; hence, we can obtain the Laplace 
transform of fΛ(�) by averaging out N∞:

We found empirically that a surprisingly accurate model for 
fΛ(�) is a mixture of a uniform distribution in [0, a] and an 
exponential distribution of parameter �:

from which

Parameters m, a, � have to be fitted for each specific 
influencer, though they do not vary significantly from 
influencer to influencer, as shown in the following.

N(t�) ∣ (N∞=n∞) =

n∞∑

i=1

1{user i interacts before t�}

1{user i interacts before t�} ∣ Λi = �

(2)
�[N(t�) ∣ (N∞ = n∞)] =n∞�[1 − e−�t

�

]

=n∞(1 − FΛ(t
�))

�

[
N∞ − N(t�)

N∞

∣ (N∞ = n∞)

]
= FΛ(t

�)

(3)FΛ(t
�) = �

[
N∞ − N(t�)

N∞

]
.

fΛ(𝜆) = m
1

a
1{𝜆 < a} + (1 − m)𝛿e−𝛿𝜆

FΛ(s) = m
1 − e−a s

a s
+ (1 − m)

�

s + �
.

Fig. 17  Examples of traces of temporal evolution of interactions over 
posts (thick curves) transformed into virtual time (thin curves)
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Figure 18 presents the fitted Laplace transform FΛ(s) , 
through parameters m, a, � , using the traces of 9,204 posts 
published by Italian politician Matteo Salvini on IG. Fitted 
values are: m = 0.83 , a = 0.41 , � = 0.7 . Figure 18 requires a 
careful explanation. First of all, notice the log x axes, span-
ning from 0.01 hour (36 s) to 24 hours. Since in the fol-
lowing we will be especially interested in the early stages 
of post lifetime, this will be the time scale used in all plots 
hereinafter.

The vertical axes reports the fraction of residual interac-
tions, N∞−N(t�)

N∞

 . By (3), the mean across all traces of this frac-
tion provides the sought Laplace transform FΛ(s) for Influ-
encer Salvini. Small circles show such averaged fraction at 
various points in time, while the black solid curve is the 
fitted model, which turns out to be very accurate. The figure 
also shows the ensemble of 1000 actual traces (in yellow), 
which produces a large band around the mean. At last, green 
curves above and below the mean are plotted at a distance 
equal to the measured standard deviation.

Figure 18 reveals that there is a significant variability of 
traces around the mean, which is, unfortunately, not captured 

by the model introduced so far.6 However, we found that the 
distribution of the fraction of residual interactions (simi-
larly, the distribution of the fraction of already collected 
interactions) is approximately normal. This fact is shown 
in Fig. 19, which depicts the empirical distributions of the 
fraction of received interactions, measured at the times at 
which the mean fraction of received interactions is equal to 
10% (blue), 50% (red), 80% (purple), as denoted by vertical 
dashed lines in Fig. 18.

Note that the mean fraction of collected interactions is 
given by

for which we already have an accurate model. However, we 
still lack a model providing the deviation �(t�) . We suspect 
that, beyond the initial level of attractiveness X, the post 
dynamics is characterised by random temporal fluctuations 
of the rate at which users interact with it. These fluctuations 
are due to time-varying popularity, generation of new posts 
(which tends to decrease the attention of users on the con-
sidered post, see Sect. 4.4), and self-reinforcement effects 
due to users observing the engagement of other users (which 
can increase the interaction rate after a period of low user 
interest).

In order to incorporate the effects all such elements in 
the model, we resorted to a simple fitting of the empirical 
standard deviation by a 2-parameter curve. Specifically, we 
found that the function:

provides a reasonable approximation, where parameters c 
and b can be computed for each influencer, though they do 

(4)�(t�) = 1 − FΛ(t
�)

(5)�(t�) = c t�be−
√
t�

Fig. 18  Fitted Laplace transform of user access rate �

Fig. 19  Empirical PDF of the fraction of arrived interactions, at the 
time instants when the mean fraction of arrived interactions is equal 
to 10%, 50%, 80%. Black curves show the fit obtained by a normal 
distribution

Fig. 20  Fitted models for the mean (left y axes) and standard devia-
tion (right y axes) of the fraction of collected interactions. The result-
ing coefficient of variation is also shown (left y axes)

6 The variance calculated according to the proposed model would be 
negligible.
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not vary significantly from influencer to influencer (however, 
we noticed that traces on FB have larger variability than 
traces on IG, see Tables 2 and 3).

Figure 20 shows the empirical standard deviation of 
traces of influencer Salvini on IG (red circles), and the best 
fit by the proposed function (5) (solid red curve). It also 
repeats the fit for the mean already shown in Fig. 17, but 
this time in terms of average fraction � of already received 
interactions (black). Indeed, what is ultimately important 
is to obtain a good estimate of the coefficient of variation 
CV = �∕� , which is also shown on the plot (blue).

Knowing that the fraction of received interactions within 
time t′ is approximately normal, and having derived param-
eters �(t�) and �(t�) as function of (virtual) time t′ (for each 

influencer and social platform), we can now make analytical 
predictions of post dynamics.

For example, in Table 2 we report some predictions 
obtained for six different influencers on IG (first column). 
The other columns provide, from left to right: the average 
fraction of interactions collected during the first 6 min, and 
the corresponding standard deviation; the average frac-
tion of interactions collected during the first hour, and the 
associated standard deviation; the time at which we expect 
to see half of the total interactions, denoted as t(50%) ; the 
time at which we expect to see 80% of total interactions, 
denoted as t(80%) ; the maximum standard deviation over 
all time (denoted by �max ). We report the values observed 

Table 2  Results for various 
influencers, comparing 
observed behaviour and model 
output (IG)

Influencer # Traces Interaction 
fraction after 
6 min

Interaction 
fraction after 
60 min

t(50%) t(80%) �
max

Avg Std Avg Std

Salvini (politician) 9204 Observed: 0.039 0.013 0.246 0.049 3.4 11.5 0.068
Model: 0.041 0.012 0.244 0.051 3.3 11.6 0.067

Fedez (singer) 1988 Observed: 0.040 0.019 0.257 0.064 3.5 12.8 0.104
Model: 0.042 0.017 0.254 0.070 3.4 13.0 0.094

Icardi (sportsman) 1714 Observed: 0.048 0.016 0.272 0.048 3.4 13.6 0.069
Model: 0.050 0.015 0.271 0.053 3.3 13.0 0.065

Leotta (presenter) 1280 Observed: 0.047 0.018 0.292 0.052 2.8 11.0 0.077
Model: 0.048 0.010 0.292 0.052 2.7 11.0 0.077

Colombari (actress) 889 Observed: 0.035 0.035 0.227 0.090 4.0 15.1 0.128
Model: 0.035 0.028 0.228 0.101 4.0 14.8 0.124

Maci (food-blogger) 814 Observed: 0.041 0.013 0.284 0.056 2.8 10.3 0.084
Model: 0.045 0.013 0.280 0.059 2.8 10.4 0.080

Table 3  Results for various 
influencers, comparing 
observed behaviour and model 
output (FB)

Influencer # Traces Interaction 
fraction after 
6 min

Interaction 
fraction after 
60 min

t(50%) t(80%) �
max

Avg Std Avg Std

Salvini (politician) 10,243 Observed: 0.040 0.025 0.252 0.098 3.9 16.1 0.124
Model: 0.041 0.024 0.252 0.102 3.9 16.1 0.135

Juventus (sport club) 3226 Observed: 0.052 0.039 0.306 0.124 2.7 12.9 0.143
Model: 0.053 0.036 0.308 0.132 2.7 12.8 0.163

Conte (politician) 789 Observed: 0.039 0.024 0.265 0.104 3.5 16.3 0.137
Model: 0.041 0.023 0.265 0.106 3.5 16.1 0.146

Pausini (singer) 539 Observed: 0.031 0.016 0.198 0.071 5.3 19.4 0.112
Model: 0.032 0.015 0.197 0.075 5.4 19.8 0.109

Jackal (comedians) 417 Observed: 0.048 0.045 0.289 0.157 3.6 23.2 0.212
Model 0.048 0.043 0.289 0.168 3.5 23.4 0.214

Buffon (sportsman) 349 Observed: 0.040 0.017 0.255 0.064 3.9 14.5 0.085
Model: 0.044 0.016 0.251 0.067 3.8 14.9 0.088
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from the collected data and the corresponding values 
obtained from the analytical model for each influencer.

Table 3 reports similar results for six influencers on FB. 
Besides noticing the good fit of the model in all cases, it is 
interesting to see that some numbers are surprisingly similar 
across different influencers and platforms: roughly 4% of all 
interactions are collected within 6 min since post creation, 
and roughly 25% after one hour; on IG, 50% (80%) of all 
interactions are collected after roughly 3.3 (12.4) hours; on 
FB, these last figures are a bit larger: 50% (80%) of all inter-
actions are received after roughly 3.8 (17) hours.

The similarity of results for the mean fraction of collected 
interactions is further illustrated in Fig. 21, showing on the 
same plot the curves �(t�) = 1 − FΛ(t

�) computed analyti-
cally for all 12 influencers considered in Tables 2 and 3.

At last, as anticipated, it is interesting to observe (last col-
umn of the tables) that the maximum standard deviation of 
the traces is larger on FB than on IG, by a factor of about 1.5.

5.3  Model exploitation: post popularity prediction

One of the most interesting applications of our model is the 
early prediction of post popularity, which can have several 
applications. For example, the social platform can use this 
prediction to sell advertisement slots to be shown in proxim-
ity of the post, and prediction of the number of views that 
the post will receive in the future is crucial to bid a price for 
the available ad slots.

Suppose to measure the number of interactions n(t) 
received by a post, published at time T0 by a given influ-
encer, after a period of duration t. What can we infer about 
the total number of interactions n∞ that the post will eventu-
ally receive?

Our analysis suggests the following approach should be 
taken. First, suppose to know the number of followers F(0) 
at the post creation time. Moreover, assume that analysis 
of the history of post popularity of the given influencer has 
allowed us to estimate parameters �X , �X of the log-normal 

distribution of the intrinsic level of attractiveness X (see 
Sect. 4.3). Then the unconditioned distribution of the ran-
dom variable N∞ is Lognormal(�X + log(F(0)), �2

X
).

A standard maximum a posteriori estimation (MAP) 
allows us to compute a prediction n̂∞ on the total number of 
interactions that the post will receive, given observation n(t). 
First, we transform the observation n(t) into virtual time n(t�) 
to remove the effect of daily variation of user activity. This is 
an important step: for example, if a post is published late at 
night, it might eventually become popular even if it receives 
just a few interactions during, say, the first hour.

We assume that analysis of the history of the post dynam-
ics of the given influencer has allowed us to fit parameters 
of functions �(t�) (4) and �(t�) (5). Then the conditioned 
distribution of random variable N(t�) ∣ n∞ is normal 
N(n∞�(t

�), n2
∞
�(t�)2) . A standard application of Bayes’ theo-

rem provides the posterior distribution of N∞ ∣ n(t�):

and our MAP prediction will be the mode of it:

Note that the above analysis also provides an estimate of the 
error that we will run into by our prediction, since we have 
the entire posterior distribution of N∞ ∣ n(t�).

As an example, Fig. 22 shows the MAP prediction (blue 
circles) of N∞ for 40 posts published by influencer Salvini on 
IG, given some observation n(t�) (one for each post), where 
t′ is shown on the horizontal axes. Red squares denote true 
values of N∞ , while boxplots provide a graphical represen-
tation of the posterior distribution of N∞ ∣ n(t�) computed 
analytically. We can observe from these sampled posts that 
the larger the time t′ at which we observe the number of 

(6)

�[N∞ =n∞ ∣ n(t�)]

=
�[N(t�) = n(t�) ∣ n∞]�[n∞]∑
n�
∞
�[N(t�) = n(t�) ∣ n�

∞
]�[n�

∞
]

(7)n̂∞(n(t
�)) = argmax

n∞

�[N∞ = n∞ ∣ n(t�)].

Fig. 21  Average fraction of collected interactions as function of time, 
for various Influencers (from Tables 2 and 3)

Fig. 22  Boxplots of a-posteriori distributions of N∞ ∣ n(t�) , predicted 
value n̂∞ (circles), actual values n∞ (squares), for 40 different posts 
of Influencer Salvini on IG, starting from (single) observations n(t�) , 
where t′ is reported on the x axes
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interactions, the smaller the prediction error in the total 
number of interactions, as expected. However, Fig. 22 sug-
gests that accurate predictions are already feasible a short 
time after post creation.

5.3.1  Comparison with baseline model

To better show the goodness of our approach, we compare 
our predictions with those obtained by a baseline model. In 
this baseline model, followers of a given influencer indepen-
dently access the platform according to a Poisson process of 
rate �a , where �a is the same for all users. Moreover, suppose 
that the decision to interact with a given post is made inde-
pendently from the access time to the platform, and indepen-
dently from user to user. Consequently, followers who decide 
to interact with a given post will do so after an amount of 
time distributed according to an exponential distribution of 
parameter �∗ , where �∗ is the same for all users interacting 
with a given post.

For a fair comparison with our model, we will assume 
that the baseline model shares the same information 
about the history of posts of a given influencer. In par-
ticular, the distribution of the final number of interac-
tions received by a post is known, modelled by a fitted 
Lognormal(�X + log(F(0)), �2

X
) , where F(0) is the number 

of followers at the time of the post creation (see Sect. 5.2). 
Moreover, we assume that detailed temporal history of inter-
actions allows the baseline model to fit its single parameter 
�∗ against the trace of all posts generated by a given influ-
encer (i.e., �∗ is adapted to each specific influencer). Finally, 
again for the sake of a fair comparison, the baseline model is 
applied to the temporal evolution of interactions transformed 
into virtual time to remove daily effects.

One can easily see that our model subsumes the above 
baseline model, when fΛ(�) = �(� − �∗) , where �() is Dirac’s 
Delta function. Its Laplace transform FΛ(s) = e−s�

∗ can then 
be fitted against the normalized traces of the residual number 
of interactions, as illustrated in Fig. 18.

Following the same MAP framework introduced before, 
let n∞ be an instance of the final number of interactions 

received by a post, and n(t�) be the number of interac-
tions observed after virtual time t′ since post creation. 
Notice that, according to the baseline model, the condi-
tioned distribution of random variable N(t�) ∣ n∞ can be 
approximated by a normal N(n∞q(t

�), n∞q(t
�)(1 − q(t�))) , 

where q(t�) = 1 − e−�
∗t� , being the sum of n∞ independent 

Bernoulli random variables of mean q(t�) . Therefore, we 
can apply (6) as well to the baseline model and compute 
a MAP prediction for the final number of interactions 
according to (7).

Figure 23 shows the average relative error of the base-
line model in the prediction of N∞ ∣ n(t�) , for influencer 
Salvini on IG, considering 1,000 posts for each bin, i.e., 
for each bin in Fig. 23, we have averaged the relative error 
| n̂∞−n∞

n∞
| of 1,000 different posts (for which an observation 

n(t�) is available in the dataset such that t′ falls in the bin).
In contrast, Fig.  24 shows corresponding results 

obtained with our approach. We observe a significant 
reduction in the prediction error as obtained by our model, 
with respect to the baseline model, especially for smaller 
values of the measurement time t′ , suggesting that our 
approach is significantly better at performing early pre-
diction of the final number of interactions. As expected, 
the relative error of the prediction diminishes over time. It 
is remarkable that a relative error of only 48% is incurred 
if an observation is available just between 0.01 (36 s) and 
0.02 (72 s) after the post creation, i.e., a very early predic-
tion. After 6 min (0.1), the error reduces to about 28%, and 
after about 1 h it reduces to about 16%. Similar results, not 
shown here, for the sake of brevity, have been obtained for 
the other considered influencers.

The superiority of our approach is essentially due to 
the fact that the baseline model describes a homogeneous 
population of followers through a single parameter ( �∗ ). In 
contrast, our model employs multiple parameters to describe 
heterogeneous followers, accounting for the fact that differ-
ent users interact with posts more or less promptly, depend-
ing on the frequency with which they access the platform, 
which is highly diverse from user to user.

Fig. 23  Baseline model: average relative error in the prediction of the 
total number of interactions received by 1000 posts (for each bin) of 
influencer Salvini on IG

Fig. 24  Our model: average relative error in the prediction of the total 
number of interactions received by 1000 posts (for each bin) of influ-
encer Salvini on IG
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6  Discussion and conclusion

In this work, we studied the temporal dynamics of Face-
book and Instagram for five years, focusing on top Italian 
influencers. After a thorough analysis of real-world data, 
we characterised several interesting features of the above 
OSNs, including: (i) the influencers’ and followers’ activ-
ity over time, (ii) the posts inter-arrival time and the post 
life-time, (iii) the arrival process of user interactions with 
a given post. The insights gained from our dataset analysis 
allowed us to develop a mathematically tractable, yet accu-
rate model describing the temporal evolution of the number 
of interactions collected by a post. We validated our model 
against real traces for both Facebook and Instagram. In par-
ticular, we demonstrate our model’s ability to perform early 
prediction of post popularity and the large improvements 
with respect to a simpler baseline. The existence of many 
interesting possible applications that may profit from early 
popularity predictions, such as anomaly detection and price 
bidding of ad slots, encourages further analytical efforts in 
this direction to incorporate effects not yet captured by the 
proposed methodology.

Appendix 1. Shares, comments, 
and reactions on FB

The interactions with an influencer’s post can be measured 
in different ways: in this paper, we focus on the total num-
ber of likes/reactions, but this metric can be complemented, 
or substituted, by the number of shares of the post and the 
number of comments (see Table 1).

On FB, a user can share an influencer’s post, and this 
action will appear as a new post from the user. In Fig. 14 
we presented the CDFs of the total number of likes for two 
influencers of IG, and we showed the goodness of fit with 
a log-normal distribution. Here, we repeat the analysis by 
also considering the number of shares and comments as 

different metrics for interactions on Facebook. Figures 25 
and 26 depict such different metrics, along with their fittings, 
for two of the studied influencers of FB, namely Jackal, a 
comedian group, and Laura Pausini, a singer (see Table 3). 
As can be seen, most interactions consist of reactions, while 
the number of comments and shares is at least an order of 

Fig. 25  CDF of the total number of interactions, measured as reac-
tions, shares, and comments on influencer Jackal (comedians) on FB 
at the end of the posts’ lifetime, along with their log-normal fit

Fig. 26  CDF of the total number of interactions, measured as reac-
tions, shares, and comments on influencer Laura Pausini (singer) on 
FB at the end of the posts’ lifetime, along with their log-normal fit

Fig. 27  CDF of the total number of interactions per follower (meas-
ured as reactions, shares, and comments per follower) on influencer 
Jackal (comedians) on FB at the end of the posts’ lifetime, along with 
their log-normal fit

Fig. 28  CDF of the total number of interactions per follower (meas-
ured as reactions, shares, and comments per follower) on influencer 
Laura Pausini (singer) on FB at the end of the posts’ lifetime, along 
with their log-normal fit
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magnitude smaller. However, the behaviour of these met-
rics is again well approximated by a log-normal distribution. 
Regarding the first influencer (Fig. 25), the Kolmogorov dis-
tance of the log-normal is 0.04 for reactions, 0.06 for shares, 
and 0.07 for comments. For the second example influencer 
(Fig. 26), the Kolmogorov distance is 0.05 for reactions, 
0.06 for shares, and 0.06 for comments.

Similarly to Fig. 15, we also report the normalised total 
number of interactions, dividing them by the number of fol-
lowers at each post creation timestamp. Again, we analysed 
reactions, shares, and comments. The results are presented 
in Figs. 27 and 28, respectively for influencer Jackal, and 
influencer Laura Pausini. As for the examples on IG, the 
log-normal fit is as good (or even better) when considering 
this normalized number.

In conclusion, shares and comments follow a distribution 
shape similar to the one of reactions, and they are well fit-
ted by a log-normal distribution, even though their absolute 
number is smaller.   
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