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Abstract—Modern RISC processors are based on a load/store
architecture, where all computations are performed on register
operands. Compilers therefore allocate registers based on de-
mand, and when occupancy is at maximum, register contents
are spilled onto the stack and then retrieved later as data is
needed. This phenomenon has security implications that cannot
be ignored, as data on the stack is subject to well-known memory
corruption attacks. Moreover, works presented so far are mainly
targeting protection of pointers to code (e.g., return addresses),
but are ineffective for protecting other context data in the stack.

This paper presents a security solution for spilled registers,
generalizing the use of ARM Pointer Authentication for this
purpose. The protection is enforced by the LLVM compiler via
additional compiler passes and modifications. The solution pro-
vides guarantees for both integrity and confidentiality protection,
and also addressing reuse attack problems associated with PA
usage. Experimental data collected demonstrates the effectiveness
of the solution against corruption and eavesdropping. We test our
solution using SPEC CPU 2017, which confirms the functional
viability of our solution. Additionally, we expose real-world
performance overhead metrics of our protection design on a
ARM-PA enabled processor.

Index Terms—security, software security, memory safety,
control-flow integrity, compiler, register spill, pointer authenti-
cation

I. INTRODUCTION

When the source code of applications is compiled to binary
representation, optimizing register allocation for performance
is one of the most algorithmically complex tasks undertaken
by the compiler. Computer registers are a limited resource,
despite that many contemporary hardware architectures are
stocked with plenty of general-purpose registers (e.g. ARM
Aarch64 has 31). During program execution in a stored-
program computer, and especially in Reduced Instruction Set
Computers (RISC), registers serve as an on-chip buffer within
which all arithmetic computation is carried out. Having the
register bank not residing in memory is an important security
distinction. In academic research, the presence and the power
of memory attacks, aptly summarized in a paper of 2013
by Szekeres et al. [1], has received lots of attention in the
last decade. A common denominator for all of this work is
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the insight that data in memory is insecure, and memory-
based attacks can even be mounted within the executing code
itself, without modifying it. A range of different memory-
based attacks (such as Return-Oriented [2] and Data-Oriented
Programming [3]) have been proposed in this setting. The
literature is rich of software-based mitigations, such as canary
protectors [4] or address randomization [5]. Different Control-
Flow Integrity (CFI) [6] mitigations have been very visible in
the academic research field in the last decade. Also, defenses
based on hardware extensions such as stack replicas [7] or
memory tagging [8] has been adopted by commercial chip
vendors. This is the case of the ARM Pointer Authentication
extension [9], introduced from the 8.3 version of the ISA, and
used by Apple MacOS since 2019.

In most programming languages, there is no contract be-
tween programmer and compiler regarding which data stays
“protected” in registers and which data can be stored in
memory. This is likely due to the fact that languages largely
predate the whole issue of memory protection. However, sys-
tem languages like C often carry a keyword like register
which, although not absolute, can be used by the programmer
to suggest to the compiler his intent about the storage of a
variable. New system languages like Rust promote a “safe”
mode where static analysis guarantees the memory safety of
the resulting program, but this happens in the abstract, on the
language level, before any compiler optimization takes place.

In compiler operation, data movement between registers
and memory is dictated by the hardware-specific Application
Binary Interface (ABI), as well as the register allocation pro-
cedure. Depending on the code being compiled, the compiler
may face register pressure, i.e., the size of the register bank is
too small to hold all the needed values required for arithmetic
at a given point in the executable code. When this happens,
the compiler must resort to a process called register spilling,
i.e., register contents are temporarily “spilled” to memory to
retrieve space for values more urgently needed for computation
at that specific location in the code. Spilled register values are
later read back as they are needed.

To the authors’ best knowledge, memory safety issues
related to register spilling have been very much overlooked in
the research community. A recent article by Panigrahi et al.
[10] proves in formal terms both the insecurity of the register
allocation process, assessing it in the field on the LLVM
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compiler. They conclude that the security properties of the
source code is not preserved downstream of the compilation
process, and the reason is due precisely to register spilling,
which taints possibly sensitive data. Also, register spilling
easily affects security techniques negatively: for example, the
research done in [11] by Huang et al. infers that stack canary
reference values in volume end up in memory due to spilling,
thereby defeating the protection effect of a canary.

This work focuses on the detrimental interdependence be-
tween register spilling and memory security, and proposes
two hardware-assisted solutions to mitigate this issue. The
work is also timely: as new hardware protections such as
memory tagging or pointer authentication become available
in Commercial, off-the shelf (CoTS) processors, the spilling
security problem is exacerbated by the fact that memory
protection designs leveraging these mechanisms may wrongly
assume that register values are never spilled: e.g., relying on
tag bits in pointers to remain immutable or that return pointers
in leaf functions never leave the registers in which they are
stored.

The present paper is written with the following intentions
and contributions:

1) Sharing the insight that the issue of register spilling
in compilers is a present and future security concern,
especially in relation to memory safety;

2) Providing an analysis of how often (and in which con-
text) register spilling occurs in a “typical” program, and
discuss what vulnerabilities may follow from such an end
result;

3) Providing an LLVM compiler solution using ARM
Pointer Authentication, where compiler-spilled register
data can be protected both for integrity and confiden-
tiality;

4) Providing performance analysis for the application of
this method, both when applied selectively and with full
coverage.

The remainder of the paper is organized as follows. In
Section II, background elements and data are provided on
the register allocation and spilling processes, on the LLVM
compiler, and on the ARM Pointer Authentication facilities.
In Section III, the adversary model and the requirements
that our solution aims to satisfy are presented. In Sections
IV and V, details on how the protection is designed and
implemented are offered. Section VI provides a qualitative and
quantitative assessment about the security of our technique and
its performance, measured on standard benchmarks taken from
the SPEC CPU 2017 suite. Section VII is intended to place
our work within the state of the art regarding related solutions.
Finally, Section VIII concludes the paper.

II. BACKGROUND

A. Register Allocation and Spilling

In compilers, register allocation is a complex optimization
problem that can have a big impact on speed. In contemporary
Reduced Instruction Set Computers (RISC), all arithmetic
is done using registers. As memory loads and stores are
very slow compared to arithmetic operations or intra-register

moves, it is paramount to maximise register use. On the other
hand, assigning variables and data contents in an optimal
way to registers when a computer program is compiled into
machine code is an NP-complete problem.

In programs, register spilling happens when register con-
tents is temporarily spilled to memory to retrieve space in
the register file. Spilling instructions are inserted by the
compiler — the activity of spilling is not represented on the
computer program level, and is not visible to the programmer.
There are two general classes of register spilling: one occurs
because of contract, i.e., spilling is defined to take place in a
given way based on the agreed Application Binary Interface
(ABI) for the underlying hardware. The second one is a
consequence of register allocation, as sometimes the compiler
needs to temporarily recover registers for computation when
all available registers already carry content. This is referred to
as the compiler having register pressure.

In ARMv8-A ABI, examples of the former spilling type
happens in function calls with more than eight parameters, as
this is the number of registers hosting parameters, while by
contract further ones are passed via the stack, i.e., spilled.
Register assignment within the function may also leverage
local reuse of so-called Callee-Saved Registers (CSR) in a
function, i.e., registers that by ABI maintain their value across
function calls. However, if the compiler decides to reuse CSRs
within the called function, it spills and restores their values at
its convenience (Figure 1).

Register bank

int func (int a, b c)
{

struct mystruct d;
a = b + c;
d.b = a -1;
secondfunc (&d, a);
..

}

frame record

local vars

Memory

X19

X20

X19

.

.

.

Spilled used regs.

restore regs.

func

stack

0xdeadbeef
0xdeadbeefspill

Fig. 1: CSR spills: the compiler assigns register x19 to local
computation. ABI dictates x19 to be a CSR, so its contents
is spilled to stack in the function prologue, and restored from
memory in epilogue.

As part of register allocation, the compiler has many strate-
gies by which register pressure can be released. Values of
registers with a dedicated purpose (e.g., function arguments)
are often swapped to/from other general-purpose registers. If
a register is populated with a value that can be reconstructed
based on other register contents and fixed values, it can be
discarded and later rematerialized — this is often faster than
caching its contents to memory. Only as a last resort, the
compiler spills register contents to (and later restores them
from) memory, such as to be able to execute some particularly
complex calculation in highly nested loops.
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Fig. 2: The 3-step LLVM compilation process.

B. The LLVM Compiler Infrastructure and interference graphs

LLVM1 is a compilation framework designed for provid-
ing target-independent and language-independent optimization
techniques that can be used through different compilation
scenario as in a library fashion. LLVM defines an Internal
Representation (IR), which can be seen as a low-level language
with a high-level type system.

The LLVM process is outlined in Figure 2. The source code
is first translated into IR by a language-specific front-end.
Then, the IR goes through a set of optimization processes,
all operating on the IR. Finally, in the compiler back-end,
the code is translated into a final form which can be easily
assembled to the machine code of the target architecture.

Within the IR, to ease optimization passes and trace infor-
mation flows, each variable is assigned once and once only.
This is called Static Single Assignment (SSA). For LLVM,
register allocation is the step in which each IR variable is
mapped onto a physical location. These may be physical
registers, or spill slots may be allocated on the function stack
frame. The Greedy Register Allocation algorithm is adopted,
which follows the graph coloring concept [12]. The algorithm
tries to find a way to color the nodes of a graph G = (V,E)
using at most X colors. In this abstraction, the nodes V of the
graph represent variables, while the available colors represent
the available locations. The edges E of the graph represent
interference between variables: when the liveness range of two
of them crosses, ad edge connects these two nodes. G is then
also called the interference graph.

If two nodes v1, v2 do not interfere (i.e., (v1, v2) /∈ E),
they can be considered as being the same node v′ with edges
equal to the union of interferences of v1 and v2 (coalescence
of nodes). If a node interferes with a number of nodes less
of equal to the number of colors, it is possible to avoid
considering it during the execution of the algorithm, as it will
be surely colorable. This is because if nv < |X|, whatever
color we assign to the neighbors of v, it is possible to assign
to v the remaining color.

Spilling registers is needed when the graph is not |X|-
colorable, i.e., when there exists no combination of |X| colors
in such a way that the same color is never used on two
connected nodes. The algorithm will notice it is necessary to
spill when at some point the graph is no longer simplifiable
and there still exists some nodes with degree greater than the
amount of available colors.

1https://llvm.org

C. Register Spilling Case Study - Google Chromium

As a reference to illustrate the prevalence of register spilling
in contemporary programs, we instrumented LLVM compiler
version 12 with extra debug output, and added a tooling
harness to report on different variants of register spilling in the
program. We applied this toolset to an ARMAv8 compilation
of the Google Chromium browser, since its commercial sibling
(Google Chrome) is the default browser in Android mobile
phones on 64-bit ARM hardware. With this argument, Chrome
is one of the most used single applications in the ARM
ecosystem, and also otherwise, Chrome accounts for over 60%
of all web traffic in the world [13] independently of platform.

Our findings show register spilling occurring at a large scale.
The Chromium baseline includes around 1 million functions,
and when compiled, registers are spilled at 3.5 million code
locations where the called function needs to use some registers
that the ABI assumes it to maintain during function calls.
Further, due to local register pressure in functions, around
100,000 additional memory locations (spill slots) are allocated
in functions, and 100,000 register stores as well as 200,000
register reloads target these locations. Needless to say, register
spilling is not a statistically rare event on the ARM platform.
Another investigation on the prevalence of spills in binary code
by Salgado et al. [14] counts the assembly overhead of register
spilling in ARM Thumb code (a 16-bit embedded architecture
variant), obtained after compilation of some embedded bench-
marks by MiBench, which ends up in being average 12% for
their tests.

D. ARM Pointer Authentication

The ARMv8.3-A (AArch64) hardware architecture support
a feature for register integrity, called Pointer Authentication
(PA) [9]. The idea behind this feature is that the 64-bit address
space is unused in most of the AArch64 deployments, as the
amount of addressable bytes with 64 bits is certainly out of
needs for actual applications. This leaves the topmost bits of
all pointers unused, and the intended use of PA is to repurpose
these bits to store a cryptographic message authentication code
(MAC). The MAC is from 16 to 32-bit long depending on
the configuration, and calculated in hardware over the pointer
value. When reloading this pointer from memory after having
stored it, evidence of tampering can be easily discovered
by checking the pointer signature. Signature creation and
verification are performed using a hardware implementation
of the QARMA algorithm [15], and are triggered by the
explicit use of variants of two new instructions, pac and
aut, respectively. The authentication code results in being
computed as:

https://llvm.org
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PAC = QARMA(key, pointer, context)

where context is a parameter chosen in relation to the
execution context, for increasing uniqueness of the signature.

ARM PA also stocks a general purpose MAC primitive
— the instruction variant pacga Xd, Xn, Xm which com-
putes PAC for a value stored in register Xn, using a modifier
stored in Xm, and a key, and stores the result in the upper
32 bits of Xd. In this work, we primarily leverage this PA
instruction.

One advantage of using PA, e.g., instead of architecture-
provided AES/SHA acceleration instructions, is that registers
holding PA keys can be shielded in hardware from the privilege
level using the PA instructions. Thereby key material theft
is excluded as an attack vector. In our design, new keys are
generated for a process by the Linux kernel as part of the
exec() system call invocation [16].

Today, ARM PA technology is widely deployed in COTS
processors like the Apple A12 (and later) cores, or provided
as part of cloud service infrastructure using Amazon Gravitron
3 ARM cores.

III. ADVERSARY MODEL AND REQUIREMENTS

This work follows what is customary in memory protection
literature, and assumes a powerful memory adversary that can
achieve both memory reading and corruption via an attack.
Additionally, it is assumed that the computer code, i.e., the
.text segments, can be rendered immutable by means of
common memory management features, such as W ⊕ X. Thus,
we do not consider attacks that modify the code of the running
application. Furthermore, in this work, we focus singularly
on the protection of register spills, in the understanding that
complementary compiler-assisted security mechanisms exist
for, e.g., call-flow or data protection (see Section VII). In this
respect, this work can form a basis for, e.g., a confidentiality
solution - where some data is never written to memory in the
clear - or an integrity solution, where memory modification
of state variables or counters is unconditionally detected, or
it can be used as a mechanism that corrects potential secu-
rity oversights in earlier compiler-focused memory protection
work, where the presence of register spilling as a threat has
not been fully accounted for.

Against this background, we focus our security requirements
explicitly on register spilling, i.e.:

1) The integrity of any value or reference stored in a register
shall be guaranteed when it is temporarily emitted to
memory due to compilation needs;

2) When so required, the confidentiality of data stored in a
register shall be maintained when spilled to memory due
to compiler-internal operation;

3) The protection of register spills shall only minimally
interfere with or detract from any other memory security
mechanism it is associated with.

As mentioned, we focus only on register spilling as a
problem, although, in the absence of an associated memory
protection scheme on the language or compiler level, theoreti-
cally our implementation could be applied for all data as well,
at a huge performance cost. A similar argument can be had

for applying confidentiality to spills – most spills will relate
to program execution and call flow, and as such need only
integrity protection. However, we cannot exclude that some
spills may require confidentiality, say in the case of a key
being input to an encryption function. So we implement and
measure both features, and leave it for future work to decide
what protection is needed in practice.

IV. DESIGN

Fig. 3: Overview of compiler modifications.

Our instrumentation for securing register spills is imple-
mented in the LLVM-12 compiler suite in the way illustrated
in Figure 3. The instrumentation itself does not touch the front-
end of the compiler, making the solution compatible with any
programming language supported by LLVM. In the compiler
back-end, the Register Allocators 1 releases register pressure
by conditionally assigning variables to registers in the code. To
handle these, our instrumentation adds a pseudo-instruction to
the events for later processing. In our new SpillProtection 2
compiler pass, the compiler translates the pseudo-instruction
to secure register spill machine IR code, adding integrity
protection, or both integrity and confidentiality protection,
as described below. CSR spills are fully handled in the
PrologEpilogInserter pass 3 , where they are written to our
machine IR with the same properties as for the spills caused by
register pressure. We also needed to extend the architecture-
dependent AArch64FrameLowering module for CSR protec-
tion.

The solution requires the presence of ARM PA support to
take advantage of some of the additional instructions there
introduced. ARM PA is available, e.g., using the armv8.3a
architecture selection.In this paper, we present our solution in
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the context of application / user-space protection, where the
PA keys are managed and only accessible by the OS kernel,
and therefore we assume the kernel to remain uncompromized.
However, with small modifications we can extend our design
to any privilege level (including the kernel), and the PA keys
can in the kernel context be protected e.g., by using MMU
memory protection as outlined in [17].

Our solution shall not temporarily store any intermediate
computations related to spill protection to memory, as that
would trivially violate our security targets. We have chosen to
reserve two registers, currently x14 and x15, as temporary
storage. Having two registers reserved for this purpose is
sufficient for both integrity and confidentiality protection (as it
is described in Section V), but removing two general-purpose
registers from general compiler use implicitly leads to in-
creased register pressure and more spills compared to the case
when these registers are available. The resulting performance
penalty is baked into the measurements in Section VI.

By using the temporary registers, we can take care that
intermediary values are not passed through memory. E.g., for
integrity, we simply use pacga as a message authentication
code (MAC) function and compute:

Authenticate: regv
PAC−−−→ x15 , {regv,x15} → mem

Validate: mem→ {regv, x15 } , regv
PAC−−−→ x14,

x14 = x15 ?

whereas for confidentiality or combined protection, the reg-
ister and PAC usage patterns are more complex and optimized
— this is detailed in Section V.

As pointed out in several prior art, one problem of using
PAC as part of a stack construct — both for integrity and
as a keystream — is that a simple PAC modifier (like sp
register) may repeat during the lifetime of the program (stack),
and therefore the danger of replay attacks is present [18]. In
such an attack, protected stack values are harvested, and later
replaced in memory when the top of the stack reaches the
same address. Our scheme is vulnerable to this attack. We next
plan to implement the principle presented in Camouflage [17],
where both the stack pointer and the program counter pc
are used as a modifier — at the cost of one extra arithmetic
instruction per spill. This will narrow the replay opportunity to
values spilled in the same function at the same stack address
at an earlier time. Even with this configuration, one could still
envision, e.g., spilled loop counters within a function being
replayable in this paradigm. An ultimate solution is to reserve
yet an extra register for protection and deploy the principle of
PACStack [19], which maintains a continuously changing (and
protected) modifier for PA, but implementing this approach is
being left for future work based on need.

V. IMPLEMENTATION

Our implementation provides protection against both spills
introduced due to register pressure and spills required by
the ABI, i.e., spilling CSRs. We control our protection
solution using compiler flags. The self-descriptive flags
aarch64-enable-spill-protection, aarch64-

// Mv := original spill slot stack offset
// Mm := MAC spill slot
// xv := register whose value to spill

// Storing registers
str xv, [sp, #Mv]
pacga x15, xv, sp
lsr x15, x15, #32
str w15, [sp, #Mm]
...
// Loading registers
ldr xv, [sp, #Mv]
ldr x15, [sp, #Mm]
pacga x14, v, sp
eor x14, x14, x15
cbnz x14, .Lfail

Listing 1: Integrity protection of a register spilled due to
pressure.

integrity-protect-csr, aarch64-enable-
spill-encryption and aarch64-encrypt-csr con-
figure the integrity and confidentiality individually for CSR
and other spills, respectively.

Even though these flags enable protection of spills selec-
tively depending on the spilling cause (register pressure, CSR
use in the function), the protection is applied for all spills in
the program. While this is sufficient for this work, where we
want to exercise our compiler solution as widely as possible
and analyze its overall cost, there is certainly room for further
improvement. For instance, confidentiality protection is likely
best applied only for data indicated by the programmer. If
static safety analysis is used (such as LLVM SafeStack pass)
also integrity protection for spills can be applied selectively.
These features we reserve for future work – the programmer
assisted approach, where a language extension is provided for
selective application of spill protection is illustrated by 4 in
Figure 3.

The integrity protection of in-function spills is actuated
by generating a distinct MAC for each spill using pacga
with the Stack Pointer sp as modifier and storing the result
alongside the spilled register in the stack frame. When variable
size objects are present in the function, the Base Pointer bp
(if available) or the Frame Pointer fp are used as modifier
instead of sp. Pseudocode generated for spill integrity in case
of register pressure is presented in Listing 1. The function
.Lfail causes the program to fail in case the reloading and
validation of a spilled register and its MAC causes an integrity
error.

It is easy to visually verify from Listing 1 that all compu-
tation takes place among registers, both on stores and reloads.
The same requirement is later fulfilled in the more complex
protection patterns.

When encryption is activated, the register is masked with
pseudo-random keystream generated with pacga, i.e., we
essentially operate a register-based stream cipher for spill
protection. This is done with only the two registers we reserve
for the solution, and the pattern is observable in Listing 2.
In the current implementation, the “keystream” generation is
seeded with a number computed by the compiler hashing
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// Mv := original spill slot stack offset
// Mm := MAC spill slot
// xv := register whose value to spill
// d := nonce to use, d = hash(function || Mm)

// Storing registers
mov x15, #d
pacga x15, x15, sp
eor x14, xv, x15 // encrypt left word
pacga x15, x15, sp
eor x14, x14, x15, lsr #32

// encrypt right word
str x14, [sp, #Mv] // store encrypted value
pacga x15, x14, sp // generate MAC
lsr x15, x15, #32
str w15, [sp, #Mm] // store MAC
...
// Loading registers
ldr xv, [sp, #Mv]
pacga x15, xv, sp // regenerate MAC
ldr w14, [sp, #Mm] // reload MAC
lsl x14, x14, #32
eor x15, x14, x15 // compare MACs
cbnz x15, .Lfail // fail if corrupted
mov x15, #d
pacga x15, x15, sp
eor xv, xv, x15 // decrypt left word
pacga x15, x15, sp
eor xv, xv, x15, lsr #32

// decrypt right word

Listing 2: Confidentiality and integrity protection used
together. We apply integrity protection on the encrypted
content.

together the function signature (function name, return type,
and parameters name and type) and the MAC spill index
within in the local function stack space to ensure different
spills in the same function will have different keystream.
When encryption and integrity protection are both activated,
the former is performed before the latter, in an Encrypt-then-
Authenticate (EtA) fashion.

With the objective of minimizing memory usage and speed
up calculation, MAC calculation for the CSRs is performed
in a more specialized way (also leveraging on the fact that
CSRs are all spilled and reloaded all at once). The algorithm
is represented visually in Figure 4 (in the case of 5 CSRs).

Finally, when we integrity protect callee-saved registers we
can leverage on the fact that the compiler will for each laid-out
function know which registers need to be spilled, and they are
all spilled in one go into the function frame in the function
prologue and later recovered in a batch at the end of the
function, in the epilogue. Thus we deploy a chained MAC
for CSRs by grouping together CSRs in pairs from the second
CSR onwards as is depicted in Figure 4. The algorithm is as
follows:

1) the intermediary MAC (e.g., of the 1st CSR, or 1st, 2nd
and 3rd CSRs, or CSR 1 to 5, etc.) is expanded (i.e
repeated twice) to 64 bits;

2) the expanded intermediary MAC is XORed with the next
CSR to generate a modifier for the next pacga;

3) the new intermediary MAC is computed using pacga
with the next CSR (e.g., the 3rd) and the modifier
computed in step 2.

Fig. 4: CSR MAC generation algorithm for 5 registers.

We continue with steps 1 to 3 until there is either 1 or 0 CSR
left to protect. In the case where 1 CSR still remains, a final
pacga is applied with the intermediary MAC as modifier.
Otherwise the last computed intermediary MAC is considered
to be final one. Where encryption is applied to protect CSRs it
is performed in the same way as for individual spills shown in
Listing 2, with the only difference that a single keystream is
applied to cover all the encrypt CSRs in one go. The way this
is done is visualized in Figure 5, and like the other protection
schemes, this can still be implemented strictly using registers
only.

VI. EVALUATION

In this Section, we evaluate our solution from the perspec-
tive of functionality, performance and security, and argue for
that our solution does meet requirements set forth in Section
III.

A. Security Analysis

Our security guarantees focus on register spilling only, in
the understanding that this feature complements some existing
memory protection feature for call-flow or data protection, or
is potentially used in a programmer-assisted way. All register
spilling taking place in the compiled code is instrumented by
our mechanisms. For integrity, we use the full 32-bit MAC
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(a) Construction of the PRNG function.

(b) Encryption algorithm.

Fig. 5: Encryption of 2 CSR registers.

// x19, x29, x30 := CSRs used in the function

// Function prologue, storing CSRs
pacga x15, x19, sp // compute temporary MAC
eor x15, x15, x15, lsr #32
eor x15, x29, x15 // mask 1st CSR with MAC
pacga x15, x30, x15 // compute overall MAC
str x15, [sp, #-32]! // store MAC, update SP
stp x29, x30, [sp, #8] // store other CSRs
str x19, [sp, #24]
...
// Function epilogue, reloading CSRs
ldr x19, [sp, #24]
ldp x29, x30, [sp, #8]
ldr x15, [sp], #32 // reload MAC, restore SP
pacga x14, x19, sp // recompute MAC in x14
eor x14, x14, x14, lsr #32
eor x14, x29, x14
pacga x14, x30, x14
eor x14, x14, x15 // compare MACs
cbnz x14, .Lfail // fail if corrupted
ret

Listing 3: Integrity protection of CSRs. Since these spills are
clustered both when produced and recovered, we can apply a
speed-optimized process for their protection (see Figure 4).

provided by PA, so brute-force attacks are not viable. We
protect against replay attacks by instrumenting the modifier
to be both location and function-dependent, and point to
a mechanism by which modifier replays can be provably
circumvented [19] if needed. The PA keys are set by the kernel
at a higher privilege level, and not attackable by the running
code. All MAC computation and validation is done within
the register bank, and insecure memory is never used during
this process. With these arguments, we ensure Requirement
1. The chained MAC generation for CSRs in Figure 4 is a
speed optimization – it is also done within the register bank
and ultimately just includes more input to the generated MAC.

The spill encryption feature is constructed as a stream
cipher, where the keystream is generated from a cryptograph-
ically secure pseudorandom number generator (CSRPNG),
built using PAC as the cryptograhically secure hash function.
For this feature to fully protect spills, the MAC seeding needs
to be unconditionally unique, as can be achieved, e.g., using
[19]. However, it is not known whether MACs are always
suitable for CSPRNG construction [20], and furthermore the
PAC algorithm is allowed to be manufacturer-specific, i.e.,
it can vary between ARM processors. This cryptographic
validation is left for further work, but based on the rest of
the arguments listed for integrity protection, we can conclude
that Requirement 2 is also satisfied.

In terms of secure design, the spilling protection only relies
on the ability to generate non-repeating seeds for the integrity
and confidentiality protection – beyond this, the design is fully
self-sufficient in terms of stack layout and operation. It does
not impose any requirements on the PA key, as long as its
secrecy is maintained. With these arguments, we stipulate that
this mechanism is easy to integrate with most other memory
protection solutions on ARM-A versions 8 or 9, thereby
satisfying Requirement 3.

For a more pragmatic security evaluation, we also run
relevant parts of the Juliet test suite v.1.3 [21] on C/C++
code instrumented with our spilling protection. Juliet is a large
collection of vulnerable programs with associated tests that
exploit known vulnerabilitites in them, based on Common
Weakness Enumeration (CWE) by Mitre. These tests have
been used, e.g., to evaluate the efficiency of scanning tools
[22]. However, since a portion of Juliet tests represent real-
world vulnerabilities in the stack, it is expected that some
of these attacks will be mitigated by our solution. The Juliet
suite includes 67 stack-based buffer overflow tests. All of
them run successfully with our instrumentation when no
attack is mounted (functional test, false-positive check). Our
spilling protection catches 23 of the associated attack tests. We
consider this to be a good result, as our system is not intended
to provide memory safety only by itself. However, this testing
indirectly confirms the prevalence of spilling as discussed in
Section II-C, and our protection efficiency is largely explained
by the fact that our CSR protection will end up serving as
an authenticated stack canary, akin to the methods presented
in [23].
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TABLE I: Spill protection binary size overhead measured on SPEC CPU 2017 benchmarks.

Benchmark Binary size (baseline) Binary size (with integrity) Overhead Binary size (with encryption) Overhead
perlbench 2860392 B 3204456 B 12.03% 3851624 B 34.65%
gcc 9816144 B 11360336 B 15.73% 14506064 B 47.78%
mcf 616888 B 629176 B 1.99% 641464 B 3.98%
omnetpp 2006968 B 2420672 B 20.61% 3362752 B 67.55%
xalancbmk 4521936 B 5316560 B 17.57% 7098320 B 56.98%
x264 1166640 B 1269040 B 8.78% 1424688 B 22.12%
deepsjeng 92440 B 104736 B 13.30% 125216 B 35.46%
leela 164952 B 189536 B 14.90% 246880 B 49.67%
xz 702768 B 731440 B 4.08% 788784 B 12.24%

TABLE II: Spill protection execution time overhead measured on SPEC CPU 2017 benchmarks.

Benchmark Baseline With integrity Overhead With encryption Overhead
perlbench 62.39 s 125.96 s 101.89% 397.83 s 537.64%
gcc 31.02 s 46.89 s 51.18% 120.64 s 288.92%
mcf 231.70 s 242.06 s 4.47% 306.44 s 32.26%
omnetpp 267.62 s 305.57 s 14.18% 477.70 s 78.50%
xalancbmk 209.34 s 230.60 s 10.16% 329.35 s 57.33%
x264 62.88 s 81.49 s 29.59% 197.29 s 213.75%
deepsjeng 249.76 s 285.75 s 14.41% 549.63 s 120.06%
leela 333.92 s 395.62 s 18.48% 695.16 s 108.18%
xz 87.90 s 91.23 s 3.80% 107.54 s 22.34%

TABLE III: Spill protection stack size and spill count overhead measured on SPEC CPU 2017 benchmarks.

Benchmark Spills (no instr.) Spills (instr.) Spill overhead Stack size (no instr.) Stack size (instr.) Stack size overhead
perlbench 16779 16801 0.13% 244176 B 264240 B 8,22%
gcc 79723 79769 0,06% 847904 B 963904 B 13.68%
mcf 326 335 2.76% 67568 B 68080 B 0.76%
omnetpp 27478 27483 0,02% 439408 B 479040 B 9.02%
xalancbmk 58651 58652 0.00% 880512 B 964144 B 9.50%
x264 9327 9583 2.74% 313056 B 326704 B 4.36%
deepsjeng 711 713 0.28% 25488 B 26256 B 3.01%
leela 1780 1789 0.51% 197472 B 199536 B 1.05%
xz 1671 1703 1.92% 72784 B 75584 B 3.85%

B. Performance Evaluation

For the evaluation of our protection mechanism, we used
an Apple MacMini system featuring an Apple M1 processor
which supports ARM Pointer Authentication. We installed
Debian Bookworn [24] with Linux kernel 5.16 from the Asahi
project [25] with PA support enabled.

Earlier work on ARM PA [18] has mostly evaluated PA
performance using a software equivalence w.o. real hardware
access, and with an estimation that the PAC generation /
validation overhead is 4 cycles. As this work evaluates perfor-
mance on actual ARMA-v8.3 hardware, we have conducted
some specific testing to validate the accuracy of the earlier
estimations: by executing multiple dependent ALU instruc-
tions interleaved with pacga instructions in a single-processor
thread, we can determine that the pacga instructions consti-
tute the bottleneck for execution time if there are no more than
4 ALU instructions per pacga instruction. With 5 or more
ALU instructions, the ALU processing becomes the dominant
factor. Thus, we surmise that a single pacga instruction takes
between 4 and 5 times as long to retire as an exclusive-or
ALU instruction on the M1 processor. It also appears that
the processor supports multi-issue of pointer authentication
instructions with other operations such as arithmetic or load-
s/stores, enabling parallel execution and reducing the impact
of the extra pointer authentications on execution time. Even

though these metrics are collected only from software (without
deeper information of processor hardware or pipeline structure
being available to us), it does appear that prior PA overhead
estimates were quite accurate, at least with respect to the Apple
M1 core.

For functional and performance testing, we compiled all
C/C++ integer rate base suite tests of the SPEC CPU 2017
benchmarks [26] with our instrumentation, and executed them.
All the listed tests run to completion with an LLVM image
including our compiler modifications. This was done in all
categories (baseline, integrity, integrity+encryption), i.e., from
this we can conclude the functional aspect of testing. In addi-
tion, we have run both Juliet tests and Nbench2 benchmarks
to the same effect.

Our protection scheme affects performance primarily in two
aspects, which we evaluate here. First, code size increases
due to the added run-time instrumentation, but also indirectly
due to the higher register pressure caused by the fact that we
reserve two registers for our design. Table I shows the increase
in code size — we can also observe a wide variation in the size
increases between programs, going from 9.96% for integrity
to 28.42% for integrity+confidentiality in geometric mean: this
of course reflects that different tests expose different spilling
profiles to begin with, based on their respective source code

2https://www.math.utah.edu/∼mayer/linux/bmark.html

https://www.math.utah.edu/~mayer/linux/bmark.html
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and algorithmic complexity.
Secondly, the execution times of the programs increase

due to the instrumentation and especially the added pointer
authentication operations, that based on our analysis cost
around 4 cycles each. Table II shows the execution overhead
of different tests. The geometric means of the performance
overhead land at 16.69% for integrity and 103.80% for in-
tegrity+confidentiality, but as can be seen from the table,
means are hardly a relevant consideration in this case, as the
overhead of register spilling is so very dependent on the code
being protected and its “inclination” for register spills.

Finally, we also report on spill count increase and stack
memory consumption increase in Table III. Recall that en-
cryption does not increase stack size if it is featured together
with integrity, as the amount of stored data does not change.
This overhead, together with the binary overhead, translates
to extra memory consumption of a running application in-
strumented with our compiler design. The spill overhead
presented averages to 0.2% in geometric mean. This result
is certainly promising in absolute terms, but it needs to be
evaluated as a whole with the other features of the solution:
even though spilling instructions increase by a small amount,
there is still a larger performance hit due to the fact that
the spilling procedure in itself becomes a more performance-
hungry operation. Also, recall that our spill protector reserves
2 registers to store intermediate values while performing its
duties, causing an inevitable increase in register pressure.

Stack sizes have been obtained using the LLVM back-end
flags -mllvm -stats for each object file of a program,
and then summed up. Linux time command has simply been
used for measuring the execution times. Reported timings are
averages over 10 repeated execution runs. The spill count
of each benchmark has been obtained through elaboration of
LLVM-generated statistics, by summing together the number
of in-function spill instances (which is is less than or equal to
the number of reload instances) and the number of CSRs of
each object file pertaining to the benchmark.

VII. RELATED WORK

In the literature, engineering investigation on register allo-
cation within compilers has historically turned predominantly
on optimization problems [27] [28]. From this perspective, the
use of spill slots to allocate variables outside of registers is
seen as something to be minimized in relation to the memory
access cost that each of the spill and fill operations might
have. Since the work of D’Silva et al. in 2015 [29], reflections
on the level of trust afforded to compilers began to come up
in the literature. Work by Panigrahi et al. [10] formalizes
this problem, giving definitions for information leakage and
relative security between source and machine code along the
compilation process, and demonstrating with numbers their
poor level within LLVM.

Several studies have focused on how to enhance compilers
to introduce protections for data types considered as poten-
tially more dangerous when released in memory, i.e., code
pointers. PointGuard [30] is an early example of theorizing on
and implementing encryption of code pointers during compi-
lation, which is done by XORing with a key from a random

source. StackGhost [31] takes advantage of the presence of the
windowed register file in the SPARC architecture to minimize
the number of spills, and when necessary, explicitly invokes
the kernel to save the contents of the register file safely away
from the stack. These techniques suffer from cryptographic
weakness, due to the lack of adequate hardware support for
both encryption and key management. The landscape has
definitely changed due to the introduction of facilities for fast
and/or lightweight encryption of data on the fly.

An example appears in a 2015 paper, CCFI (Cryptographic
Control-Flow Integrity), in which the AES-NI extension of the
x86-64 architecture is used to sign 4 different types of pointers:
return addresses, pointers to functions, pointers to virtual
methods of a class, and exception handlers. Specifically, a 128-
bit key is generated at bootstrap and continuously maintained
within the extended register bank (XMM5-XMM15). This key
is used to encrypt a pointer identifier consisting of its 48 least
significant bits, plus another 80 bits indicating its class. Such
a signature is placed in memory next to the pointer every time
it needs to be stored. Similarly, authentication is done each
time the pointer is loaded.

As for the ARM family, the Pointer Authentication (PA)
facilities introduced in the architecture few years ago provide
support for a large number of techniques recently presented
in the literature. PATTER (Pointer AuThenTication for kER-
nel) [32] inserts instrumentation for protecting arguments of
indirect branches. All pointers used for forward branches are
signed and then stored in memory, and when they need to be
used, they are loaded from memory and then authenticated.
As for backward edges, prologues to sign the return value
are put at the start of each function, and the return is executed
through an authenticate-and-branch atomic instruction. A sim-
ilar paper of the same year, PARTS (Pointer Authentication
Run-Time Safety) [18], extends the same protection concept
to data pointers in addition to code pointers, and questions
the use of simple modifiers, highlighting replay attack risks.
For this, PARTS uses a modifier based on the ElementType
of the pointer, as defined in LLVM. Return address signing
uses a 48-bit function unique identifier and the 16 most-
significant bits of the sp value. Camouflage [17] is another
work based on pointer signatures, that also tends to avoid
the replay attack problems affecting the original ARM PA
implementation: the modifier is built by concatenating the low-
order 32 bits of sp with the low-order 32 bits of the address
of the function. PACStack [19] creates an authenticated call
stack which revisits the original concept of the shadow call
stack [33] without requiring new hardware-protected memory.
Here, instead of using the stack pointer as a modifier for
the signature, the previously-authenticated return address is
used. The latest authenticated address is stored in a compiler-
reserved register.

Despite their effectiveness in protecting pointers, none of
these works have an explicit vocation for register spilling
security issues. A recent publication on the topic is RegGuard
[34]. Its idea is to keep as much sensitive data as possible
in registers, ranking them on the basis of a security score
assigned according to the type of the variable: pointers are
the most sensitive, followed by user-defined and condition
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variables. When spilling is the only option, the CSR block is
MACed using HMAC-SHA256 before being saved in memory.
Two registers are reserved by the compiler for storing the key
and the hash, respectively.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a solution for securing the register
spilling process through modifications to the LLVM compiler
and based on the use of ARM Pointer Authentication facilities
in ARMA-v8.3 and later cores. By introducing our compiler
design, we primarily intend to raise the awareness of register
spilling as a memory security issue, and to provide a compre-
hensive design by which this issue can be mitigated. Protection
is implemented as an additional step within the compilation
process, by which both registers spilled on the stack due to
register pressure and callee-saved registers within functions
are protected when stored in memory.

Measurements made on the entire pool of the integer
benchmarks from the SPEC CPU 2017 suite shows that the
impact on stack size for integrity protection is around 4%
(geometric mean), with no additional cost for encryption, due
to the design choices made, while it goes from around 9% to
28% in binary code size depending on whether the protection
is for integrity only or integrity+encryption. For execution
time overhead, integrity protection comes at a cost of 16.69%
whereas adding confidentiality protection sets the overhead
to 103.80%. Although this last result may seem penalizing,
it should be noted that it is the result of an overhead on
the encryption of all register spills in the program, includ-
ing callee-saved registers. Especially for spill encryption, a
partial protection, based on function criticality or programmer
marking of critical data can be the path for higher efficiency.

As for future phases of this work, we see three next steps.
First, performance speed-up for encryption might be gained
by combining the use of PACGA with ARM cryptographic
Extensions (AES), where PAC provides key material for the
latter primitive. Second is to either apply our design to a
compiler memory protection solution that will benefit (as
overlooked) the dangers of register spilling. Third, our solution
can be used to complement safety solutions in languages such
as Rust, where the mixing of safe and unsafe code is supported,
but where the security analysis of unsafe code is done at
language level without accounting for such multi-layer security
issues as spilling (which will take place “underneath” both
safe and unsafe code compilation). All directions may allow
the resulting design to only selectively apply spilling protec-
tion where needed, which can bring down the performance
overhead in such setups to more practical levels.
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