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Abstract—Among the multiphase solutions, multi-three-
phase drives are becoming more and more widespread in 
practice as they can be modularly supplied by conventional 
three-phase inverters. The literature reports several control 
approaches to perform the torque regulation of multi-three-
phase machines. Most of such solutions use the vector space 
decomposition (VSD) approach since it allows the control of a 
multi-three-phase machine using the conventional control 
schemes of three-phase drives, thus reducing the complexity of 
the control algorithm. However, this advantage is practically 
lost in the case of open-three-phase faults. Indeed, the post-fault 
operation of the VSD-based drive schemes requires the 
implementation of additional control modules, often specifically 
designed for the machine under consideration. Therefore, this 
paper aims to propose a novel control approach that allows 
using any control scheme developed for three-phase motors to 
perform the torque regulation of a multi-three-phase machine 
both in healthy and faulty operation. In this way, the previously 
mentioned drawbacks of the VSD-based control schemes in 
dealing with the faulty operation of the machine are avoided. 
Moreover, the simplicity of the control algorithm is always 
preserved, regardless of the machine's operating condition. The 
proposed solution has been experimentally validated through a 
12-phase induction motor, rated 10 kW at 6000 r/min, using a 
quadruple-three-phase configuration of the stator winding. 

Keywords—direct flux vector control, fault-tolerant torque 
control, induction motor drives, multiphase electrical machines. 

I. INTRODUCTION 
As a result of the current electrification processes of wind 

energy production and transportation, multiphase solutions 
are becoming a competitive alternative to the conventional 
three-phase motor drives [1]–[4]. Indeed, multiphase 
machines significantly reduce the current levels for a given 
electric power, making it possible to use today’s fast power 
electronics devices and, hence, getting significant advantages 
in terms of efficiency and power density [3], [5], [6]. 

Among the multiphase solutions, multi-three-phase motor 
drives are experiencing significant interest from the industry 
because such systems allow configuring a multiphase machine 
as multiple three-phase units operating in parallel [1]. In this 
way, several advantages can be obtained. The first advantage 
is a straightforward machine design since the stator consists of 
multiple three-phase winding sets having isolated neutral 
points. The second advantage is that using three-phase inverter 
power modules reduces cost and design time. Three-phase 
inverter modules are used to supply each winding set, as 
shown in Fig. 1. Therefore, the fault-tolerance capability is 
implemented according to the three-phase modularity [1]. In 
the case of a fault in a power module, this is turned off, and 
the corresponding unit, i.e., winding set plus inverter, is 
disconnected from the dc-link [7], thus getting a 
straightforward post-fault drive reconfiguration. 

 
Fig. 1. Multi-three-phase drive topology. 

Although a fault event leads to losing an entire winding 
set, the fault-tolerant strategies based on the three-phase 
modularity allow the following advantages [2]: 

 Each three-phase unit acts as a balanced load on the dc-
supply (see Fig. 1) and avoids low-order harmonic 
content on the dc-link current. 

 Each three-phase winding set produces a smooth torque 
contribution [1], [7]. Therefore, losing one or more 
three-phase units does not introduce torque ripple or drag 
torque. The control strategy following a fault is to 
increase the torque demand for the healthy winding sets, 
thus compensating for the missing torque contributions 
of the faulty winding sets. 

Finally, the third advantage of multi-three-phase drives is 
the possibility of implementing power-sharing strategies 
among the three-phase winding sets [7], [8]. Such strategies 
help the series-parallel systems [8], [9], i.e., series or parallel 
connection of the dc-links belonging to the three-phase 
inverter units. Application examples of such systems can be 
found in wind energy production [8]. However, it is 
highlighted that most of the multi-three-phase drives for high-
power applications (e.g., oil and gas [10]) usually operate with 
balanced operation among the units, optimizing the overall 
machine efficiency [8]. 

Regardless of the drive operation, most control solutions 
implemented for multi-three-phase machines are based on the 
vector space decomposition (VSD) approach [11]. The VSD 
approach decomposes the multiphase machine model into 
multiple orthogonal subspaces. The main subspace performs 
the electromechanical energy conversion if a sinusoidal 
distribution of the stator windings is considered. Instead, the 
other subspaces have the meaning of time-harmonic and zero-
sequence patterns of the machine [12]. The main advantage of 
such an approach is evident since, for healthy operation with 
balanced three-phase units, the torque control scheme should 
actively manage only the main subspace. Thus, most control 
schemes developed for three-phase motors can be used [13], 
e.g., field-oriented control (FOC). 
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Unfortunately, the VSD can deal only with machines 
having a symmetrical or asymmetrical configuration of the 
stator winding [14], [15]. Besides, if an open-three-phase fault 
occurs, the VSD-based algorithms must actively control the 
time-harmonic subspaces to keep the machine waveforms 
(e.g., phase-currents) balanced and within their boundaries. 
Hence, they require the implementation of specific control 
modules supported by dedicated fault-tolerant strategies [6], 
[16]–[19], and both often must be explicitly designed for the 
machine under consideration. 

A viable alternative to the VSD-based control schemes is 
modular algorithms like those based on the multi-stator (MS) 
approach [1], [20]. In this case, the machine stator is 
considered as multiple three-phase winding sets interacting 
with each other and with an equivalent three-phase rotor. In 
this way, the flux and torque contributions of each winding set 
are highlighted. Therefore, the MS approach is suitable for 
implementing modular control schemes [7], [21], [22] and 
permits both power-sharing strategies among the units and 
post-fault machine operation. Unlike the VSD approach, the 
MS can also deal with stator winding configurations different 
from the symmetrical or asymmetrical ones [21], [23]. 
However, the MS-based drive solutions require specific 
control schemes. Also, specific decoupling algorithms [7], 
[21] need to be implemented to prevent instability phenomena 
since the winding sets are magnetically coupled [1], [20], [24]. 

Recently, some attempts to combine the advantages of the 
VSD and MS approaches have been proposed [25], [26]. In 
[27], [28], general solutions that consider a generic number of 
winding sets have been developed, leading to the definition of 
the decoupled MS (DMS) approach. According to [27], a 
DMS-based control scheme is structured like a VSD-based 
one but keeps the modularity features. Nevertheless, like the 
VSD-based schemes, the solution proposed in [27] requires 
implementing additional control modules to perform the post-
fault drive operation. 

Therefore, this paper proposes a novel control approach 
that allows the torque regulation of a multi-three-phase 
machine both in healthy and faulty operating conditions by 
using any of the conventional control algorithms for three-
phase drives. The proposed control approach uses the DMS 
modeling [27], [28], thus expressing the machine torque 
production using common- and differential- mode subspaces. 
Nevertheless, unlike DMS-based control solutions [27], [28], 
the torque regulation is performed by actively controlling only 
the common-mode subspace, regardless of the machine's 
operating condition (healthy or faulty). Therefore, compared 
to the control solutions based on VSD or DMS reported in the 
literature, the proposed control approach brings the following 
advantages and contributions: 

1) The drive scheme does not require additional control 
modules to regulate the machine torque after an open-
three-phase fault event. Hence, the simplicity of the 
control structure is preserved in any operating condition. 

2) The control approach can be applied to any multi-three-
phase machine configuration, thus overcoming the VSD 
restrictions in the symmetrical or asymmetrical stator 
winding configurations. 

The proposed control approach has been used to 
implement a three-phase direct flux vector control (DFVC) 
scheme [29] for the regulation of the stator flux and torque of 
a multi-three-phase induction machine (IM). A 12-phase IM 
prototype with a quadruple-three-phase stator winding 
configuration, rated 10 kW at 6000 r/min, has been used to 
validate the proposed method.  

This paper expands [30] and brings in added value by 
including the following aspects: 

1) An in-depth analysis of the proposed control approach to 
demonstrate how it can be used to define matrix 
transformations that deal with any multi-three-phase 
configuration, not only the symmetrical or asymmetrical 
ones, and still get similar results to the VSD approach. 

2) More details about the proposed control scheme, 
including the description of control modules performing 
the flux-weakening (FW) operation with maximum 
torque per voltage (MTPV) limitation. 

3) Additional experimental results to demonstrate the 
complete torque controllability of the machine in faulty 
conditions, including the performance under voltage and 
current constraints. 

The paper is organized as follows. Machine modeling is 
described in Section II, while the proposed control scheme is 
shown in Section III. Experimental results are illustrated in 
Section IV. Finally, Section V provides paper conclusions. 

II. MACHINE MODELING 
The proposed control approach uses the DMS modeling to 

express the machine flux and torque. Therefore, in the 
following, the DMS approach is applied to a multi-three-phase 
squirrel-cage IM with p pole pairs and n winding sets. A 
sinusoidal distribution of the stator windings is assumed, i.e., 
they interact with each other and with the rotor only through 
the fundamental spatial component of the air-gap magnetic 
field. Mutual leakage fluxes and iron losses are not 
considered. 
A. MS model of a multi-three-phase IM 

The DMS approach is defined starting from the MS model 
of a generic multi-three-phase machine. According to [7], 
[27], the MS model of a multi-three-phase IM in stationary 
coordinates is obtained by applying the Clarke transformation 
to the equations of each winding set k (k=1,...,n) as [1]: 
 , , ,sk C k sk abcz T z      (1) 

where �̅sk,abc=[zsk,a zsk,b zsk,c]t and �̅sk,αβ=[zsk,α zsk,β]t are generic 
k-set stator vectors in phase coordinates (abc)k and stationary 
coordinates (αβ), respectively. Since each winding set has an 
isolated neutral point, the zero-sequence currents of the 
machine are zero, allowing to neglect them. Therefore, the 
amplitude-invariant Clarke transformation of each winding set 
k (k=1,...,n) is defined as follows: 

     
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(2) 

where the angle ϑsk is defined as the position of the k-set first 
phase ask relative to the α-axis; the latter is assumed coincident 
with the first phase of the first set as1, as shown in Fig. 2. 

The stationary equations are subsequently computed in 
rotating coordinates (xy) through the well-known rotational 
transformation [13]. In summary, the equation system of a 
generic winding set k (k=1,...,n) is computed as [7], [27]: 
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(3) 

where �̅sk,xy=[zsk,x zsk,y]t and �̅sl,xy=[zsk,x zsk,y]t are generic stator 
vectors respectively defined for the winding sets  k  (k = 1,...,n) 



 
Fig. 2. Generic configuration of a multi-three-phase IM: angle 
displacement of the magnetic axes in one electrical revolution. 

and l (l=1,...,n), both expressed in rotating coordinates (xy); 
�̅r,xy=[zr,x zr,y]t is a generic rotor vector expressed in rotating 
coordinates (xy); ωxy and ωslip are synchronous and slip speeds; 
v, i, and λ have the meaning of voltage, current, and flux 
linkage, respectively; Rs, Lls, Rr, Llr, kr, and τr are the stator 
resistance, stator leakage inductance, rotor resistance, rotor 
leakage inductance, rotor coupling factor, and the rotor time-
constant, respectively. Finally, j is the complex vector 
operator in matrix form, and 0�=[0  0]t.  

By performing the machine power balance [7], the overall 
electromagnetic torque T is computed as: 

  , ,
1 1

3
2

n n

k sk xy sk xy
k k

T T p i
 

        (4) 

where Tk is the torque contribution of the kth winding set, while 
‘×’ is the outer product operator. Based on (3), (4), it can be 
noted how the MS approach highlights the stator flux and the 
torque contribution of each winding set, resulting in suitable 
for the implementation of modular torque control schemes [7]. 
Further proof of the MS modularity is given in Fig. 3, showing 
the machine's equivalent circuit in stationary coordinates (Lm 
is the magnetizing inductance). Nevertheless, (3) shows that 
the winding sets are still magnetically coupled with each 
other, thus demonstrating that it is necessary to implement 
dedicated decoupling algorithms in the MS-based control 
schemes [7]. In this way, underdamped or even instability 
phenomena [24] are prevented. 

B. DMS model of a multi-three-phase IM 
According to [27], the DMS approach aims at removing 

the MS couplings between the winding sets, thus obtaining a 
machine model quite similar to that of the VSD approach but 
preserving the modularity. In detail, a decoupling 
transformation is applied to the MS model (3), leading to the 
definition of common- and differential mode subspaces. 
According to [27], the decoupling method consists of the 
following decoupling transformation: 

  
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It is noted how each MS stator variable (v,i,λ), defined for each 
winding set, in turn, is decomposed in terms of one common-
mode vector �̅scm,xy=[zscm,x zscm,y]t and (n–1) differential-mode 
vectors �̅sdm-u,xy=[zsdm-u,x zsdm-u,y]t (u = 1,..,n–1). Concerning the 
decoupling transformation [TD], it is defined as: 

 
Fig. 3. Equivalent MS circuit of a multi-three-phase squirrel cage IM in 
stationary coordinates. 
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where I2 and 02 are the identity- and zero- 2×2 submatrices, 
respectively, while wu and qu (u=1,…,n-1) are 2×2 
submatrices defined as follows: 

 
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1 1u u
n n u nw I q I
n u n u n u
 
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 (7) 

Therefore, the decoupling transformation is represented 
with a sparse matrix characterized by the amplitude invariant 
propriety with a power coefficient equal to n. For example, in 
a quadruple-three-phase machine (n=4), (6) is computed as: 
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In summary, the DMS machine model is computed by 
merging (3) for all sets (k=1,...,n) and applying (5) and (6). 
Starting from the common-mode subspace, the following 
system of equations is thus obtained [27]: 
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while the system of equations for each differential-mode 
subspace u (u = 1,..,n–1) is computed as: 

, , , ,
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Finally, the overall electromagnetic torque is computed as: 
  , ,1.5 scm xy scm xyT n p i       (11) 
It can be noted that the DMS machine model is similar to 

that obtained by using the VSD approach. Indeed, the 
electromagnetic and torque equations that rule the common-
mode  (9), (11)  are formally  identical  to  those obtained  for 
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Fig. 4. Equivalent DMS circuit of a multi-three-phase squirrel cage IM in 
stationary coordinates. 

the main subspace through the VSD. More details about the 
VSD-based modeling are reported in [27], as well as in the 
literature concerning the multiphase machines [11], [12]. 
Further proof of the similarity between the VSD and DMS 
modeling approaches is given in Fig. 4, showing the DMS 
machine's equivalent circuit in stationary coordinates. 

Furthermore, it is noted that the differential-mode 
subspaces do not participate in the electromechanical energy 
conversion. They represent the unbalance between the 
winding sets regarding currents, flux, or both. This propriety 
is also encountered in the VSD time-harmonic subspaces. 
However, the meaning of such subspaces is different from that 
of the DMS differential-mode ones. Based on how the VSD 
matrix transformation is computed [11], [14], the VSD time-
harmonic subspaces represent specific time-harmonic patterns 
of the machine. Conversely, the DMS differential-mode 
subspaces are obtained as linear combinations of the 
fundamental-time models of the machine’s winding sets. 
Further proof of this is given in [28], where it is shown how 
the DMS differential-mode subspaces do not possess the same 
properties as the VSD time-harmonic ones in terms of time-
harmonic decoupling [14], [28], [31]. Therefore, DMS-based 
control schemes are impractical if time-harmonic injection or 
compensation strategies must be performed [8], [31].  

In summary, the DMS approach allows removing the MS 
couplings among the machine’s winding sets. Nevertheless, 
compared to VSD-based modeling, the modularity is 
preserved. Indeed, according to (5)-(7), the common- and 
differential- mode vectors are directly computed as numeric 
linear combinations of the MS variables belonging to the 
winding sets. 
C. Proposed approach: adaptive DMS (A-DMS) modeling 

Compared to the VSD modeling, the DMS approach 
presents the following features: 

 The decoupling transformation [TD] is defined 
regardless of the stator winding configuration since it 
is applied directly to the MS machine model. 
Therefore, the limitations of the VSD when it comes to 
irregular winding configurations are analytically 
overcome without using numerical workarounds [32].  

 No constraints exist on applying the decoupling 
transformation to a specific group of machine winding 
sets, thus modeling in terms of common- and 
differential- mode subspaces only the system of 
equations associated with such a group. 

Such features become useful for control solutions that 
have to manage the operation of a multi-three-phase machine 
after an open-three-phase fault event. 

 
Fig. 5. Asymmetrical quadruple-three-phase winding configuration with 
winding set 3 faulty (dashed green windings). 

Indeed, in balanced operation among the units under 
machine healthy conditions, both the VSD- and DMS- based 
control solutions perform the torque regulation by actively 
managing only their principal subspace, i.e., the fundamental 
subspace for the VSD while the common-mode subspace for 
the DMS solution. This allows the implementation of the 
control system of a multi-three-phase machine through the 
same control structures of three-phase motor drives [13]. 

Nevertheless, if an open three-phase fault occurs, the 
VSD- and DMS- based control schemes need the active 
control of the secondary subspaces to keep the machine 
currents balanced and within their boundaries, as well as 
continuity of the torque production. In other words, the 
implementation of additional control modules with dedicated 
fault-tolerant strategies is necessary to manage the time-
harmonic subspaces for the VSD-based solutions [6] and the 
differential-mode subspaces for the DMS ones [27]. As a 
result, the simplicity that characterizes the VSD-based and 
DMS-based control schemes is lost. 

A solution to avoid the scenario mentioned above is to 
adapt the machine modeling by considering a stator winding 
configuration consisting of only healthy/active winding sets. 
According to the literature, such a solution is not viable for 
VSD-based modeling since the post-fault configuration of the 
stator winding hardly satisfies the constraint of being 
symmetrical or asymmetrical [14]. Consequently, the 
definition of a dedicated transformation for VSD is not 
possible without numerical methods [32]. 

Conversely, thanks to the properties previously 
mentioned, the DMS-based control schemes always allow 
changing on-the-fly the decoupling transformation, i.e., 
adapting it to the post-fault configuration of the stator 
winding. Thus, defining a so-called adaptive DMS (A-DMS) 
modeling is possible. In the following, a practical example is 
reported. Let us assume that the winding set 3 of an 
asymmetrical quadruple-three-phase machine becomes faulty. 
The post-fault configuration of the stator winding is shown in 
Fig. 5. According to the literature, a VSD transformation 
cannot be defined for this configuration because it is neither 
symmetrical nor asymmetrical. However, the DMS modeling 
allows adapting the decoupling transformation (6) by setting 
the number n to that of active winding sets, i.e., n = 3 as: 

  
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The adapted decoupling transformation is thus applied only to 
the healthy/active winding sets (1, 2, and 4) as follows: 
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Fig. 6. Application scheme of the adaptive decoupling transformation. 
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Therefore, the resulting A-DMS model of the machine 
corresponds to (9)-(11) but considers three winding sets  
(n = 3) and two differential-mode subspaces instead of three. 

As a rule, a differential-mode subspace is removed from 
each winding set that becomes faulty. In parallel, the 
definition of the common-mode subspace and the remaining 
differential-mode ones is adapted according to (6), where the 
number na of healthy/active sets has to be considered instead 
of the effective/rated number n. In practical terms, the A-DMS 
machine model is obtained by considering only the 
healthy/active sets in (5) and by setting n = na in (6), (7), and 
(9)-(11). For better understanding, the scheme of the adaptive 
decoupling transformation for a generic variable z (v, i, λ) is 
shown in Fig. 6. 

The variable xfk stands for the status (0=faulty,1=healthy) 
of the generic winding set k (k=1,...,n). If the generic winding 
set k is faulty, the related MS variables are automatically 
excluded from the computation of the common- and 
differential-mode vectors. The advantages of the A-DMS 
approach are thus evident if a balanced operation among the 
healthy winding sets is assumed, regardless of the machine 
operating conditions (healthy or faulty). This scenario is 
typical in high-power applications (e.g., oil and gas [10]). For 
such cases, only the common-mode subspace is permanently 
active. Conversely, the differential-mode currents are always 
zero, regardless of the machine operating conditions (healthy 
or faulty) and the actual number of healthy winding sets. 

In summary, an A-DMS-based electric drive can control 
the torque of a multi-three-phase machine both in healthy and 
faulty operation by controlling only the common-mode 
subspace and allowing the use of any control scheme 
developed for the three-phase drives without additional 
control modules or specific fault-tolerant control strategies. In 
this way, the simplicity of the control structure is preserved in 
any operating condition. The only constraint is that the healthy 
winding sets must be balanced with each other. However, this 
scenario usually happens in practice since the stator Joule 
losses of the machine are minimized [8]. 
D. A-DMS modeling: full-order matrix transformations 

Another significant advantage of the A-DMS modeling is 
the possibility to define full-order matrix transformations that 

can be directly applied to the machine model in phase 
coordinates (abc)k (k=1,...,n) to perform the following actions: 

i) computation of the machine model in stationary 
coordinates; 

ii) decoupling action to remove the magnetic coupling 
among the winding sets.  

For clarity, the VSD matrix transformation is the most 
known example of a full-order matrix transformation 
performing the actions above. However, it can be computed 
only for symmetrical or asymmetrical stator winding 
configurations [14]. Conversely, the full-order matrix 
transformations obtained using the A-DMS modeling can be 
applied to any multi-three-phase configurations while still 
getting similar results to the VSD approach, as demonstrated 
previously in (9)-(11). For brevity, the computation method of 
full-order matrix transformations using the A-DMS approach 
is reported in Appendix. 

III. CONTROL SCHEME 
In this paper, the A-DMS approach is proposed to 

implement the three-phase direct flux vector control (DFVC) 
scheme [29] to regulate the stator flux and torque of a multi-
three-phase IM. 

According to [29], the three-phase DFVC scheme is 
implemented in rotating stator flux coordinates (xy ≡ dqs). 
Therefore, the ds-axis position ϑs corresponds with that of the 
stator flux vector, as shown in Fig. 7. Since the (dqs) frame is 
adopted, the synchronous speed ωs is defined as the angular 
speed of the stator flux vector to the stationary α-axis. Finally, 
the machine load-angle δ is defined as the ds-axis position to 
the rotor flux vector, where the latter determines the 
conventional d-axis (see Fig. 7). 

For a multi-three-phase IM, n stator flux vectors are 
defined (one for each winding set) [7]. Therefore, a three-
phase DFVC scheme should be implemented to control each 
unit. This solution is mandatory if power-sharing strategies 
among the units are performed since significant unbalances 
between the winding sets in terms of flux, currents, or both are 
potentially introduced [7], [8]. In these operating conditions, 
the machine presents n different stator flux frames, making the 
modular control schemes like the MS-based DFVC the only 
viable solution [7]. 

Since both DMS and A-DMS modeling approaches can 
perform their decoupling action only if a single reference 
frame is adopted, the A-DMS-based DFVC scheme proposed 
in this paper can manage only a balanced operation among the 
healthy units. This means that the healthy units must operate 
with the same values of stator flux amplitude and torque. 

 
Fig. 7. Rotating stator flux frame (dqs) for a three-phase IM. 
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As demonstrated in [7], the stator flux vectors of the 
healthy units are overlapped in these operating conditions 
[27], allowing the definition of a unique active reference 
frame (dqs), i.e., an equivalent three-phase machine.  

To help the understanding, the superscripts ‘~’ and ‘^’ are 
used in the following to denote an estimated- and observed- 
parameter/variable, respectively. 
A. Flux and torque equations 

Based on the A-DMS model, the flux and torque 
productions are performed in the common-mode subspace. 
Therefore, by considering (9) in the active frame (dqs), i.e., 
λ�scm,dqs=[λscm 0]t, the ds-axis voltage equation is computed as: 

 , ,scm ds s scm ds scm
dv R i
dt

     (14) 

The flux amplitude of the healthy winding sets is regulated by 
the ds-axis common-mode voltage vscm,ds. The machine torque 
can be directly regulated by the qs-axis common-mode current 
iscm,qs, which has the meaning of the machine’s torque-
producing current. Proof of this statement is given by (11), 
expressed in the active frame (dqs), which leads to as follows: 
 ,1.5 a scm scm qsT n p i       (15) 
 Finally, the qs-axis common-mode current iscm,qs is 
regulated by the qs-axis common-mode voltage vscm,qs, as for 
the conventional three-phase DFVC scheme [29]. 
B. Stator flux observer 
 Like the DMS-based DFVC scheme, the proposed control 
solution needs to implement a flux observer to estimate the 
stator flux vectors of all winding sets. In this way, the 
common- and differential- mode values of stator fluxes 
amplitudes can be computed, as well as the active stator frame 
(dqs) used to calculate the torque-producing currents of the 
machine. The adopted stator flux observer is shown in  
Fig. 8, whose structure is the same implemented for the MS-
based and DMS-based DFVC schemes [7], [27]. 
 A reduced-order observer is implemented for each three-
phase winding set k (k = 1,...,n). In this way, the estimate of 
the stator flux vector of each three-phase winding set is 
independent of the other ones, allowing a straightforward 
post-fault operation after losing one or more three-phase units. 
As shown in Fig. 8, the k-unit flux observer combines two 
model-based estimators implemented in the stationary 
coordinates (αβ). The first one is based on the k-set voltage 
model (VI) and obtains the estimate of the k-set stator flux 
vector by time-integrating the k-set back-electromotive force 
(back-emf) as follows: 

  , , ,sk sk s skv R i dt       (16) 

According to Fig. 8, it is noted that the k-set back-emf is 
integrated using the Euler discretization, where Ts is the 
sampling time of the digital controller. The VI-based estimator 
relies on reconstructing the k-set phase-voltages from the k-set 
duty-cycles and inverter dc-link voltage. Therefore, as known 
from the literature [33], the voltage estimation is affected by 
the voltage errors of the k-set inverter module at low speed. 
However, this estimator gets a high observation accuracy in 
the medium/high-speed range of the machine [7]. 

To get high observation accuracy in the low-speed range 
of the machine, each k-set flux observer relies on the stator 
flux estimate provided by the second estimator, whose 
operation is based on the k-set current model (Iϑ). The Iϑ-
based estimator is immune to the voltage errors introduced by 
the  k-set inverter module since it implements the currents-to- 

 
Fig. 8. Stator flux observer of a generic winding set k (k=1,…,n). 

 
Fig. 9. Computation of position and speed of the (dqs) frame and (dqs) 
components of the k-set phase-currents. 

flux relationships of the machine. More details about the Iϑ-
based estimator are reported in [7].  
 The crossover frequency (rad/s) between the Iϑ-based 
estimator and the VI-based one is established through the 
observer's gain ωc (see Fig. 8) [7], whose value in the 
validation stage has been set at 125 rad/s (near 20 Hz) for all 
three-phase units. 
 According to Fig. 9, the estimates of the flux vectors of all 
winding sets are used to compute the active stator frame (dqs). 
Therefore, the average stator flux vector that represents the 
healthy units, i.e., corresponding to the common-mode stator 
flux vector using the A-DMS modeling λ�scm,αβ, is calculated as 
a function of the units’ states xfk (k=1,...,n) as follows: 
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For the sake of simplicity, it is assumed that the units’ states 
xfk (k=1,...,n) are input signals of the proposed control scheme. 
Once the stationary components of the average stator flux 
vector are computed, the position ϑs and the synchronous 
speed ωs of the active stator frame (dqs) are calculated (see 
Fig. 9). In this way, the (dqs) components of the phase-
currents of each set k (k = 1,...,n) are obtained using the 
rotational transformation [13]. Finally, it is highlighted how 
the synchronous speed ωs is calculated using a phase-locked 
loop (PLL) linked to the stationary components of the average 
stator flux vector. Thus, avoiding implementing the discrete-
time derivative of the ds-axis position ϑs. 

C. Adaptive decoupling transformation 
The proposed drive scheme regulates the machine torque 

by directly controlling the common-mode values of flux 
amplitude and torque-producing current. In parallel, the flux 
amplitude and qs-axis current of each differential-mode 
subspace are controlled at zero.  
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Fig. 10. Adaptive computation of the common- and differential modes of 
flux amplitudes and torque-producing currents. 

 
Fig. 11. A-DMS-based DFVC scheme: computation of the common-mode 
references of flux amplitude and torque-producing current. 

Therefore, the adaptive decoupling transformation [TD] is 
applied to the flux amplitudes and torque-producing currents 
of the healthy winding sets, leading to the computation of the 
corresponding values of common- and differential- mode. The 
application of the adaptive decoupling transformation on the 
observed stator flux amplitudes and measured torque-
producing currents is shown in Fig. 10. 
D. Stator flux and torque-producing current references 

The control solution proposed in this paper is similar to 
that reported in [27], where a DMS-based DFVC is presented. 
The main difference consists in how the machine's post-fault 
operation is performed. In [27], the decoupling transformation 
[TD] has been kept invariant regardless of the machine's 
operating condition (healthy or faulty). Thus, the common- 
and differential- mode vectors are expressed as a function of 
the variables belonging to both healthy and faulty winding 
sets. Therefore, to perform the machine's post-fault operation, 
the computation of the reference- and observed- value of the 

flux amplitude belonging to each faulty winding set is 
necessary [27]. Also, such values must be computed in the 
reference frame of the active units (dqs). Finally, since both 
references of flux amplitude and torque-producing current 
belonging to the faulty winding sets differ from those of the 
healthy ones, the active control of the differential-mode 
subspaces is automatically performed after applying the 
decoupling transformation [27]. In this way, the phase-
currents of the healthy sets are kept balanced and within their 
boundaries. In summary, it is evident that the DMS-based 
DFVC scheme requires implementing specific control 
modules to perform the machine’s post-fault operation 
properly. More details are reported in [27]. 

Unlike the DMS-based DFVC scheme, the proposed 
solution is based on A-DMS modeling. Therefore, if an open-
three-phase fault occurs, the definition of the common- and 
differential- mode subspaces is adapted to consider the stator 
winding's post-fault configuration. In this way, the common-
mode references of flux amplitude λ���

∗  and torque-producing 
current ����,��

∗  are computed easily, as shown in Fig. 11. 
If the machine is operated below the base speed, the 

common-mode flux reference (corresponding to that of each 
healthy winding set) is set to a predefined base value λ���,����

∗   
usually equal to the machine’s rated flux: 

 *
, ,scm base s rated    (18) 

 The flux reference can be optimized by following the 
maximum torque per ampere profile (MTPA) of the machine 
[34], which maximizes the overload capability of the drive 
both in healthy and faulty operation since the overall Joule 
losses are minimized. 
 According to Fig. 11, the common-mode flux reference is 
limited above the base speed to ensure the flux-weakening 
operation (FW). The FW operation is performed similarly to 
the three-phase DFVC scheme [29], using a model-based law 
that avoids the implementation of an outer voltage controller 
(as for FOC schemes [35]). Therefore, by manipulating the 
common-mode voltage equation (9) computed in rotating 
(dqs) coordinates, the following FW law is implemented: 

 
 , ,*

,

ˆ
ˆ

scm max s scm qs s
scm scm max

s

v R i sign   
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


  (19) 

where the common-mode voltage limit vscm,max corresponds to 
the voltage constraint imposed by the inverter feeding the 
machine, i.e., vdc/√3, where vdc is the dc-link voltage. The 
implementation of (19) is simple, as it requires the knowledge 
of the stator resistance Rs and synchronous speed of the (dqs) 
frame ωs. 

Since a balanced operation among the units is considered, 
the torque contributions of the healthy winding sets are 
identical to each other. Hence, the reference of the common-
mode torque-producing current ����,��

∗  of each healthy 
winding set is computed according to (15) as: 

  * * *
, 1.5scm qs a scmi T n p      (20) 

where T* is the machine torque reference. However, according 
to the three-phase DFVC scheme [29], the reference of the 
common-mode torque-producing current is limited to satisfy 
the following constraints: 

i) keeping the machine’s phase currents within their 
boundary Imax; 

ii) performing the MTPV operation in deep FW operation, 
i.e., avoiding the machine’s load angle δ overcomes its 
maximum limit δmax. 
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Therefore, according to the constraints above, the 
reference of the common-mode torque-producing current is 
first limited regardless of its sign as follows: 

 * 2 2
, , ,scm qs scm qs maxi max scm dsi i I i    (21) 

Instead, the MTPV operation is performed using the same 
procedure reported in [27] and hereafter briefly summarized: 

  *
, ,
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scm qs scm qs max max
ls a r lr
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L n k L 
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  


   (22) 

However, it is highlighted that the application of (22) in this 
paper is different from that reported in [27]. Indeed, in [27], 
(22) is used to limit the torque-producing current reference of 
each active unit. After, the decoupling transformation [TD] 
computed considering all machine's winding sets (na=n) is 
applied to the references of torque-producing currents of all 
units (healthy and faulty), thus computing their corresponding 
common- and differential mode values. Conversely, in this 
paper, (22) is used to limit the reference of common-mode 
torque-producing current directly, greatly simplifying the 
control scheme. According to [7], [13], [29], the load angle 
limit δmax that performs the MTPV operation is 45 electrical 
degrees, avoiding the machine pull-out. 
 Finally, according to the A-DMS approach, the references 
of flux amplitude and qs-axis current of each differential-
mode subspace u (u=1,...,na-1) are permanently set to zero 
regardless of the machine operating conditions (healthy or 
faulty): 
 * *

,0 , 0 1,..., 1sdm u sdm u qs ai u n        (23) 

E. Conventional DMS-based DFVC scheme 
To better appreciate the simplicity of the A-DMS-based 

DFVC scheme, a representation of the conventional DMS-
based scheme is shown in Fig. 12. It is noted that, for each unit 
k (k=1,...,n), a dedicated three-phase DFVC scheme is 
implemented to compute the k-set references of flux amplitude 
λ��

∗  and torque-producing current ���,��
∗ . 

Conversely, in the A-DMS-based DFVC scheme, the 
three-phase DFVC scheme reported in Fig. 11 is executed 
only once to compute the common-mode references of flux 
amplitude λ���

∗  and torque-producing current ����,��
∗ . Also, in 

the DMS-based DFVC scheme, the reference of flux 
amplitude for the faulty units must be computed using 
dedicated fault-tolerant control modules, as shown in Fig. 12. 
More details are reported in [27] since they are beyond the aim 
of this paper. 

 
Fig. 12. Computation of the k-set references (k = 1,...,n) of flux amplitude 
and torque producing current in the DMS-based DFVC scheme. 

The decoupling transformation [TD], computed by 
considering the effective machine winding sets n, is finally 
applied to the winding sets’ references of flux amplitude and 
torque-producing current, leading to the computation of the 
corresponding values of common- and differential- mode (see 
Fig. 13). 

F. Flux and torque control 
The flux and torque control of the machine is performed 

by actively controlling the common-mode values of flux 
amplitude and torque-producing current. In this paper, the use 
of conventional proportional-integral (PI) controllers is 
proposed (see Fig. 14) since the common-mode variables are 
dc quantities in steady-state conditions [27]. The number of PI 
regulators performing the control of the differential-mode 
subspaces depends on the machine’s operating conditions. 
According to the A-DMS modeling, the number of existing 
differential-mode subspaces is equal to that of healthy 
winding sets na minus one. Therefore, in the extreme case of 
one healthy winding set, the machine control is performed 
only through the common-mode regulators since the 
differential-mode subspaces do not exist anymore. In other 
words, the operation of the multi-three-phase machine 
collapses into its simplest case, an actual three-phase motor, 
which requires only two PI regulators to perform the torque 
control.  

Conversely, the number of differential-mode subspaces, 
with related PI regulators, in the DMS-based schemes does not 
change as the decoupling transformation is kept invariant 
regardless of the machine’s operating conditions (healthy or 
faulty). Moreover, the differential-mode subspaces must be 
actively controlled in faulty conditions, while the differential-
mode quantities must always be null in the A-DMS-based 
DFVC scheme. Regarding the latter, in the cases of IMs 
characterized by a negligible spatial-harmonic content in the 
air gap, it may even be possible to set the differential-mode 
voltage references at zero directly. In this way, no differential-
mode controllers are needed, further simplifying the structure 
of the A-DMS-based schemes. 

Considering the A-DMS-based solution in which both the 
common- and differential- mode quantities are controlled 
using PI regulators, the outputs of these last correspond to the 
reference voltages of the machine in terms of common- 
�̅���,���

∗  and differential- mode �̅�����,���
∗  (u=1,...,na -1) (see 

Fig. 14). 
 

 
Fig. 13. Computation of common- and differential- mode references of flux 
amplitudes and torque-producing currents in the DMS-based DFVC scheme. 
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Fig. 14. Adaptive regulation of the common- and differential- modes of 
fluxes amplitudes and torque-producing currents using PI controllers. 

 
Fig. 15. Computation of the reference voltages of the units by using the 
inverse adaptive decoupling transformation. 

 
Fig. 16. PWM modulation of each healthy unit k (k=1,...,na). 

 Therefore, the inverse decoupling transformation [TD]-1 is 
applied to get the reference voltages of the healthy units in the 
active (dqs) frame �̅��,���

∗  (k=1,...,na), as shown in Fig. 15. 
Finally, after applying the inverse rotational transformation 
[13] and the inverse Clarke transformations (2), the reference 
voltages of each active unit in phase-coordinates �̅��,���

∗  
(k=1,...,na) are computed, as shown in Fig. 16. 

G. Pulsewidth modulation (PWM) 
According to the multi-three-phase drive topology, each 

winding set is fed by a dedicated three-phase inverter module 
(see Fig. 1). The PWM modulators are independent of one 
another (see Fig. 16), allowing the implementation of the well-
known three-phase modulation techniques [36], including the 
selective harmonic elimination strategies for high-power 
converters using thyristors or adopting multilevel structures 
[37]. In this paper, the duty-cycles of the inverter modules 
�̅�,���

∗  (k=1,...,na) use the carrier-based space vector PWM 
(SV-PWM) in the experimental validation [36]. 

 
Fig. 17. Asymmetrical 12-phase IM using a quadruple-three-phase stator 
winding configuration. 

TABLE I.  MACHINE PRIMARY DATA 
Electrical Data 

Phase Number 12 (4·3-phase) 
Pole number 4 
Rated power 10 kW 
Rated speed 6000 r/min 
Rated phase-voltage 115 Vrms 
Rated phase current 10 Arms 

Machine Parameters 
Stator resistance Rs 145 mΩ 
Stator leakage inductance Lls 940 μH 
Magnetizing inductance Lm 4.3 mH 
Rotor resistance Rr 45 mΩ 
Rotor leakage inductance Llr 235 μH 
Rated stator flux amplitude λs,rated 115 mVs 

 

 
Fig. 18. View of the IM under test (left) and the driving machine (right). 

IV. EXPERIMENTAL VALIDATION 
The validation of the proposed control solution has been 

carried out on a 12-phase asymmetrical IM with four three-
phase winding sets shifted by 15 electrical degrees (full-pitch 
windings with one slot/pole/phase), rated 10 kW at 6000 r/min 
(four poles) [38]. A schematic view of the stator winding’s 
configuration is shown in Fig. 17, while Table I reports the 
primary machine data.  
A. Test rig 

The IM under test has been mounted on a test rig for 
validation purposes. The rotor shaft has been coupled to a 
driving machine acting as a prime mover, as shown in Fig. 18. 

The power converter consists of four independent three-
phase inverter power modules, rated 100 A/1200 V, fed at 
270 V by a bidirectional dc source [39]. Both the switching- 
and sampling- frequencies have been set at 5 kHz to provide a 
compatible scenario with the industrial implementations [40]. 
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Fig. 19. Drive configuration of a generic three-phase unit k (k = 1,..,n).  

Finally, the digital controller is the dSPACE® DS1103 fast 
prototyping board, while the control algorithm has been 
developed in C-code.  

The drive configuration of a generic unit k (k = 1,...,n) is 
shown in Fig. 19 and corresponds to the one used in a 
conventional three-phase drive. Therefore, the k-set phase-
currents ��̅�,��� and dc-link voltage vdc are measured. Together 
with the feedback related to the three-phase units, the 
measurement of the rotor mechanical position ϑm is also taken, 
allowing the computation of the mechanical speed ωm using a 
PLL. For the experimental validation, the rotor mechanical 
position has been measured using an incremental encoder with 
a resolution of 1024 pulses/r. 

B. Experimental results 
The experimental validation of the proposed control 

solution has been performed by replicating the same tests 
reported in [27]. In this way, a fair comparison between DMS- 
and A-DMS-based control approaches is possible. Both 
strategies achieve similar performance but implement two 
different fault-tolerant strategies. Indeed, a DMS-based 
control solution performs the post-fault drive operation by 
actively controlling the differential-mode subspaces, keeping 
the decoupling transformation [TD] invariant. In contrast, an 
A-DMS-based control solution performs the post-fault drive 
operation by changing on-the-fly the decoupling 
transformation [TD], thus redefining both common- and 
differential- mode subspaces according to the post-fault 
machine configuration. In this way, the differential- mode 
currents can be still kept null, actively controlling only the 
common-mode subspace using any of the conventional torque 
controllers for three-phase drives.  

In summary, the A-DMS-based control solutions can be 
considered an evolution of the DMS-based ones since the 
control of the differential-mode subspaces is significantly 
simplified. According to [27], the experimental results are 
therefore provided for the drive operation with torque control 
mode and speed control mode. The latter has been 
implemented using an outer speed PI regulator, which 
provides the IM’s reference torque T* while the driving 
machine acts as an inertial load. Due to the mechanical 
limitation of the driving machine, the machine speed has been 
limited to 6000 r/min. Therefore, to test the drive operation in 
deep FW with MTPV within this speed range, the dc-link 
voltage has been halved at 135 V while performing the test in 
speed control mode. 

 
Fig. 20. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). Ch1: 
is1,a (10 A/div), Ch2: is2,a (10 A/div), Ch3: is3,a (10 A/div), Ch4: is4,a  
(10 A/div). Time resolution: 5 ms/div. 

 
Fig. 21. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). Time 
profiles of the MS variables in terms of torque (Nm), flux amplitudes (mVs), 
and torque-producing currents (A). 

The amplitude limit of the phase-currents has been set at 
Imax = 24 A, allowing to test the overload operation of the 
three-phase units (rated current of 10 Arms, i.e., about 14.2 A 
peak). Also, with the possibility of overloading the units, it is 
possible to temporarily operate the machine at the rated torque 
even after the open-three-phase fault reported by one unit. 

The regulators performing the flux- and current- controls 
(both common- and differential- mode) have been designed to 
get a small-signal bandwidth of the corresponding control 
loops of about 250 Hz. Finally, the PI regulator performing the 
speed control has been designed to get a small-signal 
bandwidth of the corresponding control loop of about 10 Hz 
(the mechanical inertia of the motor and prime mover is about 
0.225 kg·m2). 

1) Experimental results in torque control mode 
Starting from rated generating conditions (-6000 r/min, 16 

Nm), the inverter power module 3 has suddenly been turned 
off, emulating a fault event reported by an inverter power 
module. The experimental results are shown in Figs. 20 – 23. 

Fig. 20 shows the first phase-current ‘isk,a’ (k=1,...,4) of 
each of the four three-phase sets before and after the fault. It 
is noted that the currents of the healthy units must increase to 
preserve the torque and machine flux. However, according to 
Figs. 22 – 23, only the common-mode subspace is actively 
controlled before and after the fault event. 
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Fig. 22. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). 
Common- and differential- mode control of the fluxes amplitudes (mVs). 

 
Fig. 23. Inverter 3 shut-off in generation mode (-6000 r/min, 16 Nm). 
Common- and differential- mode control of torque-producing currents (A). 

According to (6), it is pointed out that the physical 
meaning of each common-mode variable consists of the 
average value of the respective components belonging to the 
healthy winding sets. Therefore, referring to Figs. 21 – 22, it 
is noted that the flux amplitude of the healthy sets (1,2,4) is 
kept at the rated value (115 mVs), while the common-mode 
torque-producing current increases from 13.2 to 17.7 A to 
satisfy the torque request (see Fig. 23). Due to machine 
asymmetries related to winding set 2 (see Fig. 21), it is noted 
that slight disturbances characterize the torque-producing 
current component belonging to the second differential-mode 
subspace (see Fig. 23). However, the phase currents of the 
healthy units are not affected by these machine asymmetries 
since they exhibit a sinusoidal waveform (see Fig. 20).  

In summary, thanks to the A-DMS control approach, an 
open-three-phase fault event only leads to a change in the 
reference of the common-mode torque-producing current. The 
adaptive decoupling transformation automatically performs 
such a change without implementing any control strategies or 
additional control modules involving the differential-mode 
subspaces. Regarding the number of differential-mode 
subspaces, since all IM’s units are active before the fault 
event, three differential-mode subspaces are controlled.  

 
Fig. 24. Fast torque transient from no-load up to the rated generating 
conditions (-6000 r/min, 16 Nm) with unit 3 turned OFF. Ch1: is1,a  
(10 A/div), Ch2: is2,a (10 A/div), Ch3: is3,a (10 A/div), Ch4: is4,a (10 A/div). 
Time resolution: 5 ms/div. 

 
Fig. 25. Fast torque transient from no-load up to the rated generating 
conditions (-6000 r/min, 16 Nm) with unit 3 turned OFF. Time profiles of 
the MS variables in terms of torque (Nm), flux amplitudes (mVs), and 
torque-producing currents (A). 

 
Fig. 26. Fast torque transient from no-load up to the rated generating 
conditions (-6000 r/min, 16 Nm) with unit 3 turned OFF. Common- and 
differential- mode control of the fluxes amplitudes (mVs). 

However, according to the A-DMS approach, one unit is 
lost after the fault event, and the decoupling transformation 
for the post-fault stator winding configuration is redefined so 
that only two differential-mode currents are kept at zero. 
Therefore, the third differential-mode subspace, which does 
not exist anymore, is ignored after the fault event, as shown in 
Figs. 22 – 23, where the variables of the third differential-
mode subspace are not plotted anymore. 



 
Fig. 27. Fast torque transient from no-load up to the rated generating 
conditions (-6000 r/min, 16 Nm) with unit 3 turned OFF. Common- and 
differential- mode control of torque-producing currents (A). 

To demonstrate the dynamic performance of the torque 
control in faulty conditions, a fast torque transient (10 Nm/ms) 
from no-load up to the rated generating conditions (16 Nm, 
−6000 r/min), with unit 3 turned OFF, has been performed. 
The experimental results are shown in Figs. 24 – 27, 
demonstrating the full torque controllability when fast torque 
transients are performed since no significant overshoot (less 
than 15 %) on the currents/torque waveforms is reported. 

According to Fig. 24, the phase-currents of the healthy 
units are perfectly sinusoidal both in no-load and rated torque 
conditions. Like the previous test, only the common-mode 
quantities of flux and torque-producing current have been 
actively  controlled. Conversely, differential-mode currents 
and fluxes have been kept equal to zero according to the A-
DMS control approach, as shown in Figs. 26 – 27.  

Since the voltage limit was reached, the IM operated in 
FW in no-load conditions (common-mode flux amplitude at 
110 mVs). However, in the rated generating conditions, iron 
losses, resistive voltage drops, and machine slip allowed to 
restore the machine stator flux to the rated value of 115 mVs, 
as  shown  in Fig. 26).  Finally, slight disturbances due to the 
machine asymmetries affect the differential-mode subspaces 
when performing the fast torque transient. However, it can be 
noted how the PI controllers controlling the differential-mode 
fluxes and currents keep these quantities null without issues 
(see Figs. 26 – 27). 

It is highlighted that the performance in torque control 
mode is the same reported in [27]. However, these results have 
been obtained by actively controlling only the common-mode 
subspace thanks to the A-DMS-based decoupling 
transformation. Conversely, the decoupling transformation 
has been kept invariant in [27], making it necessary to control 
the differential-mode subspaces actively. 

2) Experimental results in speed control mode 
The speed control mode has been tested by turning OFF 

units 1 and 3 to emulate another potential faulty condition of 
the drive. A step speed reference from 0 to 6000 r/min has 
been applied, and the corresponding results are shown in Figs. 
28 – 31. Below the base speed, it is noted that the torque limit 
of each set (near 6 Nm) depends only on the current limit of 
the corresponding inverter units (Imax = 24 A). The FW 
operation starts near 2500 r/min, i.e., when the voltage limit 
of the inverter units is reached. According to Fig. 28, it is 
noted how the quasi-constant power range of the machine [41] 
starts from that speed value (Pm stands for the estimated 
mechanical power). In parallel, Fig. 29 shows how both flux 
amplitudes  and  torque-producing currents of the healthy sets  

 
Fig. 28. Speed control from 0 to 6000 r/min with units 1 and 3 turned OFF. 
Time profiles of speed (r/min), torque (Nm), and mechanical power (kW).  

 
Fig. 29. Speed control from 0 to 6000 r/min with units 1 and 3 turned OFF. 
Time profiles of the MS variables in terms of torque (Nm), flux amplitudes 
(mVs), torque-producing currents (A), and load angles (deg). 

 
Fig. 30. Speed control from 0 to 6000 r/min with units 1 and 3 turned OFF. 
Common- and differential- mode control of the fluxes amplitudes (mVs). 

 
Fig. 31. Speed control from 0 to 6000 r/min with units 1 and 3 turned OFF. 
Common- and differential- mode control of torque-producing currents (A). 



are properly controlled up to the maximum speed of 6000 
r/min, corresponding to a significant FW ratio of about 1 : 3. 
Finally, the MTPV operation starts at about 5500 r/min, as 
confirmed by Fig. 29, which shows that the healthy units' load 
angles, i.e., δs2 and δs4, are kept at their limit of 45 electrical 
degrees (δmax) to avoid the machine pull-out. 

According to Figs. 30 – 31, the torque control of the 
machine along the maximum torque per speed profile has been 
performed by actively controlling only the common-mode 
subspace. In addition, since only two winding sets were active, 
the decoupling transformation was redefined again with 
respect to the one used for the tests in torque control mode. 
Indeed, according to the A-DMS approach, only one 
differential-mode subspace has been managed since the 
second one has ceased to exist. Conversely, in [27], the same 
test performed by implementing a DMS-based DFVC scheme 
obtained the same results but by actively controlling both the 
common-mode subspace and all three differential-mode 
machine subspaces. Indeed, according to the DMS modeling, 
the decoupling transformation has been kept invariant 
regardless of the machine operating conditions. 

V. CONCLUSION 
The paper proposes an innovative control approach to 

perform the torque regulation of a multi-three-phase induction 
machine (IM) both in healthy and faulty operation (fault of 
one or more three-phase inverter modules) using any of the 
control schemes normally employed for three-phase drives. 

The proposed control approach is based on the adaptive 
definition of the common- and differential- mode subspaces 
of the machine. In this way, the torque control of the latter can 
be performed by actively controlling only the common-mode 
subspace, keeping the differential-mode quantities of currents 
and fluxes always equal to zero regardless of the machine 
operating conditions (healthy or faulty). 

The application of the proposed control approach allowed 
the use of the three-phase direct-flux vector control (DFVC) 
scheme to regulate both the stator flux and torque of a multi-
three-phase IM having an arbitrary number of three-phase 
winding sets in any operating conditions and regardless of the 
configuration of the stator winding. However, it is highlighted 
how other control solutions like the conventional FOC-based 
current vector control can also be used. 

The experimental validation has been carried out on a 12-
phase IM that uses a quadruple-three-phase stator winding 
configuration. Experimental results validate the proposed 
control solution both in healthy and faulty machine operation. 
Also, the very good torque controllability of the machine in 
flux-weakening operation with maximum torque per volt 
limitation (MTPV) has been reported. 

In conclusion, the advantages of the proposed control 
approach can be summarized as follows: 

1) Any three-phase control scheme can be used to regulate 
the flux and torque of a multi-three-phase machine both 
in healthy and faulty operation without implementing 
specific control modules or strategies to perform the 
machine post-fault operation. 

2) The stator winding configuration can be different from 
the symmetrical or asymmetrical ones since all the 
advantages of the decoupled multi-stator (DMS) 
modeling are preserved with the added value of keeping 
the control structure as simple as possible. 

 

APPENDIX: A-DMS-BASED FULL-ORDER  
MATRIX TRANSFORMATIONS  

Let us consider only the healthy/active sets of a generic 
multi-three-phase machine, sorted from 1 to na without loss of 
generality. Based on (2), a specific Clarke transformation is 
associated with the kth set (k=1,...,na). Therefore, the Clarke 
transformations of all healthy/active sets can be merged in a 
single matrix transformation [TC], which can be directly 
applied to the machine model in phase coordinates as follows: 
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where: 
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In (25), 02×3 stands for a 2×3 submatrix containing only null 
elements. 

Once (25) has been obtained, it can be combined with the 
decoupling transformation [TD] computed according to the A-
DMS modeling approach, under the assumption to consider 
only the healthy winding sets of the machine, i.e., (6)
calculated by setting n = na. Therefore, the A-DMS-based full-
order matrix transformation [TF] performing a similar action 
to the VSD one but valid for all multi-three-phase 
configurations is computed, leading to the following result: 
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  (26)  

The general form of [TF] is reported in (27). In addition, its 
computation for the most common multi-three-phase 
configurations in the literature [3], [5], [8], [12], [14], [31] is 
reported in the following figures: 

 Penta-three-phase (15-phase as 5·3-phase): Fig. 32. 
 Quad-three-phase (12-phase as 4·3-phase): Fig. 33. 
 Triple-three-phase (9-phase as 3·3-phase): Fig. 34. 
 Dual-three-phase (6-phase as 2·3-phase): Fig. 35. 

It is noted that no constraints exist on the values of the 
angular displacement ϑsk (k=1,...,na) of each set from the α-
axis. Therefore, each of the above configurations may be 
neither symmetrical nor asymmetrical. This aspect is a 
significant advantage over the VSD modeling. Consequently, 
the  A-DMS modeling can deal with off-the-shelf stator cores 
designed for three-phase motors and unsuitable for the VSD 
modeling, thus reducing cost and design times [42]. 
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Fig. 32. A-DMS-based full-order matrix transformation for a generic penta-three-phase winding configuration (15-phase as 5·3-phase). 
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Fig. 33. A-DMS-based full-order matrix transformation for a generic quad-
three-phase winding configuration (12-phase as 4·3-phase). 
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Fig. 34. A-DMS-based full-order matrix transformation for a generic triple-
three-phase winding configuration (9-phase as 3·3-phase). 
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Fig. 35. A-DMS-based full-order matrix transformation for a generic dual-
three-phase winding configuration (6-phase as 2·3-phase). 
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