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Abstract: Methods for No-Reference Video Quality Assessment (NR-VQA) of consumer-produced
video content are largely investigated due to the spread of databases containing videos affected by
natural distortions. In this work, we design an effective and efficient method for NR-VQA. The
proposed method exploits a novel sampling module capable of selecting a predetermined number
of frames from the whole video sequence on which to base the quality assessment. It encodes both
the quality attributes and semantic content of video frames using two lightweight Convolutional
Neural Networks (CNNs). Then, it estimates the quality score of the entire video using a Support
Vector Regressor (SVR). We compare the proposed method against several relevant state-of-the-art
methods using four benchmark databases containing user generated videos (CVD2014, KoNViD-1k,
LIVE-Qualcomm, and LIVE-VQC). The results show that the proposed method at a substantially
lower computational cost predicts subjective video quality in line with the state of the art methods
on individual databases and generalizes better than existing methods in cross-database setup.

Keywords: no-reference video quality assessment; in-the-wild videos; convolutional neural network;
support vector regressor; lightweight method; efficient method

1. Introduction

User-Generated Content (UGC) produced with smartphones or tablets is very prone
to natural capture artifacts, such as out of focus, object motion camera shakiness, un-
der/overexposure, sensor noise, adverse weather, and so on. The automatic estimation of
the quality of a UGC as perceived by human observers is fundamental for a wide range
of applications. For example, to discriminate professional and amateur video content on
user-generated video distribution platforms [1], to choose the best sequence among many
sequences for sharing in social media [2], to guide a video enhancement process [3], and to
rank/choose user-generated videos [4,5].

Blind/No-Reference Video Quality Assessment (NR-VQA) aims toward the devel-
opment of methods that estimate a quality prediction in close agreement with human
judgment in the absence of the pristine video. NR-VQA in the wild is a challenging task
not only for the reason that the pristine videos are not available, but also due to the fact that
video content is unknown and affected by mixed real-world distortions, especially some
of which are temporally heterogeneous (e.g., temporary auto-focus blurs and exposure
adjustments). For this reason, methods designed on synthetically distorted video datasets
do not scale on natural distortions and more effort needs to be made to develop datasets
and methods suitable for NR-VQA in the wild. Recently, some quality databases with
UGC videos affected by natural distortions have been published [6–8] and the focus of
blind video quality prediction methods has gradually shifted to techniques capable of
detecting natural video distortions as well [4,5,9]. Although important steps forward have
been made from the point of view of the effectiveness of NR-VQA methods on videos
in-the-wild, another important aspect that needs to be investigated concerns the efficiency
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of the proposed methods, especially if they have to be deployed on embedding devices
with limited resources such as smartphones and tablets.

In this paper, we mainly focus on the problem of efficiently assessing the quality of
in-the-wild videos. The proposed method relies on the insight of our previous article that
the combination of quality features with semantic features produces video quality scores in
close agreement with human judgment [5]. In this work, we take up the idea of encoding
video frames in terms of both semantics and quality and we design a lightweight and
efficient method. The proposed method includes a Multi-level feature extraction module as
presented in [5]. This consists of two lightweight Convolutional Neural Networks (CNNs)
for encoding each video frame in terms of both semantic and quality features. The previous
module is followed by a Video quality estimation module that aggregates frame-level
features into video-level features by temporal pooling. The spatiotemporal features are
finally mapped to a video quality score using a Support Vector Regressor (SVR) machine
with Radial Basis Function (RBF) kernel. We design a novel sampling module to select
a predefined amount of frames from the entire video sequence. This is motivated by the
fact that video signals have temporal redundancy and that the processing of all frames
not only represents the bottleneck of our method but also does not significantly improve
performance. The proposed method is close in accuracy to benchmark methods but much
more efficient, as shown in Figure 1.

Figure 1. Speed vs. mean Spearman’s Rank-order Correlation Coefficient (SROCC) computed across
100 train-test combinations on LIVE-Qualcomm videos (resolution at 1080p). Speed is measured by
running methods in CPU.

The main contributions of this work are the following.

• A lightweight and efficient video quality assessment method for in-the-wild videos
using two CNNs thoroughly trained for encoding video frames in terms of both
semantics and quality attributes and a Support Vector Regressor (SVR) machine.

• A frame sampling algorithm capable of selecting a predetermined number of frames
that exhibit a wide variation in terms of content and/or imaging conditions.

• An evaluation of the proposed method and a comparison with previous VQA methods
on four benchmark databases containing UGC videos also in cross-database setup.

• An ablation study that estimates how performance varies as the number of sampled
frames changes and that measures the benefits of using our sampling method instead
of other strategies.

This paper extends our previous work [5] in three aspects: (1) ResNet-50 [10] archi-
tectures exploited in the Multi-level feature extraction module are replaced by the more
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efficient and lightweight MobileNet-v2 [11], which improves the efficiency without sacri-
ficing performance. (2) Frame-level features are mapped to a video quality score thanks
to the Video quality estimation module which is much more simple than the Temporal
modeling module. (3) The video quality is estimated by sampling a small set of frames
instead of evaluating all frames.

The rest of the paper is organized as follows. Section 2 gives an overview of related
works, and the proposed method is detailed in Section 3. Section 4 contains a description
of the databases and the training protocol. In Section 5, experimental results are shown
and an ablation study where all the investigated methods that allow the definition of the
final method are compared. Finally, Section 6 draws conclusions.

2. Related Work

Many frame-based NR-VQA methods are based on image quality assessment methods
that involve the analysis of Natural Scene Statistics (NSS). Among such methods there
are the Naturalness Image Quality Evaluator (NIQE) [12], the Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [13], the Feature map-based Referenceless Image
QUality Evaluation Engine (FRIQUEE) [14], and the High Dynamic Range Image Gradient-
based Evaluator (HIGRADE) [15]. When applied to videos, NSS-based methods measure
the deviation of each frame from the natural scene statistics and then average the statistics
of all frames to obtain the quality score for the entire video. Few methods in the literature
explicitly model temporal features. V-BLIINDS [16] is an extension of the image-based
metric that incorporates time-frequency characteristics and temporal motion information.
The Video Codebook Representation for No-Reference Image Assessment (V-CORNIA) [17]
independently estimates the quality of each video frame thanks to a representation obtained
with unsupervised learning and a Support Vector Regression (SVR). Finally, the frame-level
quality scores are aggregated through time pooling to obtain the final video quality.

Given the growing interest in the quality assessment of in-the-wild videos, four
relevant datasets have been collected and annotated: CVD2014 [18], KoNViD-1k [6], LIVE-
Qualcomm [8], and LIVE-VQC [7]. These databases are very challenging, and previous
VQA methods, validated on synthetically distorted video datasets, do not produce quality
estimates that correlate well with ground-truth Mean Opinion Scores (MOSs). For this
reason, methods have been proposed that can capture both spatial and temporal distor-
tions [19,20], some of which by exploiting deep learning-based techniques [5,9,21].

In [19], the natural spatiotemporal scene statistics of natural videos are studied in
the spatial domain using 3D-MSCN coefficients and in the frequency domain using spa-
tiotemporal Gabor filters. The previous statistics are then modeled using an Asymmetric
Generalized Gaussian Distribution (AGGD). Finally, the AGGD parameters serve as image
features and are mapped to a quality score using a SVR. The ChipQA [20] captures both
spatial and temporal distortions, by building a representation of local spatiotemporal
data that is attuned to local orientations of motion but is studied over large spatial fields.
The quality of a video is estimated by identifying and quantifying deviations from the
expected statistics of natural, undistorted space-time chips.

SACONVA [22] exploits a 3D shearlet transform for extracting frame-level features,
which are then passed to a 1D Convolutional Neural Network (CNN) to predict spatio-
temporal quality features. The COnvolutional neural network and Multi-regression-based
Evaluation (COME) [23] splits the problem of extracting spatio-temporal quality features
into two parts. Spatial quality features of each frame are obtained by computing the
max and standard deviation of the activations of the last layer of an AlexNet pretrained
for image quality assessment on the CSIQ dataset [24]. Temporal quality features are
then extracted as standard deviation of motion scores in the video. Finally, two types
of SVR are used in conjunction with a Bayes classifier to predict the video quality score.
VSFA [9] integrates into a DNN two eminent effects of human visual system: content
dependency and temporal memory effects. It involves the use of a CNN pretrained on
Imagenet [25] for encoding video frames, then a Gated Recurrent Unit (GRU) [26] is used
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for modeling long-term dependencies and predicting frame quality. Finally, a subjectively
inspired temporal pooling model provides the overall video quality taking into account the
effects of temporal hysteresis. VSFA demonstrated to be very effective on three benchmark
video databases: KoNViD-1k, CVD2014, and LIVE-Qualcomm. The Two-Level Video
Quality Model (TVLQM) [4] consists of a two-level feature extraction mechanism in which
low complexity features are first computed for the full sequence, and high complexity
features are then extracted from a subset of representative video frames. The authors
further improve their method by combining hand-crafted statistical temporal features from
TLVQM and spatial features extracted using 2D-CNN model trained for image quality
prediction [21]. In our previous work, we propose the QSA-VQM [5] that exploits two
ResNet-50 for encoding a frame at a time in terms of both semantic and quality features,
the Temporal modeling block is then in charge of estimating the overall quality score for
the video by combining frame features thanks to a Recurrent Neural Network (RNN) and
a Temporal Hysteresis Pooling [9]. The Recurrent-In-Recurrent Network (RIRNet) [27]
includes two parts: quality degradation learning and motion effect modeling. The first
part consists of a ResNet-50 that extracts distortion-aware features from individual frames.
The second part comprises a hierarchical temporal model based on RNNs to perform
temporal downsampling and aggregation of motion information with different temporal
frequencies. Recently, Li et al. [28] propose a unified NR-VQA framework with a mixed
datasets training strategy for in-the-wild videos that consists of the previously proposed
VSFA as the backbone. The training of the backbone on mixed data is then addressed with
two losses, namely, the monotonicity-induced loss and the linearity-induced loss.

3. The Proposed Method

The proposed method for No-Reference Video Quality Assessment (NR-VQA) follows
the insights of our previous QSA-VQM [5], but implements them by adopting design
choices aimed at making the method lightweight and efficient enough to be deployed on
resource-limited devices. As illustrated in Figure 2, the proposed method estimates the
quality score of RGB video sequences of variable resolution and length. It consists of three
main modules: the Frame sampling module, the Multi-level feature extraction module,
and the Video quality estimation module. In the Frame sampling module, a subset of
representative frames is sampled from the entire video. In the Multi-level feature extraction
module, the sampled video frames are fed one at a time into two Convolutional Neural
Networks (CNNs), called Extractor-Q and Extractor-S, which aim to compute quality and
semantic features for each video frame. These features are concatenated and then processed
by the Video quality estimation block which aggregates temporal features and exploits a
Support Vector Regressor (SVR) machine for predicting a quality score. In the next sections,
we detail each block of the proposed method.

3.1. Frame Sampling

One of the bottlenecks in video quality assessment is the encoding of all video frames,
especially if they are many and have a high resolution. Moreover, we know that temporal
redundancy is present in video signals when there is a significant similarity between
successive video frames. For both reasons, we propose a sampling algorithm able to
maintain video frames that present variations in content and especially in terms of imaging
conditions. The HSV color space, which contains the three components hue, saturation, and
value, provides an intuitive color representation and is more suitable than the RGB color
space to capture features correlated well with human perception [29]. It was also seen that
the value component is strongly affected by blur, while the other components remained
approximately unchanged. This is due to the high separation between the chromatic and
achromatic components in this color space [30]. Thus, in our sampling algorithm we
measure the error between frames in the HSV color space.
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Video (N frames)

Temporal Statistics Pooling

Video quality score

Multi-level feature extraction

Video quality estimation

Concatenation

Extractor-Q

Spatial Average Pooling

Extractor-S

Spatial Statistics Pooling

K x 3840

K x 2560K x 1280

1 x 7680

Support Vector Regressor

Frame Sampler

Video (K frames)

Frame sampling

Figure 2. Our NR-VQA method consists of three main steps: the Frame sampling, the Multi-level feature extraction, and the
Video quality estimation. In the Frame sampling, a set of K frames is first sampled from the whole video. These K frames
are then encoded in terms of both quality and semantic features in the Multi-level feature extraction step. The Video quality
estimation block aggregates the frame-level feature vectors into a video-level feature vector using a Temporal statistic
pooling and then estimates the quality score using a Support Vector Regressor.

In Algorithm 1, a subset of n frames is sampled from the entire video. Video frames are
first rescaled using bilinear interpolation to a resolution with the smaller edge equal to s and
the other edge adapted to preserve the frame aspect ratio. They are then converted from
the RGB to the HSV color space. For each video frame, the Mean Absolute Error (MAE) is
calculated with all subsequent frames. Algorithm 2 is applied for selecting the indices of
frames having an error higher than a threshold. In order to obtain the required number of
frames, n, the threshold is optimized using a naive algorithm. The initial threshold is the
average of the errors across all video frames, and it is then updated to collect the desired
number of frames. To ensure optimal convergence, the delta update is multiplied by a
gamma decay factor. In any case, the optimization process stops after a maximum number
of iterations, max_iter. In Algorithm 2, we iteratively jump from one frame to the next with
an error above the threshold and a minimum number of intermediate frames corresponding
to the frame rate r. The first condition allows selecting frames with a high difference in
terms of content and imaging variations, while the second condition prevents the selection
of frames that are too close to the detriment of those that are far away. This condition can
occur, for example, in case of camera shake.
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Algorithm 1 sampleFrames(F, n, s, r, max_iter, delta, gamma)
Input : F are the RGB video frames; n is the number of frames to sample; s is the target size for frames; r is the

video frame rate; max_iter is the maximum number of optimization steps; delta is the update factor of
the threshold; gamma is the multiplicative factor of delta decay.

Output : The list of indices of the sampled frames, L.
1 Rescale frames F so that the smaller edge matches the target size s;
2 Convert frames F to the HSV color space;
3 for i← 0 to Numel (F) do
4 for j← i + 1 to Numel (F) do
5 err[i, j]← MeanAbsolutError(F[i], F[j]);
6 end
7 end
8 L← [], iter ← 0, t← Avg(err);
9 while Numel(L) 6= n ∧ iter < max_iter do

10 L← SelectIndices(err, r, t);
11 if Numel(L) < n then
12 t← t− delta ∗ gamma;
13 else
14 t← t + delta ∗ gamma;
15 end
16 iter ← iter + 1;
17 end
18 return L;

Algorithm 2 selectIndices(err, r, threshold)
Input : err contains the errors between frames; r is the video frame rate; t is the threshold for similar frames.
Output : The list of indices of the sampled frames, L.

1 L← [];
2 for i← 0 to Numel (F) do
3 for j← i + r + 1 to Numel (F) do
4 if err[i, j] >= t then
5 L.Append(j);
6 i← j;
7 end
8 end
9 end

10 return L;

3.2. Multi-Level Feature Extraction

Given that human judgments of visual video quality are strongly influenced by the dif-
ferent sensitivity to low-level visual features [31,32] and the semantic video content [33,34],
in this work we characterize video frames in terms of these two aspects. To this end, we
employ two CNNs that we have called Extractor-Q and Extractor-S to extract low-level
quality and semantic features, respectively.

In Figure 3, we show the architecture of the Extractor-Q. It consists of a MobileNet-
v2 [11] architecture (given its efficiency and reduced number of parameters [35]) truncated
to the last convolutional layer, followed by a Global Average Pooling (GAP) layer. A GAP
layer reduces a tensor with dimensions h× w× d in order to have dimensions 1× 1× d
by simply taking the average of all hw values. Finally, nine different Fully Connected (FC)
layers output the scores for the overall image quality and eight image quality attributes,
i.e., sharpness, graininess, lightness, color saturation, brightness, colorfulness, contrast,
and noisiness. Extractor-Q is trained end-to-end in a multi-task fashion for simultaneously
estimating the aforementioned aspects.
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To train the Extractor-Q, we combine two databases for image quality assessment: the
CID2013 database [36] and the Smartphone Photography Attribute and Quality (SPAQ)
database [37]. The first consists of 480 images with resolution 1600× 1200 captured by
79 different cameras of varying quality. Each image is annotated by human subjects in
terms of overall quality and four attribute scales (i.e., sharpness, graininess, lightness,
and color saturation). The SPAQ database contains 11,125 high-resolution pictures taken
by 66 smartphones, where each image is annotated in terms of image quality, and image
attributes (brightness, colorfulness, contrast, noisiness, and sharpness).

Sharpness score

Global Average
Pooling

Fully
Connected

Graininess score

Luminance score

Saturation scoreM
obileNet-v2

Brightness score

Colorfulness score

Noisiness score

Contrast score

Overall quality score

Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

Fully
Connected

Figure 3. Definition of the Extractor-Q. Given an image of any size, Extractor-Q estimates the overall quality score as
well as the scores for eight quality attributes, namely, brightness, colorfulness, contrast, graininess, luminance, noisiness,
and sharpness, and color saturation. It consists of a MobileNet-v2 followed by a Global Average Pooling (GAP) level and a
fully connected (FC) level for each one of the previously mentioned aspects.

The semantic features for each frame are simply obtained using the Extractor-S which
consists in a MobileNet-v2 pretrained on ImageNet for image categorization.

As graphically described in Figure 2, the feature vector for each of the K video frames
from both CNNs is obtained by truncating the networks to the last convolutional block,
which generates an activation volume of m× n× 1280, where m× n is the spatial resolution
and 1280 is the depth of the volume, respectively. A Spatial Average Pooling (SAP)
is applied on the activation volume of the Extractor-Q to reduce the spatial resolution.
The resulting feature vector has a shape of K× 1280. Instead, a Spatial Statistics Pooling
(SSP) [38] is applied by calculating and concatenating the mean and standard deviation
of spatial features of the activation volume produced by the Extractor-S. The feature
vector obtained by a SSP has a shape K × 2560. The output of the Multi-level feature
extraction block is obtained by concatenating the feature vectors of each network. A video
is represented by a feature vector of K× 3840.

3.3. Video Quality Estimation

We exploit a Temporal Statistics Pooling to aggregate spatial features obtained from
the Multi-level feature extraction into a spatiotemporal feature vector of length equal to
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7680. In practice, we found that the use of mean and standard deviation of the features
obtained for the various frames of the video does not sacrifice much the performance.
The use of a parameterless layer makes our Video quality estimation module very efficient
and lightweight. The video level spatiotemporal features are mapped into video quality
scores using a Support Vector Regressor (SVR) machine. Specifically, we exploit a SVR with
a Radial Basis Function (RBF) kernel as it has shown better performance than simple linear
regression and SVR with other kernels.

3.4. Implementation Details

For frame sampling, we set the frame target size s to 16, the value for r is equal to half
the frame rate value, the number of frames to sample n is 15, max_iter for the optimization
process is equal to 20, the update factor delta is 0.005, and gamma corresponds to 0.25.

The training of our NR-VQA method takes place in two stages. In the first stage,
the two CNNs of the Multi-level feature extraction block are used to encode the frames are
trained. These two training processes are conducted using the PyTorch framework [39].
In the second stage, the SVR of the Video quality estimation block is trained. We use the SVR
provided by the Scikit-learn library [40]. For the Extractor-S we use the ImageNet pretrained
MobileNet-v2 provided by Torchvision package of the PyTorch framework [39]. Training
images are randomly cropped to 224× 224 pixels and horizontally flipped. As mentioned
in Section 3.2 the Extractor-Q is trained on the combination of two datasets (i.e., CID2013
and SPAQ) for the estimation of the overall quality and quality attributes. Furthermore, in
this case we start from a MobileNet-v2 pretrained on Imagenet, and we use the initialization
technique proposed in [41] for the fully connected layers predicting the scores for each
attribute. Image labels for each quality attribute are mapped in range [0, 1] using the min-
max scaling. Adam is chosen as optimizer, while the linear combination of a Mean Absolute
Error (MAE) loss for each task is used as optimization criterion. We train the network
with a fixed learning rate equal to 1× 10−4 for 150 epochs on the entire dataset with the
batch size equal to 4. To allow the network to be less sensitive to changes in resolution,
we propose a multi-scale training procedure in which a crop is extracted for each image
of CID2013 and SPAQ by randomly sampling the position and choosing one crop size
randomly from the following: 854× 480 (480p), 1280× 720 (720p), and 1920× 1080 (1080p).
The size of the crop is adapted if the training image is not large enough. The horizontal flip
is then applied randomly to increase the data.

The SVR with RBF kernel has two hyperparameters that need to be tuned: the kernel
parameter γ for the RBF kernel and the soft-margin parameter C trading off complexity
and data misfit. We select these hyperparameters by running a Bayesian optimization
framework [42]. The latter uses a surrogate model to approximate the objective function
and chooses to optimize it according to some acquisition function. The surrogate model
used is Random Forest, while the acquisition function is Upper Confidence Bound (UCB).
The search value ranges for C and γ are [0.01, 5] and [1× 10−4, 0.1], respectively.

The training set data are split into 80% train and 20% validation. The SVR is trained
with a pair of hyperparameters—C and γ, and then the Spearman’s Rank-order Correlation
Coefficient (SROCC) is calculated on the validation data. The above procedure is repeated
with the same pair of hyperparameters for 100 times (generating new train–val splits) and
the average of the SROCCs obtained over all times is calculated as the evaluation metric of
the hyperparameters pair. The pair of hyperparameters that produces the highest SROCC
mean is the one chosen. The optimization consists of 600 iterations. We use SROCC instead
of PLCC to avoid overfitting on validation data. As PLCC evaluates the goodness of the
linear relationship between the MOS and the predicted scores, it may find hyperparameters
that perform well on the validation data but do not generalize on the test data. Instead,
SROCC relax the linearity constraint and helps find the hyperparameters that just ensure
monotonicity between MOS and predicted scores.
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4. Experiments

In this section, we first describe the databases considered for the experiments, we then
present the experimental setup and the evaluation criteria.

4.1. Databases for In-the-Wild Video Quality Assessment

There are four publicly available databases for video quality assessment in-the-wild:
Camera Video Database (CVD2014) [18], Konstanz Natural Video Database (KoNViD-
1k) [6], LIVE-Qualcomm Mobile In-Capture Video Quality Database (LIVE-Qualcomm) [8],
and LIVE Video Quality Challenge Database (LIVE-VQC) [7].

CVD2014 [18] is a collection of 234 videos of resolution 640 × 480 or 1280 × 720
recorded by 78 different cameras (from low-quality mobile phone cameras to high-quality
digital single lens reflex cameras). Each video captures one among five different scenes
and presents distortions related to the video acquisition process. The trimmed videos have
lengths of 10–25 s with 11–31 fps. The realignment Mean Opinion Scores (MOSs) lay in the
range [−6.50, 93.38].

The KoNViD-1k database [6] contains 1200 videos of resolution 960× 540 sampled
according to six specific attributes from the YFCC100M dataset [43]. The resulting database
contains video sequences of 8 s with a wide variety of contents and authentic distortions.
The MOS have been collected through a crowdsourcing experiment and ranges from
1.22 to 4.64.

The LIVE-Qualcomm database [8] consists of 208 videos of resolution 1920× 1080
captured by eight different smartphones. These videos have a length of 15 s and are affected
by six in-capture distortions: artifacts, color, exposure, focus, sharpness, and stabilization.
A subjective study has been conducted under two different study protocols in a controlled
laboratory. A total of 39 subjects has been randomly assigned to one of the setups. In this
work, we consider the unbiased MOS scores gathered while the subject freely watch videos.
The obtained MOS belong to the range [16.56, 73.64].

Finally, the LIVE Video Quality Challenge (LIVE-VQC) database [7] contains 585 videos
of unique content, captured by 101 different devices (the majority of these were smart-
phones), with a wide range of complex authentic distortions. Videos are on average 10 s
long and have variable resolutions, but most videos have resolution equal to 404× 720,
1024× 720, and 1920× 1080. Subjective video quality scores have been collected via crowd-
sourcing: a total of 4776 unique participants produced more than 205,000 opinion scores.
MOS span between 0 and 100.

An overview of database properties is provided in Table 1, while frames samples are
in Figure 4.
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(a) (b)

(c) (d)

Figure 4. Sample frames of the video contents contained in the four considered databases: (a) CVD2014, (b) KoNViD-1k, (c)
LIVE-Qualcomm, and (d) LIVE-VQC.

Table 1. Overview of the publicly available databases for in-the-wild video quality assessment. In the column Device types:
“DSLR” stands for Digital single lens reflex.

Attribute/Database CVD2014 [18] KoNViD-1k [6] LIVE-Qualcomm [8] LIVE-VQC [7]

Year 2014 2017 2017 2018
No. of sequence 234 1200 208 585
No. of scenes 5 1200 54 585
No. of devices 78 N/A 8 101
Device types smartphone and DSLR DSLR smartphone smartphone
Distortion type generic generic specific generic
Duration 10–25 s 8 s 15 s 10 s
Resolution VGA and 720 p 540 p 1080 p various
Frame rate 10–31 30 30 N/A
Format various MPEG-4 YUV N/A
Rating per video 27–33 50 39 >200
MOS range –6.50–93.38 1.22–4.64 16.56–73.64 0–100

4.2. Experimental Setup

The evaluation metrics for NR-VQA methods are Pearson’s Linear Correlation Coeffi-
cient (PLCC), Spearman’s Rank-order Correlation Coefficient (SROCC), and Root Mean
Square Error (RMSE).

The PLCC measures the linear correlation between the actual and the predicted scores,
and it is defined as

PLCC =
∑N

i (xi − x̄)(yi − ȳ)√
∑N

i (xi − x̄)2
√

∑N
i (yi − ȳ)2

, (1)

where N is the number of samples, xi and yi are the sample points indexed with i, and
finally x̄ and ȳ are the means of each sample distribution. Instead, the SROCC estimates the
monotonic relationship between the actual and the predicted scores, and it is calculated as

SROCC = 1−
6 ∑N

i d2
i

N(N2 − 1)
, (2)
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N is the number of samples, and di = (rank(xi)− rank(yi)) is the difference between the
two ranks of each sample.

Finally, the RMSE measures score accuracy and it is defined as

RMSE =

√√√√ 1
N

N

∑
i
(xi − yi)2, (3)

where N is again the number of samples, while xi and yi are the sample points indexed
with i.

For the experiments, the same experimental protocol used in [4,8] was followed. It
consists in running 100 times the random selection of 80% of training videos and 20%
testing videos. Precisely, we exploit the same 100 splits used in [9] that do not prevent
the same scene to be both in training and evaluation sets. This fact can cause a bias
in the resulting performance especially for the CVD2014, which only has five different
scenes. However, applying another experimental protocol would have introduced other
problems such as the imbalanced of sample number between the train split and the test
split. For the sake of coherence, we train and measure the performance of other methods
on the same splits.

5. Results

In this section, we compare the performance achieved by our method with those
obtained by the previous NR-VQA methods for each of the considered databases. Further-
more, we conduct a performance evaluation of the generalization ability of the proposed
method in cross-database scenarios, which are more challenging due to different types of
contents and degradation characteristics. Finally, we report an ablation study in which the
different choices that have been investigated during the design of the proposed method
are compared.

5.1. Performance on Single Databases

The experimental results are reported in terms of average PLCC, SROCC, and RMSE
across the 100 iterations of train–test random splits for all the considered databases
(CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC). We compare the proposed
method with several benchmark methods, namely, NIQE [12], BRISQUE [13], V-CORNIA [44],
V-BLIINDS [16], HIGRADE [15], TLVQM [4], VSFA [9], and QSA-VQM [5]. For the sake
of comparison, the same random train–test splits were used for all the methods (For re-
producible research, we make the 100 train–test splits available at https://rb.gy/tyhlk1;
accessed on 13 March 2021). Table 2 shows the average of the considered metrics and their
corresponding standard deviations. We can draw several conclusions from these results.
First, one can see that TLVQM, VSFA, QSA-VQM, and the proposed method achieve very
similar performance on all the considered databases. This is an interesting result consid-
ering that the other methods explicitly model time distortions frame-by-frame, while our
method aggregates the features of few sampled frames. Second, our method obtains the
second-best performance after TLVQM and QSA-VQM with a gap of 0.02 for all metrics.
For LIVE-VQC, the proposed method achieves exactly the same PLCC, while the values of
SROCC and RMSE are worse than TLVQM. We attain this accurate model but with much
lower computational cost, as we will see in Section 5.3.

https://rb.gy/tyhlk1
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Table 2. Mean Pearson’s Linear Correlation Coefficient (PLCC), Spearman’s Rank-order Correlation Coefficient (SROCC),
and Root Mean Square Error (RMSE) across 100 train–test combinations on the four considered databases. In each column,
the best and second-best values are marked in boldface and underlined, respectively.

CVD2014 KonViD-1k
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

NIQE [12] 0.61± 0.09 0.58± 0.10 17.10± 1.5 0.34± 0.05 0.34± 0.05 0.61± 0.03
BRISQUE [13] 0.67± 0.09 0.65± 0.10 15.90± 1.8 0.58± 0.04 0.56± 0.05 0.52± 0.02
V-CORNIA [17] 0.71± 0.08 0.68± 0.09 15.20± 1.6 0.51± 0.04 0.51± 0.04 0.56± 0.02
V-BLIINDS [16] 0.74± 0.07 0.73± 0.08 14.60± 1.6 0.64± 0.04 0.65± 0.04 0.49± 0.02
HIGRADE [15] 0.76± 0.06 0.74± 0.06 14.20± 1.5 0.72± 0.03 0.73± 0.03 0.44± 0.02
TLVQM [4] 0.80± 0.04 0.80± 0.04 12.89± 1.2 0.76± 0.02 0.76± 0.02 0.42± 0.02
VSFA [9] 0.86± 0.03 0.86± 0.05 11.35± 1.4 0.79± 0.02 0.78± 0.03 0.41± 0.03
QSA-VQM [5] 0.87± 0.04 0.86± 0.04 11.03± 1.4 0.81± 0.02 0.81± 0.02 0.39± 0.03

Proposed 0.86± 0.04 0.84± 0.04 11.13± 1.24 0.79± 0.02 0.78± 0.02 0.40± 0.02

LIVE-Qualcomm LIVE-VQC
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

NIQE [12] 0.48± 0.12 0.46± 0.13 10.70± 1.3 0.58± 0.05 0.56± 0.06 13.86± 0.7
BRISQUE [13] 0.54± 0.10 0.55± 0.10 10.30± 0.9 0.64± 0.06 0.59± 0.07 13.10± 0.8
V-CORNIA [17] 0.61± 0.09 0.56± 0.09 9.70± 0.9 0.72± 0.04 0.67± 0.05 11.83± 0.7
V-BLIINDS [16] 0.67± 0.09 0.60± 0.10 9.20± 1.0 0.72± 0.05 0.69± 0.05 11.76± 0.8
HIGRADE [15] 0.71± 0.08 0.68± 0.08 8.60± 1.1 0.63± 0.06 0.61± 0.07 13.03± 0.9
TLVQM [4] 0.77± 0.06 0.74± 0.07 7.62± 1.0 0.78± 0.04 0.78± 0.04 10.75± 0.9
VSFA [9] 0.75± 0.09 0.71± 0.10 8.31± 1.1 0.75± 0.04 0.69± 0.05 11.72± 0.9
QSA-VQM [5] 0.77± 0.06 0.74± 0.07 7.93± 1.0 0.78± 0.04 0.74± 0.05 11.06± 0.8

Proposed 0.76± 0.07 0.72± 0.08 8.04± 0.80 0.78± 0.04 0.74± 0.04 10.85± 0.6

In Figure 5a, we report two video sequences, belonging to KoNViD-1k and LIVE-VQC,
where our method over- or underestimates the overall quality. To better understand why
the method estimates these quality scores, we provide the sampled frames. The quality
score for the KoNViD-1k video sequence has been underestimated by the proposed method.
This is probably motivated by the fact that, although there are no motion artifacts present,
the video content is slightly out of focus. For LIVE-VQC video, our method predicts a
higher quality score than MOS. Looking at the video, no particular quality impairments
are evident apart from the beginning of the sequence, probably the low MOS is due to the
fact that there is no main subject always visible. However, in our opinion the provided
MOS equal to 15.36 does not reflect the objective quality of the video. Figure 5b shows a
sample of KoNViD-1k and one of LIVE-VQC for which the proposed method estimates a
quality score that almost exactly coincides with the MOS. Both predictions make sense, in
fact the first video shows an underwater scene in which the camera rarely moves, while
the second is a static shot indoor with the right lighting conditions and excellent quality.

Figure 6 shows the scatter plots on the four databases. They report the MOS with re-
spect to the corresponding predicted scores for all the samples considered in the
100 iterations. A logistic regression function is drawn for highlighting the silhouette of the
fit. We can observe that apart for LIVE-Qualcomm and LIVE-VQC, the other distributions
are well fit.
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Frame: 0 Frame: 10 Frame: 22 Frame: 42 Frame: 56 Frame: 70 Frame: 82 Frame: 94 Frame: 106 Frame: 120 Frame: 132 Frame: 144 Frame: 156 Frame: 168 Frame: 180

MOS: 3.76—Predicted: 2.58 (Full video https://rb.gy/guzlzy)

Frame: 0 Frame: 6 Frame: 20 Frame: 34 Frame: 51 Frame: 70 Frame: 85 Frame: 108 Frame: 122 Frame: 155 Frame: 169 Frame: 224 Frame: 247 Frame: 283 Frame: 297

MOS: 15.36—Predicted: 41.90 (Full video https://rb.gy/2fgnov)

(a)

Frame: 0 Frame: 8 Frame: 19 Frame: 30 Frame: 55 Frame: 82 Frame: 93 Frame: 104 Frame: 115 Frame: 126 Frame: 140 Frame: 151 Frame: 163 Frame: 174 Frame: 185

MOS: 3.38—Predicted: 3.39 (Full video https://rb.gy/wdnyti)

Frame: 0 Frame: 3 Frame: 17 Frame: 31 Frame: 58 Frame: 81 Frame: 95 Frame: 128 Frame: 142 Frame: 160 Frame: 178 Frame: 222 Frame: 236 Frame: 258 Frame: 294

MOS: 66.01—Predicted: 65.98 (Full video https://rb.gy/k2nruu)

(b)
Figure 5. (Best viewed in colors and magnified.) Visualization of some examples of prediction of the proposed method. (a)
Two samples of under- and overestimated video quality predictions. (b) Two videos with a very low error between the
MOS and the predicted quality score. For each video, the 15 frames sampled by the proposed method, the MOS, and the
quality score predicted by our method are shown.

0 20 40 60 80
MOS

20

0

20

40

60

80

S
co

re

1.5 2.0 2.5 3.0 3.5 4.0 4.5
MOS

1.5

2.0

2.5

3.0

3.5

4.0

S
co

re

20 30 40 50 60 70
MOS

30

40

50

60

70

S
co

re

20 40 60 80
MOS

30

40

50

60

70

80

90

S
co

re

(a) (b) (c) (d)

Figure 6. Scatter plots of the predicted scores versus MOS for the four considered databases: (a) CVD2014, (b) KonViD-1k,
(c) LIVE-Qualcomm, and (d) LIVE-VQC.

5.2. Performance across Databases

After demonstrating the effectiveness on different databases, in this section we focus
on cross-database experiments to verify the robustness and generalization capacity of the
proposed method. To this end, for each training database we took the 100 trained models
and used them to estimate the quality scores of all the videos from the other databases.
Finally, we reported the average and the standard deviation on the 100 iterations for each
test database. We compare the performance of the proposed method with state-of-the-art
methods which achieved similar performance on the different databases, namely, TLVQM,
VSFA, and QSA-VQM. Table 3 reports the comparison of our method with the competitors
when it is trained on a database and tested on the remaining three. We emphasize that

https://rb.gy/guzlzy
https://rb.gy/2fgnov
https://rb.gy/wdnyti
https://rb.gy/k2nruu
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our method generalizes well when trained on CVD2014, LIVE-Qualcomm, and LIVE-VQC,
while performance is low on the other databases when the method is trained on KoNViD-
1k. It is possible to see that in general the correlation between LIVE-VQC and KoNViD-1k
is higher than other databases. This might be because the video content and the subjective
study for collecting human judgments are similar.

Table 3. SROCC in the Cross-dataset setup. In each column, the best and second-best values are marked in boldface and
underlined, respectively.

Training CVD2014 KoNViD-1k
Testing LIVE-Qualcomm KoNViD-1k LIVE-VQC CVD2014 LIVE-Qualcomm LIVE-VQC

TLVQM [4] 0.35± 0.08 0.29± 0.11 0.41± 0.09 0.39± 0.08 0.41± 0.06 0.50± 0.06
VSFA [9] 0.34± 0.06 0.55± 0.04 0.46± 0.04 0.65± 0.04 0.60± 0.04 0.70± 0.01
QSA-VQM [5] 0.37± 0.06 0.57± 0.04 0.41± 0.07 0.67± 0.04 0.64± 0.03 0.66± 0.02
Proposed 0.32± 0.14 0.63± 0.04 0.62± 0.06 0.55± 0.12 0.58± 0.09 0.71± 0.05

Training LIVE-Qualcomm LIVE-VQC
Testing CVD2014 KoNViD-1k LIVE-VQC CVD2014 LIVE-Qualcomm KoNViD-1k

TLVQM [4] 0.48± 0.07 0.49± 0.04 0.53± 0.35 0.49± 0.04 0.48± 0.04 0.56± 0.04
VSFA [9] 0.48± 0.07 0.64± 0.02 0.63± 0.02 0.48± 0.06 0.56± 0.03 0.67± 0.02
QSA-VQM [5] 0.53± 0.06 0.62± 0.02 0.60± 0.03 0.47± 0.06 0.40± 0.07 0.59± 0.05
Proposed 0.50± 0.14 0.63± 0.05 0.69± 0.05 0.54± 0.12 0.62± 0.09 0.68± 0.03

5.3. Computation Time

For NR-VQA methods, efficiency is also crucial. In this section, we complement the
part of performance estimation with that of computational efficiency. We measure the
computational efficiency of several methods on the same desktop computer with an Intel
Core i7-7700 CPU@3.60GHz, 16 GB DDR4 RAM 2400 MHz, and NVIDIA Titan X Pascal
with 3840 CUDA cores. The operating system is Ubuntu 16.04. We compare computation
time of our method with the one of BRISQUE, NIQE, TLVQM, V-CORNIA, V-BLIINDS,
VSFA, and QSA-VQM. Most of the methods are implemented in MATLAB, TLVQM has the
feature extraction part in MATLAB and the regression part in Python 3.6. VSFA, QSA-VQM,
and our method are implemented in Python 3.6 and exploit the PyTorch 1.5.1 framework.
For estimating the computation time of all methods, we run the original codes using default
settings without any modification in CPU. As in [9], we select four test videos with different
lengths and different resolutions: 240 frames video with resolution 960× 540 pixels, 346
frames at a resolution of 640× 480, 467 frames at a resolution of 1280× 720, and 450 frames
at a resolution of 1920× 1080. We repeat the tests ten times and the average computation
time (seconds) for each method is shown in Table 4. The proposed method is extremely
faster than the others at all resolutions and the gap increases as the video resolution
increases. In particular, it is 2× faster than BRISQUE that is the second method in terms of
efficiency but much less accurate as we previously show in Table 2. At the bottom of the
table, we report results in GPU mode for VSFA, QSA-VQM, and our method: the only three
methods exploiting GPU accelerations among the compared methods. These methods in
GPU mode can be about 32× faster than the CPU mode. We highlight that the proposed
method is 12× faster than VSFA at 540p, which is the second fastest method in GPU and
achieves comparable performance to our method.
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Table 4. Computation time comparison in seconds for four videos selected from the considered
databases. {xxx}frs@{yyy}p indicates the video frame length and the resolution, respectively.

Mode Method 240frs@540p 364frs@480p 467frs@720p 450frs@1080p

C
PU

V-BLIINDS [16] 382.06 361.39 1391.00 3037.30
QSA-VQM [5] 281.21 265.13 900.72 2012.61
VSFA [9] 269.84 249.21 936.84 2081.84
V-CORNIA [17] 225.22 325.57 494.24 616.48
TLVQM [4] 50.73 46.32 136.89 401.44
NIQE [12] 45.65 41.97 155.90 351.83
BRISQUE [13] 12.69 12.34 41.22 79.81
Proposed 8.43 6.24 16.29 37.68

G
PU

QSA-VQM [5] 9.70 9.15 25.79 55.27
VSFA [9] 8.85 7.55 27.63 58.48
Proposed 0.69 0.85 1.71 2.43

To complement the previous analysis we also estimate the number of floating point
operation (FLOPs) for previous methods and we compare them with the one of our method.
Figure 7 shows the FLOPS as a function of number of frames and resolution for the
considered methods. Both QSA-VQM [5] and VSFA [9] have a very large number of FLOPs,
while BRISQUE [13] is the method with the lowest order of magnitude of FLOPs (about 107).
The proposed method has an order of magnitude of FLOPs equal to 1012 which is higher
than that of BRISQUE. This gap was presumable but is not reflected in the computation
time because, although the operations of the proposed method are much more than those
of BRISQUE, they are parallelized. Therefore, it turns out that, compared to BRISQUE,
the proposed method has a lower computation time in the CPU and extremely lower in
GPU mode.

1×10    
14

1×10    12

1×10    
10

1×10    8

Figure 7. Floating point operations (FLOPs) for each method estimated for videos with different number and resolution
of frames.

5.4. Ablation Study

In this section, we present the alternative design choices that have been investigated
to lead us to the definition of the final model. In particular, we compare several design
choices adopted for the frame sampling module and the multi-level feature extraction
module, respectively.



J. Imaging 2021, 7, 55 16 of 21

Frame sampling. We assess the performance by varying the number of sampled frames,
the size of the minimum step (r) to sample the frames, and the size of the minimum edge
to which to resize the frames (s). We also compare the proposed sampling algorithm with
other solutions. We perform experiments on all databases with a number of sampled
frames ranging from 5 to 30 with a step of 5. Figure 8 shows the plots for PLCC and SROCC
with respect to the number of sampled frames for all the considered databases. It is possible
to see that the proposed method obtains the best correlations on all databases for a number
of frames equal to 15. This is especially noticeable for the LIVE-Qualcomm database for
which the performance initially increases, reaches the peak in correspondence of 15 frames,
and then slightly decreases.
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(a) (b)

Figure 8. Mean PLCC (a) and SROCC (b) across 100 train–test random splits of the four considered datasets with respect to
the number of sampled frames.

In Figure 9, the graphs showing the computation time with respect to the number
of sampled frames are reported. We estimate this metric for four videos with the same
characteristics as those used in Section 5.3. As expected, the computation time increases as
the resolution and number of frames increase. For example, running the proposed method
for NR-VQA with 5 frames instead of 30 results in a 3× increase in compute time in GPU
mode. This gap is more noticeable in the CPU rather than GPU mode. To summarize, this
analysis confirms that the number of frames to process is a bottleneck for our method.

We evaluate how the performance varies when modifying the minimum step (r) to
sample frames in the proposed algorithm. We choose five different values for r: framerate/4,
framerate/3, framerate/2, framerate, and framerate×2. Figure 10 shows the results in
terms of PLCC and SROCC. As can be seen, the best correlation is obtained for s equal to
framerate/2, while the performance worsens for higher steps. This behavior occurs for
all databases except for CVD2014. We also measure the impact of the frame size on the
sampling algorithm. Specifically we choose five different sizes to re-scale the short edge of
the frames: 16, 32, 64, 128, and 256. These values have been chosen in order to reduce the
computation time taking into account the possible masking effect of the artifacts within
frames. Figure 11 presents PLCC and SROCC on the four considered databases varying
the frame size (s) in the frame sampling module. We point out that the performance is not
significantly different as the size of the frame increases. This means that even if the size of
the frames is very small, it does not impact the choices that our algorithm makes. As there
is not a big difference in terms of correlation, we choose s = 16 because it results in a huge
time gain for the sampling module (about 80 times faster than s = 256 on videos at 1080p
with 450 frames).
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Figure 9. Computation time comparison in seconds for four videos selected from the considered databases with respect to
the number of frames sampled. (a) The time in CPU; (b) the time in GPU. {xxx}frs@{yyy}p indicates the video frame length
and the resolution, respectively.
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Figure 10. Mean PLCC (a) and SROCC (b) computed across 100 train–test combinations on the considered databases for
different sampling step (r) values in the proposed frame sampling algorithm.
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Figure 11. Mean PLCC (a) and SROCC (b) computed across 100 train–test combinations on the considered databases using
different frame size (s) values in the proposed frame sampling algorithm.

To better understand the actual benefit provided by the proposed frame sampling
algorithm, we compare its performance with those obtained by considering all video
frames, by linearly sampling frames from the whole video, or by selecting the frames with
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the highest MAE. The latter is implemented by simply taking the first K frames with the
highest MAE with respect to the previous. Table 5 reports the comparison among the three
sampling algorithms for the four considered databases. Our sampling algorithm achieves
the best PLCC, SROCC, and RMSE on LIVE-Qualcomm and LIVE-VQC databases, while
it achieves performances equal to those obtained by taking all frames on CVD2014 and
KoNViD-1k. Linear and MAE samplings perform worse than the other two approaches.
This is particularly true for the MAE sampling, which obtains the worst performance
compared to all variants on all the considered databases apart from LIVE-Qualcomm,
where it obtains the second best result. The most important consideration is that using
15 frames instead of all frames makes our method faster by 5× in GPU and 15× in CPU,
respectively. In Figure 12, the 15 frames sampled by the linear and the proposed sampling
algorithms for two video sequences are compared. As it is possible to see for the examples
shown, our algorithm chooses very different frames both for the type of content and for
the imaging conditions.

Table 5. Mean PLCC, SROCC, and RMSE across 100 train–test combinations on the four considered databases using different
sampling methods. In each column, the best and second-best values are marked in boldface and underlined, respectively.

CVD2014 KoNViD-1k
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

All frames 0.856± 0.040 0.845± 0.038 11.229± 1.215 0.786± 0.021 0.779± 0.023 0.400± 0.017
Linear sampling (15frs) 0.850± 0.041 0.838± 0.039 11.455± 1.234 0.783± 0.021 0.775± 0.024 0.403± 0.016
MAE sampling (15frs) 0.842± 0.042 0.831± 0.045 11.701± 1.242 0.745± 0.027 0.741± 0.029 0.429± 0.019
Proposed sampling (15frs) 0.859± 0.036 0.844± 0.039 11.129± 1.214 0.786± 0.021 0.779± 0.024 0.401± 0.017

LIVE-Qualcomm LIVE-VQC
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

All frames 0.600± 0.107 0.581± 0.105 10.357± 0.917 0.774± 0.037 0.741± 0.044 10.878± 0.553
Linear sampling (15frs) 0.600± 0.107 0.583± 0.104 10.379± 0.919 0.765± 0.039 0.730± 0.047 11.053± 0.542
MAE sampling (15frs) 0.705± 0.075 0.676± 0.081 8.169± 0.891 0.731± 0.046 0.703± 0.047 11.712± 0.627
Proposed sampling (15frs) 0.755± 0.071 0.721± 0.077 8.037± 0.803 0.775± 0.037 0.744± 0.044 10.854± 0.578
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Figure 12. (Best viewed in colors and magnified.) Linear vs. our frame sampling. Two example videos are shown in which the
15 frames sampled linearly or with the proposed sampling algorithm are compared.

Multi-level feature extraction. We evaluate the performance of the proposed NR-VQA
method considering the logits, rather than the features, as outputs of Extractor-Q and
Extractor-S, respectively. To this end, we follow the same procedure described in Section 3.2
with the only difference that we do not truncate the networks but we use them in their
entirety. For the extractor-Q, given a video frame of any size, we get an output equal
to m × n × 9, where m × n is the spatial resolution and 9 are the values for the quality
score and the eight quality attributes. The SAP layer is then applied to reduce the spatial
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resolution and obtain a feature vector of size 9. The Extractor-S predicts a volume equal to
m× n× 1000, where m× n is the spatial dimension, while 1000 are the semantic classes
of ImageNet. The SSP layer then reduces the spatial resolution, and the resulting feature
vector has size 2000. At this point the features are concatenated. A video of K frames
is finally represented by a feature vector of K × 2009. Table 6 reports the results for the
four considered databases. We highlight that the performance achieved by our method
exploiting the logits instead of the features are lower on all the databases. This may be
justified by the fact that the feature vector is more informative than logits where a problem
of masking of the various attributes may occur. Furthermore, there is a computational
advantage due to the fact that we exclude the fully connected layers.

Table 6. Mean PLCC, SROCC, and RMSE across 100 train–test combinations on the four considered databases using the
logits or the features obtained from Extractor-Q and Extractor-S. In each column, the best and second-best values are marked
in boldface.

CVD2014 KoNViD-1k
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

Logits 0.856± 0.037 0.843± 0.038 11.333± 1.138 0.773± 0.021 0.763± 0.023 0.413± 0.016
Features (proposed) 0.859± 0.036 0.844± 0.039 11.129± 1.214 0.786± 0.021 0.779± 0.024 0.401± 0.017

LIVE-Qualcomm LIVE-VQC
PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓

Logits 0.742± 0.075 0.705± 0.082 8.203± 0.831 0.755± 0.040 0.729± 0.046 11.250± 0.634
Features (proposed) 0.755± 0.071 0.721± 0.077 8.037± 0.803 0.775± 0.037 0.744± 0.044 10.854± 0.578

6. Conclusions

We introduced an effective and efficient NR-VQA method for in-the-wild videos. It
consists of a sampling algorithm that removes temporal redundancy by selecting a set of
representative frames. These frames are passed to two lightweight CNNs that encode both
the quality attributes and the semantic content for each frame. Frame-level features are
then aggregated into video-level features and finally mapped to a quality score using a
SVR. Experiments on four recent large-scale UGC video databases show the accuracy of the
proposed method. Cross-database experiments also showed that the proposed method is
more robust and generalizes better than the algorithms in the literature. Finally, an analysis
of the computational efficiency of methods highlights that the proposed method is several
orders of magnitude less expensive than methods achieving very similar accuracy. It runs
at a speed up to 185 FPS on one NVIDIA X Pascal GPU and 12 FPS on one Intel i7-770 CPU
for 1080p videos. At the same resolution, TLVQM and QSA-VQM, when achieving the
same accuracy, are approximately 10× and 50× slower than the proposed method in CPU
(see Figure 1).

The sampling algorithm proposed in this article could bring benefits to state-of-the-art
NR-VQA methods. In the future, we intend to conduct a comprehensive analysis to assess
what are the pros and cons of its adoption.
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