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Abstract: In order to match the strict reliability requirements mandated by regulations and standards
adopted in the automotive sector, as well as other domains where safety is a major concern, the
in-field testing of the most critical devices, including microcontrollers and systems on chip, is a crucial
task. Since the controller area network (CAN) bus is widely used in the automotive domain, the
corresponding controller ubiquitously appears in all these devices. This paper presents a generic and
systematic methodology to develop an effective in-field test procedure for CAN controllers based on
a functional approach (i.e., on the adoption of self-test libraries). The method can be customized to
match the requirements coming from different scenarios, and allows the test engineer to maximize the
achieved fault coverage in terms of structural faults in the different cases. The experimental results
we gathered on a representative CAN controller model show that, given two typical testing scenarios,
we are able to detect 84.28% and 87.62% of stuck-at faults, respectively, hence demonstrating the
effectiveness of the proposed approach.

Keywords: software-based self-test; self-test libraries; online test; automotive electronics; safety

1. Introduction

The controller area network (CAN) bus is a communication standard widely used
in all those domains where a robust communication connection is required, e.g., in the
automotive and industrial sectors. Due to its ubiquitous usage, there is currently a high
availability of tools supporting it, easing the integration of standard CAN controllers in
many micro controller units (MCUs). For this reason, CAN controller IP cores are also
frequently present in automotive system on chip (SoC) devices inside electronic control
units (ECUs), with the aim of interfacing and communicating with other ECUs. Due to
the nature of this peripheral and its usage, the CAN controller plays a critical role in all
applications in which it is adopted, as it enables the communication between different
modules within the system. Since failures could severely impact the whole system, special
measures should be taken to guarantee the correct functionality of the device. Functional
safety (FuSa) standards, such as ISO 26262 for automotive systems, ensure the reliability of
such devices by requiring quantitative evaluations of the test effectiveness through fault
coverage (FC) computed with respect to permanent structural faults [1]. Throughout the
article, we will use the term fault coverage, even though the standard ISO 26262 refers to
it as diagnostic coverage (DC). FC is usually evaluated by resorting to well-known fault
models, such as the stuck-at-fault model, defining challenging targets to be achieved to
match the specified reliability level [2]. To achieve these requirements, testing the CAN
controller during its operative lifetime (in-field test) is of paramount importance. In most
scenarios, in-field testing requires that the testing procedure is conducted on site, without
detaching the device under test (DUT) from its system, thus adding extra complexity to the
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already hard task of safety verification of the CAN bus controller. Moreover, the in-field test
procedure must consider the several constraints coming from both the environment where
the core is embedded in, and the application running on it. Due to the aforementioned
reasons, there is a high demand for a comprehensive and effective in-field test strategy that
considers the constraints introduced by the operational environment while still providing
a sufficiently high FC.

Two main solutions are generally adopted to test modules, such as the CAN controller
in the field, one based on design-for-testability (DfT) techniques, and the other based on
the software-based self-test approach [3]. DfT solutions may employ logic built-in self-test
(LBIST) and allow an automated and flexible structural test of the DUT, achieving a high
FC at the expense of additional on-chip testing hardware. Using DfT for in-field testing
requires being able to trigger its execution in an operational environment, which is not
always easy to achieve. Testing a device through DfT requires paying special attention
to the power consumed while testing the module, as it may exceed that of functional
operations. Moreover, DfT test solutions can produce some overtesting, i.e., detecting faults
that can never produce any failure, leading to false positives. From a functional safety
perspective, those faults are considered safe (i.e., their effects cannot impact safety-critical
functionalities) and their test does not impact the diagnostic coverage [4]. Lastly, testing
the DUT at power-on may not be sufficient, and DfT procedures may require too much
time to be executed during the system’s operative lifetime (e.g., during the application
idle times). Consequently, solutions based on the execution of a self-test library (STL)—a
collection of suitably crafted software-based self-test (SBST) procedures—by a CPU are
usually adopted, often in combination with other safety mechanisms. In several domains
where the functional testing of integrated circuits is required, e.g., the automotive domain,
the acronym STL is often used in place of the self-test library. For this reason, throughout
this article, we too will use such an acronym. With SBST, it is possible to achieve at-
speed testing without using any additional hardware. Developing SBST solutions for
CPUs [5–8] and peripherals [9–13] is a well-known topic in the literature. In addition to
that, several companies currently provide STLs for their own products [14–20]. Suitable
STLs are developed and graded by semiconductor companies and then provided to system
companies, which integrate the STL in the application software and devise the most suitable
mechanisms for triggering their execution and gathering the results.

In the case of a peripheral core, the idea is to execute a program on the CPU, in charge
first of configuring the target core (if required), and then of forcing it to execute some specific
transmission operations, checking whether the results match the expected ones. If the test is
performed when the device is mounted on a board and the board is part of the final product,
no support from any kind of tester is available. Hence, the test is based either on loop-back
solutions, where the peripheral core both sends and receives data and then the test program
checks whether they match, or it relies on another peripheral core of the same type, possibly
hosted on another device connected to the same network. This latter configuration is
also relevant to test the wiring of modules. Such wirings might be affected, in the case
of industrial installations, by problems related to mechanical normal operation conditions
conditions, e.g., vibration or electromagnetic noise. In the case that another peripheral
is available during the test, the CPU on the second device will also execute a suitable
piece of code, performing symmetrical operations. This scheme was investigated and
successfully assessed in previous works for simple peripherals [9,11]. When considering
serial communication peripherals, it must be noted that the CAN controller is much more
complex than peripherals implementing other protocols (e.g., UART, SPI or I2C), as the
standard offers a large set of functionalities and configurations that are unique to the CAN
bus protocol. The algorithms developed to test such peripherals are thus ineffective and
need to be adapted to deal with a higher complexity. The paper [10] is the first work that
tackles the in-field testing of CAN controller peripherals using SBST, but it does not take
into account the constraints that the environment introduces in terms of testing procedures.
This article aims to include those constraints and show how it is possible to adapt the
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STLs algorithms proposed in [10] to the new scenario. To the best of our knowledge, this
is the first article that tackles the problem of generating the in-field tests of a CAN bus
controller, or for peripheral cores of similar complexity, while taking into account the
operative scenarios into which they are embedded.

The approach described in this paper tackles the issues related to the peripheral core’s
size and complexity by presenting a deterministic methodology to test a generic CAN
controller with a suitably developed STL. Such a methodology includes a set of system-
atic strategies to test modules inside the CAN controller, taking into account constraints
introduced by the testing environment. Permanent stuck-at faults are targeted, as typically
mandated by safety standards, such as ISO26262. When working with the ISO26262 stan-
dard, it is standard practice to focus on the stuck-at fault model only. Untestable and safe
faults are identified and removed from the total fault list to derive a parameter known as
test coverage (TC) defined as

TC =
DF

TF−UF− SF
where DF is the number of detected faults, TF is the total number of faults, UF is the number
of untestable faults, and SF is the number of safe faults. The UF parameter accounts
for structurally untestable faults (i.e., faults that cannot be detected due to architectural
limitations) and functionally untestable faults (i.e., faults that cannot be detected due to
functional limitations). We used formal verification techniques to identify those classes of
faults, as described in [21]. The main contributions of this work are as follows:

• Identification of some representative scenarios for the in-field test of CAN controllers, to
be used for deriving the functional constraints coming from the operational environment.

• Definition of systematic algorithms for the development of an effective STL under the
different test scenarios analyzed, corresponding to different choices by the test/safety
engineer in terms of safety and cost/intrusiveness of the adopted solution.

• Report of experimental data, such as the memory footprint, execution time, and fault
coverage achieved by the test programs in different test scenarios, also taking into
account the presence of safe faults.

The gathered results show that traditional unstructured functional solutions can only
reach low TC figures, reporting a final 58.42% stuck-at test coverage, while the proposed
solution systematically allows much higher TC figures, achieving a final 84.28% and 87.62%
stuck-at faults test coverage for two testing scenarios, respectively. These figures are in
line with the results achieved with similar SBST-based systematic approaches targeting
CPU cores [22] for industrial safety-critical devices, demonstrating that the SBST approach
adopted for CPU testing can be effectively extended (following the algorithms described
in this paper) also for complex peripheral cores. The paper also proves that a suitably
developed functional test can represent (in combination with other safety mechanisms) an
effective and flexible solution for the in-field test of CAN controllers.

The rest of the paper is organized as follows: in Section 2, we outline the CAN bus
standard, introduce three operative modes, useful when testing, and summarize previous
works. In Section 3, we present a generic and systematic approach to develop self-test
libraries for CAN controllers, while in Section 4, we discuss the constraints and limitations
introduced by the environment in which the tests are conducted. In Section 5, we discuss
the case study and the achieved results, and finally in Section 6, we draw the conclusions.

2. Background
2.1. CAN Bus Standard

The CAN BUS protocol [23], released in 1986, is a serial communication standard
designed with the aim of making it robust with respect to noisy environments; it was
originally developed for the automotive industry. Its robustness is achieved by means of
differential signaling, implemented through the CANH and CANL lines. The synchroniza-
tion of the receiver to the transmitter is ensured by means of the bit stuffing technique, that
allows for a maximal 5 bits sequence of same values. The differential current-based sig-
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naling and characteristic impedance terminated transmission lines allow for long-distance
transmissions, e.g., 1 km at a low bitrate (50 kbps) or higher bitrates with shorter distances.

This protocol is based on a multi-master bus configuration. The arbitration is achieved
by means of employing an open drain technology, and relying on a 0 dominant bus protocol.
In this way, in case of a collision due to the simultaneous transmission of a logic 1 from
one node while another is transmitting a logic 0, the node that is sending a lower priority
message (i.e., a logic 1) is able to recognize such a discrepancy and suspend the transmission.

The CAN standard supports four different frames, i.e., types of message. In the
following, we report a brief explanation of these frames:

1. Data frame: a message to transfer data from a sending node to one or more receiv-
ing nodes.

2. Remote frame: a node requests data from a source node. A remote frame is followed by
a data frame containing the requested data.

3. Error frame: any bus participant may signal an error condition at any time during a
transmission.

4. Overload frame: a node can request a delay between two data or remote frames.

Messages belonging to the data frame category are divided into different fields. These
fields are the ID (the identifier of the recipient of the message), DLC or data length code
(the number of bytes to be sent), DB or data bytes (the actual message), and CRC for error
detection. The recipient notifies the transmitter of the correct reception by means of an
acknowledge bit. Data frames come in two formats, with respect to the ID size: 11 bits for
the base format, and 29 bits for the extended format.

Each node generally consists of a controller that elaborates on commands sent from
another module (e.g., a microprocessor) and sets everything to correctly send/receive a
message. It handles the error conditions as well, providing the outer world with a register-
based interface in which any information can be found. A schematic representation of CAN
bus configuration, together with the generic implementation of a single node, is shown in
Figure 1. The actual implementation of the CAN controller depends on the producer, some
of which are SJA1000 by NXP, bxCAN by STMicroelectronics, TI TMS230, and Infineon
MultiCan.

Although different, some modules are usually found within any CAN controller
implementation. Such modules include the following:

• Register interface: a bank of control, status and data registers used as an interface to the
controller by the CPU.

• Timing management logic: module that handles the timing details of the peripheral.
• Acceptance filters: used to check whether the incoming message is intended for the

node or it can be discarded.
• Processing unit: in charge of managing the transmission/reception operations and

configuring the peripheral in its working modes.
• Error management logic (EML): module involved in the management of the various

error conditions.
• Storage FIFO: used to store received messages.
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Figure 1. CAN bus configuration.

2.2. CAN Operative Modes

A typical CAN controller supports several working modes, also known as operative
modes. In this subsection, CAN operative modes instrumental for testing purposes are
described. It is important to notice that not every configuration is introduced here, as some
modes, such as stand-by or sleep mode, are not useful when developing an STL. When
outlining the operative modes, a distinction between internal TXint and RXint signals and
physical TX and RX pins is made. This is done to better clarify how each operative mode
configures the transmit-and-receive logic of the CAN controller. The operative modes of
interest for this paper are as follows:

1. Networking mode (NM): the configuration used to perform usual transmission and
reception of messages among nodes. When in NM, the internal signals TXint and RXint
are connected to their respective pins, TX and RX, hence enabling the communication
with other nodes. This mode can only be used when there is at least another node
configured in NM.

2. Listen only mode (LOM): a configuration where the TXint is physically disconnected
from the TX pin. The TX pin is forced to a recessive state, this way the node does
not influence the CAN bus as if it was, virtually, disconnected from it. A peripheral
configured in LOM can only receive messages from other nodes, as it is unable to start
any transmission.

3. Loopback mode (LM): an operative mode in which the node is capable of auto-transmitting
messages without sending them on the bus. This is achieved by redirecting the internal
signals TXint and RXint so that they are connected, while RX is left floating, and TX is
driven with a recessive bit so that it does not influence any ongoing communication.

2.3. Related Works

Several works in the literature tackle the issue of in-field testing of peripherals. The
work in [11] describes an approach to generate test programs for peripherals embedded
into SoCs based on the adoption of evolutionary tools. This paper introduces an automatic
incremental methodology by which test blocks are iteratively generated, so that they collec-
tively obtain the desired fault coverage. This methodology is tested on two peripherals,
showing both an improvement in terms of test generation time and final fault coverage.
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The two tested peripherals, however, are rather small and do not tackle the problem of
how it scales with more complex circuitry. Ref. [9] extends the work in [11], presenting
a hybrid approach to developing SBST solutions for peripheral cores. Starting from a
set of constraints based on information from the peripheral core, this approach uses an
evolutionary core to generate test programs. User-defined constraints are stored into a
library, and provide the backbone of the test program and the parameters the evolutionary
tool aims at optimizing. This approach is validated on three different peripherals and is
capable of achieving significant results on all of them, showing that in-field testing can be a
valid solution when testing peripheral cores. This approach, however, does not take into
account limitations from the environment into which the peripheral operates, leading to
the possibility of generating effective STLs that cannot be launched as is, due to conflicts
with other modules embedded in the system. Ref. [12], on the other hand, provides generic
algorithms for CPU-based memory testing, highlighting the problems, their solutions and
limitations of CPU-based at-speed memory testing. The authors illustrate their approach
with examples applied to a RISC microcontroller. Results from this work show that it is
possible to increase the final fault coverage while reducing the test time by about 60% the
original one. However, since memories are quite different with respect to other peripherals
embedded into SoCs, this approach cannot be applied to thoroughly test other modules.
Ref. [13] focuses on the trade-offs and benefits that come with reusing manufacturing tests
for in-field testing. The testing strategy presented in this paper is described as follows: a
programmable component in the electronic control unit, e.g., a microcontroller, sets the
device under test into testing mode, accesses the DfT infrastructure of the device under
test, applies test vectors through the available DfT hardware and then stores the results
for later analysis. Finally, the controller reconfigures the system into a functional mode.
This methodology is general, as the device under test is described as a generic ASIC, and
the results achieved are high, but it implies the presence of DfT hardware, which adds a
significant amount of area and timing overhead to the original circuit. Moreover, testing
procedures based on DfT techniques require quite some time to be executed, thus not
being the best choice when it comes to in-field testing. The systematic approach proposed
by our group [10], finally, introduces a systematic methodology to test CAN controllers
on modern SoCs. The presented approach relies on SBST means, showing how to build
STLs capable of testing all different functional modes on a generic CAN bus peripheral
implementation. The test procedure described in [10] consists of an early on chip stage
and system-based communication. Moreover, with such a methodology, diagnostics is
possible with multiple nodes. Such a test procedure requires the presence of two nodes,
both being able to transmit and receive messages. Experimental results show that the
methodology presented in [10] is capable of reaching high fault coverage but does not
consider constraints coming from the application run by the system into which they are
embedded. In this article, we tackle this shortcoming by proposing a testing methodology
based on two different configurations: either the device under test performs a self-testing
routine, thus not affecting whatsoever the other nodes on the CAN bus, or the whole
network goes into test mode, with some nodes actively partaking into the testing routine,
while others do not interact.

3. STL Development Strategies

This section focuses on how to write an effective STL for a generic CAN controller
without taking into account the external constraints. The outlined STL strategies are
independent from the specific CAN controller implementation, and target all stuck-at faults
that are found in the post-synthesis netlist obtained by the CAN HDL description. Usually,
the test program is stored in a non-volatile memory in which the application program is
also stored. Hence, the test program needs to be as effective as possible with minimal
memory space requirements. The experimental results shown later demonstrate that STLs
can be written so that their memory size is limited to a few tens of kilobytes.
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The proposed approach requires the presence of a test scheduler, i.e., of a hardware-
and/or software-based mechanism responsible for triggering the execution of the test
program. The identification of the appropriate time to launch the test procedure depends
on the operational and safety constraints, and can be flexibly decided by the test engineer.
The software in charge of launching the STL execution will also take care of the following:

• Configuring the node under test and, if more nodes take part in the testing routine,
other supplementary nodes;

• Informing the system when a fault has been detected.

The test program’s internal structure can be thought as a series of sub-modules that
target the CAN internal modules presented in Section 2.1. In most cases, the operations
performed inside the test program consist of configuring the CAN peripheral, initializ-
ing the transmission data structures, issuing transmission and reception operations and
monitoring the peripheral status. Data to be used in these operations can either be an opti-
mized set of test arrays, e.g., generated through automated test pattern generator (ATPG),
or pseudo-randomly generated by means of software-implemented linear-feedback shift
registers (LSFRs). The first approach is usually more effective and sometimes specifically
required to test particular hardware properties, e.g., bit stuffing but also more memory
hungry than the latter.

Throughout the test procedure, data received from test messages as well as the pe-
ripheral’s status are acquired; such values are compacted into a signature that is finally
compared against the golden circuit’s one to check for errors. The signature computation
process is a crucial step in the execution of an SBST test procedure, and several articles focus
on this topic (e.g., [24–26]). Typically, this is performed by either making use of special
hardware structures, e.g., MISR modules within the DUT that can be directly accessed and
fed with data through code, or by emulating such hardware in software through arithmetic
and logic operations, e.g., by means of sums with carry and xor operations. Previous
papers [27–29] showed that when dealing with STLs and suitably implementing/operating
the SW-implemented MISRs, the aliasing probability can be reduced to very low values. It
is noted that, if enabled, the CAN peripheral can issue interrupts; hence, the test engineer
should consider writing appropriate interrupt service routines to handle such cases. This,
however, could also lead to a situation where an interrupt never occurs because of the
presence of faults. More in general, deviations from the usual execution of the STL may
occur, e.g., deadlocks or exceptions from other modules. Works that tackle these issues
can be found in the literature (e.g., [22]), providing techniques that make the STL more
robust. As an example, to avoid deadlocks, a watchdog timer that brings the system into a
safe state in case of infinite waits can be employed. Since in this work we assumed not to
be allowed to modify the hardware or add modules, we did not consider this choice that
could clearly increase the achieved fault coverage.

Once the STL has been generated, a fault injection mechanism is used to estimate its
effectiveness. Fault injections can be carried out in several diverse ways, e.g., by using ad-
hoc commercial fault simulation tools, logic simulators, or hardware-based fault injection
via FPGA. Regardless of the method, test vectors for the fault injection are obtained from
the stimuli applied at the primary inputs of the DUT during the execution of the STL. These
vectors are then applied to the synthesized netlist of the DUT where stuck-at faults are
injected. In this way, it is possible to assess the achieved test coverage. Such a process is
also used as a means of back tracing during the STL generation process. Results obtained
during the fault simulation can be arranged so that details on the submodule coverages are
obtained, providing insights on what areas of the peripheral need to be better tested (if the
achieved fault coverage is not enough) after the basic algorithm proposed for each module
has been transformed into test code. In this way, we can also easily identify what portions
of the STL need to be improved. Refining the STL can be done in an iterative fashion,
with as many cycles of code refinement and fault simulation as required until the desired
coverage is achieved. If required, test engineers can finally apply some post-processing
techniques to reduce the final STL size by removing redundant portions of code [30–33].
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In the remaining part of this section, the sub-modules composing the test program
are presented, together with a description of the test algorithm that can be used to detect
possible faults inside them. It is noted, however, that testing the error management logic
module through an SBST approach is not possible, as error conditions are caused by
physical phenomenons which cannot be replicated by software means. For this reason, no
testing algorithm for this module is provided.

3.1. Storage FIFO Test

The storage FIFO is the module in which data bytes extracted from received messages
are stored. In general, this is a large sub-module, accounting for a significant percentage of
faults: thoroughly testing the FIFO, hence, is of vital importance. FIFOs can have different
implementations, typically in the form of circular buffers or shift registers with pointers
to the head and tail of the memory that are updated anytime a read or write operation
is performed. Such pointers are used to avoid overflow and underflow conditions and
can be accompanied by almost full and almost empty signals to better coordinate memory
access. There are, however, some details and issues that are implementation dependent,
e.g., the FIFO fill level at which the almost empty/full flags rise. For this reason, specific
solutions related to implementation-related problems can easily be added to our test routine.
Assuming the FIFO is comprised of n cells, each being m bit wide, a generic algorithm to
test it is presented in Algorithm 1.

Algorithm 1: FIFO test algorithm
Data: (n, m) where n is the number of FIFO cells and m is the size of each FIFO cell
begin

/* Fill up the FIFO with 0101-like patterns and generate overrun */
write m alternating 0 and 1 bits for all n cells;
read overrun flag;
/* Read FIFO content and empty it */
read content of all n cells;
read empty flag;
/* Fill up the FIFO with 1010-like patterns */
write m alternating 1 and 0 bits for all n cells;
/* Read FIFO content and empty it */
read content of all n cells;

end

These patterns were chosen to recreate a checkerboard-like algorithm, suitable for
testing, among other fault models, stuck-at faults in embedded memories. Other test
algorithms, including march algorithms, can be adopted to better match the possible
defects that may arise in the memory implementing the FIFO. The test consists of two
bulks of write and read operations. First, we fill the FIFO with one half of the checkerboard
patterns, with the effect of generating an overrun condition, corresponding to a full FIFO,
followed by the complete emptying of the memory with the check of its relative empty flag.
Next, once the full and empty flags have been tested, we proceed with the remaining half
of the checkerboard patterns. In case the almost full and almost empty conditions need to
be tested, the test engineer can interrupt the bulk writing/reading operation to check on
the relative flags, resuming it after.

3.2. Register Interface Test

The register interface is a set of registers used to issue commands, store data to be
transmitted as well as received data, configure other peripheral units such as the timing
management logic, and report CAN controller’s information, such as status or interrupt
registers. For this reason, testing the register interface can be done in conjunction with
other tests, with the aim of testing this module in an effective and code efficient way. A
generic and systematic way to test these registers is defined in Algorithm 2.
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The only aspect that the test engineer must bear in mind when using this approach is
that some registers are accessible only when the peripheral is configured into some specific
working states, e.g., reset state. Implementations of the CAN bus peripheral may differ
in this regard, hence test engineers should carefully pick which registers to observe in
different portions of code, depending on the controller’s specifications. Moreover, not every
register can be read from the peripheral, e.g., command registers. Since the aim of this
sub-section is to provide an algorithm to test the register interface of the CAN peripheral,
the approach here presented and based on the readback of registers is intended to verify
the correct functioning of the interface and bus system of the CPU. The correct execution of
issued commands is not managed by this submodule and hence can only be deducted by
looking at how the peripheral behaves after writing values to these registers rather than by
trying to read their values.

Algorithm 2: Register interface test
input : A tuple V:=(C, S, D) of register values, where C is the set of commands to be issued

by writing to command registers, S is the set of values used to configure the
peripheral, and D is the set of values to be written to data registers defined for
every module’s testing algorithm tai

output : A signature sg derived from acquired register values
begin

/* Register testing is integrated into other modules testing routines */
foreach tai do

/* First write registers with required values */
configure input data registers with data di;
configure the peripheral by writing si to configuration registers;
/* Next, read those registers values */
compact data stored into input data registers into sg;
compact data stored into configuration registers into sg;
/* Launch operation required from other test routines */
write command registers with new configuration data;
/* Monitor status registers while running test routine */
while test routine is running do

compact status registers value into sg;
end
/* Read produced data */
compact output data registers value into sg;

end
return S

end

3.3. Incoming Message Filter Test

The incoming message filter is a module that is used by any node receiving data in
order to understand whether the message being sent over the bus is intended for that
node to be received, and thus to be stored inside the FIFO. Generally speaking, CAN
bus peripherals are equipped with an acceptance mask, that tells what bits of the incoming
message to observe, and an acceptance filter, whose value must match with the bits that are
to be observed from the incoming message. An incoming message, thus, is accepted if and
only if specific fields of the incoming message are configured to have values matching those
required from acceptance mask and filter registers. Such fields are the ID, remote transfer
request (RTR) and, depending on the peripheral implementation and configuration, the
DLC and DB fields. A schematic representation is shown in Figure 2.
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Figure 2. Acceptance filter module.

Hence, testing this module requires configuring these registers and the related incom-
ing message fields with appropriate values, followed by a reception of the active node
from the passive node of a message (if the networking mode is employed), or an auto-
transmission of a message (if the loopback mode is employed). A generic algorithm to test
this circuitry is presented in Algorithm 3.

Algorithm 3: Incoming message filter test algorithm
Data: A set A:=(mi, fi), where mi is an acceptance mask configuration and fi is an

acceptance filter configuration
Data: A set T:=(ti), where ti is a message to be received in accordance to the i-th acceptance

mask and filter configuration
begin

/* Test every configuration in A */
foreach (mi, fi) in A do

set acceptance mask to mi;
set acceptance filter to fi;
/* Configure the message to be transmitted based on the operative

mode and check FIFO */
if loopback mode then

set message to be auto-transmitted to ti;
auto-transmit the message;

end
else

set message to be transmitted from passive node to ti;
passive node sends the message;

end
check FIFO for a new message;

end
end

With regards to the acceptance filters configurations and transmitted messages fields,
the test engineer can either use specific vectors generated by running an ATPG on this
module or adopt an iterative pseudo-random approach. The former approach usually
yields higher coverage, at the expense of a larger set of configurations to be tested. The
latter method, on the other hand, might be useful in case specific configurations should be
tested only, without the need of an extensive test.

3.4. Timing Management Logic Test

The timing management logic is the one responsible for configuring the CAN bit
timing, which consists not only of the communication bitrate but also the sampling point,
i.e., the point of time within any bit at which the bus level is read and interpreted as the
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received value. Testing this module can be done by varying the bitrate when performing
messages transmission and reception. An effective approach to thoroughly test this module
is described in Algorithm 4.

This approach allows to cover most cases in a reasonable amount of time. The aim
of this algorithm is not to heavily transmit and receive data, but rather, it is to excite the
circuitry related to timing management by initializing it with different configurations and
checking its correct functioning by exchanging few messages. For this reason, the parameter
n can be set to a small value, even on the order of tens of messages. Looking at frequencies
and sampling points, since the node is not broadcasting any message on the bus, the test
engineer could decide to pick arbitrary values. In case the CAN bus is intended to work at
a specific frequency or a fixed set of frequencies, however, one could test transmission and
reception of messages at the predefined frequencies, only.

Algorithm 4: Timing test algorithm
Data: A set T:=(bri, spi), where bri is a communication bitrate and spi is a sampling point
Data: An amount n of messages to be exchanged for each configuration
begin

set the controller in loopback mode;
foreach (bri, spi) in T do

configure timing registers based on bri and spi;
/* Perform auto-transmission operation */
for i← 1 to n do

auto-transmit a message;
read the received data bytes from the FIFO;

end
end

end

3.5. Processing Unit Test

The processing unit is the sub-module that, given a new issued command or working
configuration, is responsible for initializing and configuring other sub-modules within the
CAN controller peripheral. It can be conceptualized as a finite state machine that performs
its duties in response to commands imparted to the peripheral through instructions or as
a response to stimuli coming from other units of the CAN bus controller. Testing such a
module, hence, requires to force it into a sequence of specific states so that errors deriving
from physical defects can be propagated to primary outputs, thus making them observable.
Doing so through an SBST approach implies that such sequences of states have to be
generated by means of commands issued to the peripheral. This task may prove to be
challenging. One way to face it lies in resorting to formal methodologies, as shown in [6,34].
Such an approach, however, can be computational and time intensive. For this reason,
testing this module is commonly achieved as a byproduct of the test of other sub-modules.
In fact, working with any of them directly involves the processing unit, as it processes all
the required commands and configurations.

This, however, must be done in compliance to the allocated test time and the environ-
ment where the test will be conducted, meaning that the amount and type of configurations
and issued command must not exceed the time slot reserved for testing purposes and must
not disrupt other nodes’ activities. Considering the first point, if the time slot is not large
enough for all configurations to fit, the test engineer can decide to split them into several
sub-routines to be run in several time slots. Concerning the second point, in Section 4,
we describe in detail testing execution environments, proposing strategies to perform test
operations for each environment.
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4. Test Execution Environment

Although an important step, developing an STL is not sufficient in the definition of a
test procedure. The CAN controller is connected to a bus on which other nodes may be
transmitting or receiving messages: testing the CAN peripheral must not interfere with
such operations. For this reason, analyzing the environment in which the test procedure is
launched is a crucial step, as it allows to understand which operations can be performed
by the test program. Taking the CAN operative modes described in Section 2.2 as a
starting point, in this section, we focus on the analysis of the environment in which the
test procedure is launched; it allows to understand which of the operations previously
defined can be performed by the test program. Taking the CAN operative modes described
in Section 2.2 as a starting point, we will describe three representative test scenarios and
identify a set of constraints that have to be taken into account when developing the test
programs. Each scenario is based on a CAN bus configuration in which there are an active
node (the node under test that executes its own test program), a passive node (a node that,
at the occurrence, can assist the active node in its test procedure) and neutral nodes not
actively involved in the test procedure. Figure 3 shows a bus configuration in which every
scenario is employed; the scenarios are explained next.

Figure 3. Bus configuration with every test scenario.

4.1. Self-Test Scenario

The self-test scenario refers to the LM, where the active node is capable of self-isolating
from the bus in order to auto-transmit messages. This scenario offers the highest flexibility
in terms of number of messages to be sent, length of single messages or adopted bitrates,
thanks to the fact that the node under test is not interacting with the external bus by
disrupting ongoing communications. The test engineer decides how frequently the test
program can be launched and can design a rather simple test scheduler that could initiate
the testing procedure by means of a timer-generated interrupt. More refined schedulers
can also be used but they will not be further investigated, as they are not part of the scope
of this article.

Most of the available operations can be executed under this scenario, some of them
being tailored exclusively for this situation. Testing the timing management logic module as
described in Section 3.4, for instance, requires setting the active node to a different bitrate
with respect to other nodes, hence leading to the possibility of generating error conditions
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in neutral nodes. Other tests, such as the storage FIFO test, can also be conducted in different
scenarios but are recommended to be run in LM due to the high amount of messages to be
transmitted and received.

It is noted, however, that carrying out the test procedure in LM only prevents the
use of other working modes. As an example, the circuitry that sets the peripheral in
networking or listen-only modes is not used, as well as the circuitry that is responsible for
physically transmitting and receiving messages on the bus. In Figure 3, node 2 runs its STL
in this scenario.

4.2. Networking Scenario

The networking scenario is the configuration used in the system’s operative lifetime.
In this scenario, nodes configured in NM communicate with each other by exchanging
information based on a predefined higher level protocol, whose implementation depends
on the specific system. A generic protocol can work either on a time basis, meaning that
communication is cyclic and every node periodically transmits data, or it can work on an
event basis, meaning that nodes transmit data whenever specific events occur.

If the protocol is time driven, every node has a given time slot to communicate, and
there are idle slots in which no communication occurs. In this case, the STL is developed
such that the transmission and reception of test messages are conducted in such idle slots.
The test scheduler may initiate the procedure by means of a couple of messages, one at the
beginning of the test procedure and one at its end, sent by the active node to configure the
passive and the neutral nodes. The idle slot, however, may be short, thus not allowing the
transmission of sufficient messages to properly test the node. To overcome this problem,
the STL developed in loopback mode, plus an additional transmission and reception of
messages in NM, could be used. In this way, even a small amount of messages sent on the
bus is sufficient to ensure proper test coverage.

In case of an event-driven protocol, the bus can still be claimed by the active node for
test purposes by means of start-of-test and end-of-test messages as previously described.
The test procedure is then carried out in a similar fashion, eventually by relying on the
mixed loopback and networking approach so as to not occupy too much bus bandwidth.
However, due to the asynchronous nature of events, it is not ensured that the test procedure
will never collide with an event: for this reason, it is suggested that in this case, the test is
carried out using the LM test program. When referring to Figure 3, nodes 0 and 1 run their
STLs in the networking scenario.

4.3. Listen Only Scenario

The listen-only scenario is associated to the LOM presented in Section 2.2. A node
configured in LOM relies on other nodes to receive data, meaning that the test procedure
cannot be run by the node under test itself, as it is unable to transmit any packet. For
example, when two nodes are about to use the CAN bus in the networking scenario, the
neutral nodes can be configured in LOM so that the test messages sent on the bus can be
used to test also the other peripherals.

This scenario, however, introduces several limitations. An STL developed for the
listen-only scenario does not test numerous hardware modules, e.g., various working
configurations are not excited, the transmitting logic is never exercised and the bitrate is
fixed to the one specified in the shared protocol. However, if a CAN controller is connected
to a low-end SoC that is constrained in terms of program or data memory size, it may be
impossible to store, together with the operative program, a fully developed test program
together with its test messages, and it could rely on this mode to carry out a low-cost test,
in terms of hardware resources. This scenario is the one adopted by node 3 in Figure 3.

5. Experimental Results

In this section, the experimental setup on which the described methodology has been
tested, as well as the associated results, are presented.
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5.1. Experimental Setup

The adopted CAN peripheral is an open hardware implementation of the SJA1000
chip by Philips that was embedded into an OpenRisc1200-based SoC. Figure 4 shows a
schematic representation of this hardware configuration.

The adopted CAN controller is implemented in a way such that, when the peripheral
is set into LM, messages are not only auto-transmitted but also physically sent on the CAN
bus. This poses a problem in testing the DUT under the self-test scenario, as the whole test
procedure has to be transparent to the other nodes. For this reason, an ad hoc self-test module
is added to the configuration: when the controller is set into LM, the module physically
disconnects the TXint signal from the TX pin while still allowing the auto-transmission
mechanism. The devised experimental setup makes use of two nodes, an active node that
can either launch the self-test or networking STL, and a second node configured as a passive
node in the former case or a neutral node in the latter case. As the whole test procedure
is conducted by means of software tools, a simplified version of the CAN bus is adopted.
In this version, the physical bus shown in Figure 1 is replaced with a logic-AND of every
TX signal, whose output is fed into every node’s RX pin: as a consequence, no transceiver
is used. Even though this is a simplified implementation, this experimental setup is still
representative of how nodes are interconnected in a real system. The fault simulation flow
consists of two steps. Initially, we launch a logic simulation where the DUT runs its test
program. During this simulation, the CAN controller’s input pin values are recorded at
each clock cycle. Such values are then used as test vectors in the fault simulation process.

Figure 4. SoC configuration.

We develop one STL for each scenario described in Section 4, i.e., an STL for the
self-test scenario, one for the networking scenario, and one for the listen-only scenario.
The self-test STL can be thought an independent set of testing routines built as described
in Section 3. The networking STL is built on top of the self-test one, with an additional
16 messages sent from the active to the passive node, 16 messages received by the active
from the passive one, and 16 messages received by the active node in LOM. The aim of
transmitting and receiving messages in the networking and listen-only modes is solely
to excite the logic responsible for managing the communication with another node in
the given configurations. For this reason, we opted for the aforementioned amount of
messages to be exchanged on the bus. This program was developed, assuming that the
communication on the bus should not take too much time; the test engineer may eventually
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decide to increase the amount of messages. Finally, for the LOM STL, we assume that other
nodes exchange test messages on the bus. The STL can hence be thought as two main
blocks: the first, which takes care of configuring the correct working mode and bitrate of
the peripheral to be tested, and the second, which consists of a series of reading operations
of each and every message transmitted on the bus. Some figures regarding the proposed
STLs involving test application time (TAT), memory size, fault simulation time, and time
required to develop the test routines are reported in Table 1. The TAT has been calculated
taking into account a working frequency of 150 MHz for the CPU, a value commonly found
in modern SoCs. It is noted that the reported TAT refers to the three test STLs when run
as a whole. Given the nature of such STLs; however, the test engineer can split them into
a set of smaller subroutines so that the test routine can be run during idle time slots of
the peripheral, hence imposing no time overhead. The size of each subroutine, although
adjustable, should be such that no testing operation is left unfinished: the largest testing
block, however, only requires 2 ms to run.

Table 1. Main figures about the developed STLs.

STL Test Application Time @150 MHz [ms] Memory Size [kB] Simulation
Time [Hours]

Development
Time [Days]

Self-Test STL 79.7 18 15 12
Networking STL 88.1 20 16 13
LOM STL 33.2 7.5 5 3

Due to the absence of similar works as highlighted in Section 2, in order to assess the
effectiveness of our approach we also developed a comparative test program that emulates a
generic functional program used to launch test procedures whenever no other solution is
available. Such a program is written so that active and passive nodes exchange 200 messages
in networking mode. The amount of transmitted and received messages was chosen to
ensure a sufficiently large number of messages exchanged on the bus. Given that this is a
generic functional program, however, all the messages are sent and received in one single
working configuration.

All STLs were evaluated by a fault injection mechanism based on a commercial
functional fault simulation tool by Synopsys that runs fault-parallel simulations. We
performed the fault simulation on the gate-level netlist of the DUT. Test patterns were
obtained while performing a logic simulation of the DUT running the STL, recording
all input ports of the DUT at each clock cycle. In the same logic simulation, we also
recorded the values at the output ports at each clock cycle, thus generating the set of
fault-free responses, also referred to as golden responses, that were then provided to the
fault simulation tool.

5.2. Simulation Results

Before evaluating the experimental results, some considerations are needed. First, it is
necessary to remove safe faults from the active fault list, as they cannot impact the DUT
under any functional constraint. It is also necessary to consider faults that affect the error
management logic, as they can create false alarms but not functionality failures. Moreover,
there is a set of faults that affect specific sections of the peripheral and are mainly due to
physical phenomenon, e.g, the re-synchronization of the receiver node due to clock jitters,
that require manual analysis due to the constraints of the logical simulation. As it is not
possible to reproduce the conditions that excite them through software simulations only,
they need to be manually analyzed and verified during the integration tests on the real
circuit. Lastly, when running the self-test STL, there are faults associated to a portion of
circuitry that cannot be excited, as the test is conducted in LM only. These faults, although
not safe in general, can be ignored for the test coverage of this specific operating mode.
Safe faults amount to 710 faults; after adding EML-related and manually analyzed faults,
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they total 3478 faults. For the self-test STL TC, to the aforementioned faults, we have to
add those that cannot be excited under the LM, obtaining a total of 3808 faults.

Table 2 reports the gathered results both for the whole controller and for its sub-
modules, namely registers (the register interface), BTL (bit timing logic, the timing manage-
ment logic module) and BSP (bit stream processor, the processing unit) that also comprises
the ACF (acceptance filters) and FIFO units. As specified in Section 3.5, the test of the
processing unit is a byproduct of the test of other modules within the DUT; results are
hence reported here for completeness. Columns networking TC and self-test TC report the
test coverage achieved by the relative STLs. In these coverage figures, the 109 faults that
were marked as undetected by the fault simulation tool have been removed. Columns
networking AR TC and self-test AR TC report the test coverage of the networking and self-test
STLs after removing the previously defined 3478 and 3808 faults, respectively. From this
table, it is possible to deduce the following:

• The TC achieved by our methodology—87.62% for the networking TC and 84.62% for
the self-test TC—is significantly better than the one achieved by a generic functional
program, whose results are showed in the comparative program TC column.

• Identifying functionally untestable faults (FUFs) allows to notably enhance the achieved
TC, gaining an additional 8% in both cases. It is important to underline that in the
real product, other FUFs can typically be identified by taking into account specific
characteristics of the applications.

• Results achieved by adopting the LOM strategy highly depend on the number of
messages transmitted on the bus. The TC on the left side of the LOM TC column is
obtained by reading messages that are sent on the bus by the active and passive nodes
while executing the proposed networking STL. The TC on the right side of that column
can be achieved if every message auto-transmitted by the active node in LM was to be
sent on the bus.

As the networking STL is an extension of the self-test one, faults covered by the latter
STL are a subset of those covered by the former STL.

Table 2. Achieved stuck-at faults coverage.

Instance
Name

#Stuck-at
Faults

Networking
TC %

Networking
AR TC %

Self-Test
TC %

Self-Test
AR TC %

LOM
TC %

Comparative
Program TC%

Registers 5352 79.46 83.00 76.65 80.75 17.75–49.54 37.17
BTL 1472 66.37 81.63 64.93 80.36 3.08–56.85 51.58
BSP 31,236 80.15 88.62 76.20 84.94 0.28–64.63 61.95

ACF 1418 52.19 52.41 50.56 51.03 0.00–1.97 3.10
FIFO 17,382 92.88 93.15 91.60 91.88 0.00–86.99 75.11

TOTAL 38,492 79.66 87.62 76.00 84.28 3.48–62.54 58.42

The approach presented in this article is a mix of manual STL development based on
ad hoc methods targeting specific modules within the CAN controller and ATPG-based
solutions regarding the incoming message filter. For some modules (e.g., the register
interface), we described in the paper a new method to test them. The results are comparable
to those that are typically achieved on processors and simpler peripherals, with a typical
achieved coverage above 80% of faults, proving the effectiveness of the approach [22,35,36].
When comparing the results achieved by this methodology with respect to those obtained
in [10], refined with the untestability analysis performed in [21], it is noted that the current
approach takes into account the real test environment, while the test programs developed
following those approaches was not limited by any test constraint and constitutes an
upper bound to the achievable TC. Functional test by means of an STL is not intended to
cover every possible fault as it tests the peripheral in specific operating modes: they are
usually deployed in conjunction with other safety mechanisms, such as system-level checks,
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ECC/parity on internal memories and register banks and CRC/Parity in communication
buses. As a further example, to enhance the final TC, a mechanism to continuously monitor
the CAN bus could be adopted; moreover, some of the untested faults could also be covered
by increasing the number of test messages exchanged on the bus in the networking STL.

6. Conclusions

In this work, we presented a systematic methodology to develop STLs for CAN con-
trollers. The proposed approach takes into account the test scenario into which the STLs
are executed, which may change depending on the specific system constraints. Such a
methodology allows to achieve consistent results and represents a major improvement with
respect to the results achieved by non-systematic approaches, e.g., based on exchanging
an arbitrary amount of messages between nodes, that are used when no other solutions
are available. We analyzed a few scenarios representative of the different cases that can be
found in industrial applications. Results show that STLs developed for the networking and
self-test scenarios cover 87.62% and 84.28% of stuck-at faults, respectively, and are compara-
ble to those typically obtained on processor cores and peripherals through SBST means. The
listen only program’s effectiveness (characterized by a much lower invasiveness) highly
depends on how many messages are sent on the bus, and clearly achieves a lower fault
coverage. These results are significantly better than those obtainable via any functional test
simply operating the CAN controller, amounting to only 58.42% of detected stuck-at faults,
hence proving that the proposed method represents a significant advancement in the state
of the art in the area. Using the proposed approach, the safety engineer can select the most
suitable solution fitting the specific safety targets, operational constraints and costs (e.g., in
terms of test time duration and memory footprint).

The proposed approach is particularly suited for all situations where an effective and
flexible in-field test of a CAN controller is needed. This method can be easily implemented
without any additional cost, as no additional hardware is required. Furthermore, it allows
the system’s safety matching the requirements set by the most stringent ASIL levels intro-
duced in the ISO26262 standard (possibly in combination with other safety mechanisms)
while being compatible with the constraints (e.g., in terms of test duration and memory
footprint) of most application environments.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Acceptance Filter
BTL Bit Timing Logic
BSP Bit Stream Processor
CAN Controller Area Network
DB Data Bytes
DC Diagnostic Coverage
DF Detected Faults
DfT Design for Testability
DLC Data Length Code
DUT Device Under Test
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ECU Electronic Control Unit
EML Error Management Logic
FC Fault Coverage
FuSa Functional Safety
ID Identifier
LOM Listen Only Mode
LBIST Logic Built-In Self-Test
LM Loopback Mode
MCU Micro Controller Unit
NM Networking Mode
SoC System on Chip
SBST Software-Based Self-Test
SF Safe Faults
STL Self-Test Library
TC Test Coverage
TF Total Number of Faults
UF Untestable Faults
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