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Abstract 

In passive safety system analysis, it is important to provide the uncertainty quantification of the Thermal-

Hydraulic (T-H) code output (e.g., the amount of energy exchanged by the passive safety system during an 

accidental transient). This requires setting proper Probability Density Functions (PDFs) to represent the 

uncertainty of selected code inputs and the propagation of this uncertainty through the code. One way to 

obtain the PDF is by Inverse Uncertainty Quantification (IUQ) methods, which rely directly on experimental 

data and code simulation results. In this work, we propose a novel IUQ approach based on: (i) Stacked Sparse 

Autoencoders (SSAEs) to reduce the problem dimensionality; and (ii) Kriging metamodels to decrease the 

computational cost associated with the posterior sampling of the uncertain input parameters by Markov 

Chain Monte Carlo (MCMC) (for which many model simulations are typically required). The novelty, in 

particular, stands in the use of SSAEs for dimensionality reduction: this allows using directly the raw data 

available from experimental facilities or computer codes (typically characterized by small signal-to-noise 

ratios), without having to resort to filtering techniques, whose choice and setting are nontrivial and bias the 

results. The proposed approach is applied to the power exchanged by the Heat Exchanger (HX)  predicted 

by the RELAP5-3D model of the PERSEO (In-Pool Energy Removal System for Emergency Operation) facility, 

located at the SIET laboratory (Piacenza, Italy), for the test 7 part 2 and characterized by a small signal-to-

noise ratio (SNR) value. A comparison between Principal Component Analysis (PCA) and SSAE is carried out 

to provide some insights on the technical issues associated with the implementation and the use of the 

approach in the context of IUQ and to highlight the main advantages and drawbacks while also showing the 

suitability to deal with non-filtered (raw) data.  
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Acronyms 

ANN: Artificial Neural Network 

BCs: Boundary conditions 

BE: Best Estimate  

BEPU: Best Estimate Plus Uncertainty 

CV: Cross Validation 

DAE: Denosing Autoencoder  

DNN: Deep Neural Network 

DOE : Design Of Experiment 

EM: Expectation-Maximization 

ENEA: Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile 

HX: Heat Exchanger 

HXP: Heat Exchanger Pool 

ICs: Initial Conditions 

IUQ: Inverse Uncertainty Quantification 

KDE: Kernel Density Estimation 

LHS : Latin Hypercube Sampling 

LOOCV: Leave-One-Out Cross Validation 

MAP: Maximum A Posteriori 

MCMC: Markov Chain Monte Carlo 

MLE: Maximum Likelihood Estimation 

MSE: Mean Squared Error 

NPPs: Nuclear Power Plants 

OP: Overall Pool 

PCA: Principal Component Analysis 

PCs: Principal Component Vectors 

PDF: Probability Density Function 

PERSEO: in-Pool Energy Removal System for Emergency Operation 

PV: Pressure Vessel 

SAE: Sparse Autoencoder 

SSAE: Stacked Sparse Autoencoder 

SNR: Signal to Noise Ratio 

T-H: Thermal-Hydraulic 

TV: Triggering Valve 

VAE: Variational Autoencoder 
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List of symbols  

Symbols Dimension Description � � × � Number of calibration parameters � � × � Number of design variables � � × � Number of design points � � × � Model output dimension ��	� � × � Number of independent experimental measurements  
 � × � Calibration parameters vector 	 � × � Design variable vector ��(
) � × � RELAP5-3D computer model output for Test 7 pt.2 �� � × � Experimental data ��� � × � Reconstructed experimental data � � × � Measurement error ���	��  � × � Covariance matrix for the measurement error ��	� �∗ × �∗ Measurement error covariance matrix in the �∗-dimensional reduced space ��� � × � Covariance matrix for the code uncertainty  �������� �∗ × �∗ Covariance matrix for the code uncertainty in the reduced space � � × � Ensemble of � design points � � × � Ensemble of � BE computer model outputs ��� � × � Column vector of the row means of � �∗ � × � Dimension of the features subspace   �∗ × � Trasformation matrix (PCA) !"�� �∗ × � Kriging metamodel prediction in the features subspace !�� �∗ × � Distribution of the Kriging metamodel prediction in the features subspace !� �∗ × � Experimental data projected in the feature subspace # �∗ × � Ensemble of � RELAP5-3D simulation outputs transformed into the feature subspace !$ � × � $%& entry of a vector transformed into the feature subspace ' � × � Number of the SSAE hidden layers  �( � × � Dimension of the (%& SSAE hidden layer  !(() �( × � Neurons output of the (%& hidden layer1 �(∙) − Sigmoid activation function  +(() �( × �(,� Weight matrix of the (%& SSAE layer -(() �( × � Bias vector of the (%& SSAE layer � � × � SSAE cost function .���/� � × � Reconstruction error (adopted for both the SSAE and the PCA) .0�1�0� � × � Sparsity regularization term 2 � × � Coefficient for .0�1�0� .'� � × � L2 regularization term 3 � × � Coefficient for .'� 4 � × � Desired averaged neuron activation � � × � Number of RELAP5-3D simulations adopted for the Forward Uncertainty Propagation 

 

 
1 When the subscript is within brackets, !(()  indicates the 567 hidden layer output of the SSAE (i.e., a vectorial 

quantity); otherwise, 89  indicates the :67 entry of a vector transformed into the ;∗- dimensional feature subspace. 
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 Introduction 

Over the last decades, nuclear safety analysis frameworks based on Best Estimate Plus Uncertainty (BEPU) 

approaches for thermal-hydraulics transient calculations have gathered great interest [1,2]. These 

frameworks stand on Best Estimate (BE) Thermal-Hydraulic (T-H) codes to compute the safety margins of 

relevant parameters (e.g., fuel pellet maximum centerline temperature) during Nuclear Power Plants (NPPs) 

accidental scenarios [2]. The computation of the safety margins, taking into account the uncertainty of the 

calculation, requires identifying the main sources of uncertainty, selecting the most relevant uncertain input 

parameters and propagating the input uncertainties through the BE T-H code. One of the daunting issues 

related to this is quantifying the epistemic uncertainty that affects some of the input parameters, i.e., the 

uncertainty derived from incomplete information on the phenomena, which these parameters describe [3–

7]. Traditionally, probability constitutes the mathematical structure used to represent epistemic uncertainty 

and expert judgment is typically used to specify Probability Density Functions (PDFs), nominal values and 

upper and lower bounds of the parameters [2,8,9]. Such ad-hoc expert judgment can be aided by Inverse 

Uncertainty Quantification (IUQ), a powerful tool that determines the uncertainty of the parameters relying 

on available experimental data and code simulation results [10].  

Different approaches have been developed to carry out IUQ. Among them, Bayesian inference is considered 

the standard approach [11,12], wherein the computation of the posterior PDF is typically tackled through 

Markov Chain Monte Carlo (MCMC) sampling [13]. MCMC is a class of algorithms that allows sampling from 

a PDF known up to a normalization constant by running numerous code simulations (up to hundreds of 

thousands). However, in the context of NPP safety analysis, BE computer models (e.g. RELAP, etc.) are 

computationally expensive for the implementation of MCMC sampling that becomes practically unfeasible 

with the current computational resources available. As an example, MCMC sampling with 10> iterations 

with a BE model that takes 1 hour per run would last more than 11 years. To tackle this computational issue, 

having as a target the prediction of specific phenomena and the related parameters, the BE computer model 

can be replaced by a computationally cheaper metamodel [14], which is a functional approximation of the 

input/output relations underlying the original BE code [15,16]. For a comprehensive survey of inverse 

uncertainty quantification methods applied to nuclear system thermal-hydraulics problems, refer to [17]. 

Among the various metamodeling approaches [16], Kriging, which assumes that the model output is a 

realization of a Gaussian Process [18,19], has been successful in various IUQ problems [14,20–24]. The 

advantage of Kriging is that it provides a measure of the uncertainty associated with each prediction [19].  

When the BE model output is a time-dependent scalar quantity (i.e., a time series), at least four different 

approaches can be adopted to build a metamodel. The first one considers the time-dependent scalar output 

as a vectorial quantity and builds independent metamodels for each time instance; nevertheless, this 

approach may result in a significant loss of information, since the multiple outputs can be highly correlated 
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[25]. Another method is to treat time as an additional input [14]; however, in this approach the number of 

training points becomes dramatically high in very long time series. For example, if the BE model outputs the 

quantity of interest at 1000 time instances, with a Design Of Experiment (DOE) of 100 sample points for 

other inputs such as calibration parameters and design variables, the total number of training points for the 

Kriging metamodel would be 1000 ∙ 100 = 100000. The third alternative approach is to use a multi-output 

emulator (e.g., a Kriging metamodel for predicting a ;-dimensional vectorial quantity, where ; is the 

number of time instances) [25,26]; this approach outperforms emulators with time as an additional input 

[27] but, for very large ;, even multi-output emulators may experience a reduction in the metamodeling 

efficiency [28]. The fourth alternative approach has been developed to address the abovementioned 

limitations for high-dimensional time series and consists in performing a dimensionality reduction to retain 

a relatively small number of significant features to represent the entire output space. In fact, when the 

output data is redundant (e.g., the BE computer model responses for nearby time instances are strongly 

correlated) and its dimensionality ; is too large to be processed (e.g., through a single multi-output 

emulator), a reduced set of ;∗ features containing the most relevant information of the original data can 

be used instead of the whole set of data and a separate metamodel can be built for each of the ;∗ extracted 

features.  

Principal Component Analysis (PCA) is one of the most common approaches to perform dimensionality 

reduction [29]. PCA is a linear transformation from a high dimensional space onto a lower-dimensional 

space, such that the transformed variables are uncorrelated and retain as much as possible of the variance 

of the original data set [30]. Higdon et al. [31] proposed a method for the representation of time series 

outputs based on PCA for the dimensionality reduction and Kriging metamodels for the emulation of each 

Principal Component (PC). PCA has been used in different Bayesian IUQ/calibration problems with high-

dimensional outputs for constructing fast-running metamodels [20,31–34]. However, linear dimensionality 

reduction techniques like PCA cannot deal with complex (real-world) non-linear data [29]. Furthermore, for 

the specific case of interest here, BE code results may be affected by higher noise (maybe due to numerics 

or correlation errors [35]) in comparison with the experimental data in relation to the power exchanged by 

the HX [47] and typically require pre-processing by the analyst (e.g., filtering of the available raw data) [35], 

which may add a bias. To overcome the limitations of PCA when dealing with time series with small signal-

to-noise ratio values, in this work, we explore the use of Autoencoders (AEs) for dimensionality reduction. 

An AE is a type of Artificial Neural Network (ANN) designed to learn a new representation of the data by 

reconstructing the input data itself [36]. It is composed by an encoder and a decoder network. The encoder 

transforms the high-dimensional data into a small number of features (i.e., into a lower-dimensional 

representation), whereas the decoder recovers the high-dimensional data from the features. AEs are widely 

used to perform dimensionality reduction [37–39], machine health monitoring [36], and image processing 

[40]. Over the last years, several variants of AEs have been developed, such as sparse (SAEs), denoising 

(DAEs) and variational autoencoders (VAEs) [41–43]. Among them, SAEs, which strive to extract 
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discriminative features avoiding overfitting, are widely used to identify the most relevant and 

comprehensive set of features for the specific application [44]. Moreover, multiple pretrained AEs can be 

stacked to form a multiple-hidden-layer ANN, called Stacked Sparse Autoencoder (SSAE), improving the 

representational and modeling power [45]. 

In this work, we embed SSAEs for output dimensionality reduction into an IUQ Kriging-based approach, 

where the Kriging metamodel emulates each of the SSAE extracted features. Up to the authors knowledge, 

SSAEs (and, in general, non-linear dimensionality reduction techniques) have not yet been applied with 

Kriging metamodeling in a Bayesian IUQ problem. The rationale for using AEs is related to their capability 

to: (i) work with raw data without pre-processing; and (ii) deal with nonlinearities [37]. The effectiveness of 

the proposed approach is shown by its application within a Bayesian IUQ framework aimed at determining 

the input parameters’ PDFs of a RELAP5-3D model of the PERSEO (In-Pool Energy Removal System for 

Emergency Operation) facility located at SIET laboratory (Piacenza, Italy), for which time series 

measurements are available. An SSAE is applied to reduce the dimensionality of the problem and fast-

running Kriging metamodels are implemented to emulate the RELAP5-3D behavior at a lower computational 

cost. A comparison between PCA and SSAE for dimensionality reduction is carried out, providing some 

insights regarding the technical issues associated with the implementation and the use for IUQ.  

The remainder of the paper is organized as follows. In Section 2 the formulation of the IUQ problem is 

presented. Section 3 illustrates the proposed approach. The case study regarding the PERSEO experimental 

facility and the RELAP5-3D model are introduced in Section 4. Section 5 displays the IUQ results for the 

proposed approach applied to the case study of Section 4 and provides a comparison between PCA and 

SSAE. Section 6 concludes the work. 

 The IUQ problem formulation 

Let ��(	) be a measured experimental quantity and ��(	, 
) the corresponding quantity simulated 

through a computer model. Let 	 = BCD, CE, … , CGHI
 and 
 = JKD, KE, … , KLMI be the design variables and 

the calibration parameters, respectively [14]: design variables are all the observable inputs that describe 

the conditions or scenarios under which the experiment is carried out (e.g., Initial Conditions ICs and 

Boundary Conditions BCs) [17,24]; calibration parameters are input to the computer model, but they are 

unknown or not measurable in the physical experiment [17,24]. 	 are uniquely defined by the experiment 

and, therefore, known a priori [24]. The objective of the IUQ is to determine the PDF associated with 
.  

The relationship between ��(	) and ��(	, 
) can be described by the model updating equation [24]: 

��(	) = ��(	, 
) N O(	) N � (1) 
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where O(	) and � are the model discrepancy (also called model inadequacy) and the measurement error 

(also called observation error), respectively. O(	) is due to correlations’ inaccuracy or numerical 

approximations in ��(	, 
), whereas �~�(�, �QRSTE ) is an additive measurement error that is commonly 

assumed to be Gaussian-distributed. The specification of O(	) requires complex considerations on the 

model and is ignored in the current work; thus, the model updating equation reduces to: 

��(	) = ��(	, 
) N � (2) 

For a comprehensive discussion about model discrepancy, refer to [14,22,24]. 

 The Bayesian formulation of the inverse UQ problem  

The purpose of IUQ is to quantify the posterior PDF of the calibration parameters 
, ;U
V��W i.e., the 

distribution after the experimental data is observed. According to Bayes rule, this can be calculated as: 

;(
|��) = ;(��|
);(
)Y ;(��|
);(
)Z
 
(3) 

where ;(
) is the prior PDF and the likelihood function ;(��|
) is the probability of observing the 

experimental data ��, given a particular value of 
.  

Let ��(	) = J[D\(	), … , [T\(	)M and ��(	, 
) = J[D](	, 
), … , [T](	, 
)M be ;-dimensional vectors; if the 

measurement error is assumed zero-mean Gaussian-distributed (i.e., �~�(^, �QRSTE )), the likelihood 

function can be derived from equation (2): 

;(�\|
) = _ 1
U√2bWTcV�QRSTE V exp g− 12 J��(	�) − ��(	� , 
)MI  U�QRSTE W,D J��(	�) − ��(	�, 
)Mhijkl

mnD  

 

(4) 

where opC; is the number of independent experimental measurements and �QRSTE  is the ; × ; covariance 

matrix of the measurement error. The denominator in the right-hand side of expression (3) is usually 

analytically intractable; a Markov Chain Monte Carlo (MCMC) algorithm can be adopted to solve this 

problem and the MCMC samples are, then, used to reconstruct the posterior PDF. MCMC algorithms 

typically require a considerable number (sometimes hundreds of thousands) of code runs to evaluate ��(	, 
), which can be computationally intensive. To address this issue, Kriging metamodeling is a very 

popular choice, since it also provides an estimation of the metamodel uncertainty. Assuming that a Kriging 

metamodel is used to emulate ��(	, 
), the posterior PDF becomes:  

;(
|��) ∝ ;(
) ∙ _ 1U√2bWTr|�| exp g− 12 J��(	�) − �s(	�, 
)MI  �,D J��(	�) − �s(	�, 
)Mhijkl
mnD  

 

(5) 
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where �s(	, 
) is the Kriging prediction, � = �QRSTE N �]] is the likelihood covariance matrix given by the 

sum of the covariance matrix of the measurement error �QRSTE  and the covariance matrix of the metamodel 

uncertainty �]].  

 Proposed IUQ Approach 

To perform IUQ within a Bayesian framework, we propose an approach that comprises two main steps: 

1. Dimensionality reduction and Kriging metamodeling (Section 3.1); 

2. Bayesian inference (by MCMC sampling) (Section 3.2). 

 Dimensionality reduction and Kriging Metamodeling 

In the context of Bayesian IUQ, the objective of the present Section is to illustrate how to build a metamodel 

for emulating the time-dependent scalar quantity [](	, 
; u) computed by a BE code. Without loss of 

generality, let us assume that only a single experimental time series measurement is available for the 

Bayesian IUQ (i.e., opC; = 1, as it is in the case study illustrated in Section 4); then, the dependence of the 

forward model [](	, 
; u) on 	 is absorbed into the definition of [] = [](
; u). If we assume that [](
; u) is ticked at ; different pre-defined time instances (i.e., J[](
; uD), … , [](
; uT)M), the time-

dependent scalar output can be treated as multivariate (vectorial), i.e., ��(
) =J[](
; uD), … , [](
; uT)M. Let � = J
(D), … , 
(v)M be the Design Of Experiments (DOEs) and � =B�(D), … , �(v)H the ; × w matrix that contains the corresponding w ;-dimensional BE model responses. A 

way to handle this data is to transform the ;-dimensional output � ∈ ℝT into a reduced ;∗-dimensional 

features space z ⊂ ℝT∗
 (with ;∗ ≪ ;) through a dimensionality reduction technique (e.g., PCA or SSAEs) 

and, then, build ;∗ separate independent metamodels that emulate the ;∗extracted features. Actually, it is 

also possible to build a ;∗-dimensional multi-output surrogate model, either by Kriging or ANN, especially 

convenient with PCA since the transformed variables are uncorrelated. 

In this work, the w BE model responses contained in � are mapped onto z ⊂ ℝT∗
 and arranged in the ;∗ × w features matrix # = J!(D), … , !(v)M. Then, each independent metamodel is trained to emulate each 

feature using the w input-output training patterns (i.e., � = J
(D), … , 
(v)M and the corresponding w 

transformed model responses }8~(D), … , 8~(v)�, with � = 1,2, … , ;∗). Figure 1 shows a schematic diagram of 

the metamodel approach adopted.  
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Unlike other metamodeling techniques, Kriging provides the uncertainty associated with each prediction, 

which makes such class of metamodels particularly suitable for Bayesian IUQ since this uncertainty directly 

enters the likelihood formulation (see Eq. (16) in Section 3.2). Among the different methods proposed to 

perform dimensionality reduction, we present a method based on SSAEs that is eventually compared to 

PCA, providing some insights regarding the technical issues associated with the implementation and the use 

within the proposed Bayesian IUQ approach.  

3.1.1 Sparse Autoencoders 

An autoencoder (AE) is a type of Artificial Neural Network (ANN) that is designed to learn a new low-

dimensional latent representation of the data by trying to reconstruct the input data [36]. It is composed of 

an encoder network, that transforms high dimensional data into a lower-dimensional representation called 

features, and a decoder network that recovers the original data from the features [37] (Figure 2). 

Figure 1. A schematic diagram of the metamodel approach adopted for dimensionality reduction. 
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The encoder transforms a ;-dimensional vector � into its �D-dimensional hidden representation !(D) =B8(D),D, 8(D),E, … 8(D),��H: 

!(D) = �(+(D)� N -(D)) (6) 

where 8(�),~ is the �67 neuron output of the 567 hidden layer (i.e., 1 in the case of basic SAE), �, +(D), -(D) 

are the encoder activation function, the weight matrix and the bias vector, respectively. The decoder maps 

the hidden representation back into �� (i.e., the reconstruction of �): 

�� = �(+(2)!(1) N -(2)) (7) 

where �, +E, -E are the decoder activation function, the weight matrix and the bias vector, respectively.  

The SAE, which is a variant of the AE, imposes sparsity constraints on the hidden neurons to encourage the 

extraction of discriminative features [36,44]. The SAE training (i.e., the determination of  +(D), -(D), +(E), -E) is carried out through the minimization of the following cost function: 

� = �R���� N ���T���R N ���E (8) 

where �p����, ��T���R and ��E are the reconstruction error, the sparsity regularization and the �E 

regularization terms, respectively, whereas � and � quantify the relative importance of the terms in the 

cost function. The reconstruction error �R����  allows quantifying the accuracy of the SAE in the 

reconstruction of the input vectors: 

�R���� = 1w6��m� � ��(m) − ��(m)�Ev�����
mnD  

(9) 

where w6��m� is the number of training patterns. 

Figure 2. Structure of a basic SAE 
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A hidden layer’s neuron is considered “active” when its value is large (i.e., close to 1.0, in case of sigmoid 

activation function), and “inactive” when its value is small (i.e., close to 0.0, in case of sigmoid activation 

function). Let �"~  be the average activation of the �67 hidden neuron on the training dataset (i.e., for �(�) ∈�, � = 1,2, … , w6��m�): 

�"~ = 1w6��m� � 8(D),~(m)v�����
mnD  

(10) 

where 8(1),�(�)
 is the �67 neuron output of the �67 hidden representation !(D)(m) = }8(D),D(m) , … , 8(D),~(m) , … , 8(D),��(m) �, � = 1, … , �D,  � = 1,2, … , w6��m�. It has been shown that the extraction of discriminative features !(�) is 

favored by requiring the sparsity of the AE [44], which imposes the neurons to be inactive most of the time 

(i.e., all the SAEs hidden neurons are characterized by a small value of �"~, e.g., �"~ = � = 0.05). To this aim, 

the sparsity regularization term, ��T���R, is added to the cost function to impose such a sparsity constraint. ��T���R penalizes �"~  deviating from � by using the Kullback-Leibler (KL) divergence function: 

��T���R = � ��U� ∥ �"~W = � g� log ��"~ N (1 − �) log 1 − �1 − �"~h��
~nD

��
~nD  

 

(11) 

It is worth noting that ��U� ∥ �"~W = 0 if �"~ = �, and it increases monotonically as �"~  diverges from �. 

During the training phase, the output value of the hidden neurons may be lowered by increasing the weight 

values +(D) making ��T���R to be small [41]. To prevent it from happening, the ��E term is added to the 

cost function: 

��E = 12 ‖+‖ 
(12) 

where + is the SAE weight matrix. 

3.1.2 Stacked Sparse Autoencoders 

Training non-linear autoencoders with multiple hidden layers is a difficult task [37]. To tackle this problem, 

Hinton and Salakhutdinov [37] proposed the breakthrough approach adopted in this work, which consists 

of a pre-training phase and a fine-tuning phase. Let us consider an �-hidden-layer SAE (Figure 3): 

1. The pre-training phase regards the consecutive training of � basic SAEs. Initially, the first basic SAE 

is trained using the input vectors �(m) ∈ �; then, the corresponding extracted features !(D)(m)
 are used 

as training input vectors for the next basic SAE, which transforms !(D)(m)
 into !(E)(m)

 (Figure 3a). This 

procedure is repeated until the last SAE is trained. 

2. Then, the SSAE is built by stacking all the basic SAE [46] (Figure 3b).  
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3. In the fine-tuning phase, the SSAE obtained from the pre-training phase is fine-tuned using the 

backpropagation of error derivatives [47]. 

 

a) 

 

b) 

 

 

Once the SSAE training is completed, its encoder is used to perform dimensionality reduction. The encoder 

transforms a generic time series �(m) into !(')(�)
, that is a ��-dimensional vector, where �� is the number of 

neurons of the innermost layer. 

3.1.3 SSAE performance assessment  

Given a set of DOE points � = J
(D), … , 
(v)M, typically built by a Latin Hypercube Sampling (LHS) [48] 

according to the ranges of the prior distributions, � are simulated through the BE model and the results 

collected into the ; × w data matrix � = B�(D), … , �(v)H. The w simulated time series collected in � are 

Figure 3. Steps of the pre-training phase for an L-hidden-layer SAE: (a) sequential training of L basic SAEs; (b) stacking 

of the basic SAEs.  
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split into two groups: �I¥¦§i and �I\¨I. The training set contains w6��m� time series stored in the ; × w6��m� data matrix �I¥¦§i, whereas the test set contains (w − w6��m�) time series stored in the ; × (w − w6��m�) data matrix �I\¨I. The training of the SSAE starts by defining its architecture (i.e., the 

number of hidden layers � and the number of neurons per each layer, that is, �D, … ��) and setting the 

hyperparameters values (i.e., �, �, �); then, � basic SAEs are trained, stacked and fine-tuned according to 

the procedure described in Section 3.1.2, and the fine-tuned SSAE is obtained. The SSAE capability in 

reconstructing time series that differ from the training one is tested on �I\¨I through the reconstruction 

error: 

�R���� = 1w − w6��m� � ©�6R�6(m) − ��6R�6(m)©Ev,v�����
mnD  

 

(13) 

Once the SSAE training is completed, �� independent Kriging metamodels are built (one for each 

component of !(')) using the w inputs � = B
(D), … , 
(v)H and the respective transformed time series #(') = }!(')(D), … , !(')(v)�.  

On the other hand, in order to assess the predictive accuracy of each of the ;∗ = �� Kriging metamodels, 

the normalized Leave One Out Cross Validation (LOOCV) error is computed as follows (refer to Appendix C 

for further details): 

ª�««¬,~ = 1w ∑ ¯8~(m) − 8"(−�)]] U
(�)W°2w�=11w ∑ ¯8~(m) − 8~°2w�=1  

 

(14) 

where w is the Kriging training dataset size, � = 1 … , ;∗, 8̂(,m)]] U
(m)W is the Kriging metamodel obtained 

using all the points of �, except 
(m), 8~ = Dv ∑ 8~(m)vmnD . It should be noticed that in (14), the LOOCV error 

(i.e., 
Dv ∑ ²8~(m) − 8̂(,m)]] U
(m)W³EvmnD ) is normalized with respect to the training output sample variance (i.e., 

Dv ∑ ¯8~(m) − 8~°EvmnD ). 

The setting of the SSAE hyperparameters (i.e., �, �, �) is performed by trial-and-error, considering the values 

of ª�««¬ for each metamodel and �R����. When a SSAE is trained, the corresponding ª�««¬ errors are 

evaluated and, if acceptable, the SSAE is retained; otherwise, different hyperparameters are set and the 

entire procedure is repeated. There is no predefined threshold below which �R����  and ª�««¬ are 

considered acceptable; further details about this last point are given in Section 5.  
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 Bayesian inference (by MCMC sampling) 

According to Ref. [33], performing the IUQ in the original space (i.e., in ́ ⊂ ℝT) through the reconstruction 

of each Kiging prediction !"(')��(
) may cause convergence issues in the MCMC sampling, if any combination 

of input parameters 
 does not make the reconstructed time series ��(
) agree with the experimental data ��. For this reason, in the present research �� is transformed into the feature subspace (obtaining !\) and 

the IUQ is carried out in such reduced space. The prior distribution ;(
) is typically set on the basis of expert 

judgement and, in the case of scarce knowledge about 
, the prior ranges are taken as large as possible, 

letting the data speak for itself. The posterior ;U
V!�W is proportional to ;(
) multiplied by the likelihood ;U!�V
W: 

;U
V!�W ∝ ;(
);U!�V
W (15) 

The challenging objective addressed in this Section is to formulate the likelihood ;U!�V
W in the case of 

non-linear dimensionality reduction of the output (e.g., by SSAE). In this work, we derive an expression for 

the likelihood ;U!�V
W by propagating ��~�(�(
), �QRSTE ) through the SSAE encoder by means of an 

Extended Kalman Filter (EKF) [49]. The expression of ;U!�V
W, in the case of a single independent 

experimental measurement (i.e., opC; = 1), results: 

;(!�|
) = 1
U√2bW;∗cV��	�(
) N ���mµm�µ(
) V pC; ¶− 12 B!� − !"(')��(
)H· (��	�(
) N ���mµm�µ(
)) −1 B!� − !"(')��(
)H¸ (16) 

where !"(')��(
) is the Kriging prediction in the reduced space; ��	�(
) is the experimental uncertainty 

covariance matrix in the ;∗-dimensional reduced space; and ��������(
) is the covariance matrix 

associated with the Kriging prediction uncertainty, i.e., a ;∗ × ;∗ matrix having the mean squared errors of 

each feature prediction as diagonal entries:  

�������� = ¹Q81(º)2 0 00 ⋱ 00 0 Q8;∗(º)2 ¼ 

 

(17) 

Details on the hypothesis adopted for the derivation of ;(!�|
) are given in Appendix C. Once the likelihood 

is formulated, a MCMC algorithm can be adopted to sample from ;U
V!�W and the posterior samples can 

be used to reconstruct the posterior PDF.   

 Case Study 

The proposed IUQ approach is applied to a TH input model for the RELAP5-3D code [50] developed by 

Politecnico di Torino [51] for the PERSEO test facility, a full-scale facility with a maximum power of around 
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20 ½¾, designed to assess the performance and the efficiency of a new in-pool heat exchanger for decay 

heat removal by natural circulation [52]. The PERSEO test facility, located at SIET laboratories, is sketched 

in Figure 4. For more details about the facility, please refer to [52,53]. PERSEO Test 7 experimental data 

have been provided to Politecnico di Torino by ENEA for the participation in the PERSEO benchmark, within 

the OECD/NEA/CSNI/WGAMA “Status report on thermal-hydraulic passive systems design and safety 

assessment”. Experimental data from PERSEO Test 7 are here used for IUQ.  

 

 

 

 

The PERSEO experimental campaign consists of nine tests [52,53]. Test 7 comprises two parts: a first part 

to verify the behavior of the system with two different water levels, and a second part to characterize the 

long term cooling capability of the system [52]. For our analysis, the measured experimental data of Test 7-

Part 2 are used [52]. According to the classification of input parameters made in Section 2, the set of the 

design variables 	 are: ICs, BCs and the set of scenario-description inputs (e.g., Triggering Valve TV, 

opening/closure) [52,54]. Concerning the calibration variables 
, the RELAP5-3D code contains different 

model input parameters that could be included in the IUQ process. However, in the present analysis, only 

some of them are considered: in fact, the objective of the present study is not to carry out a complete 

uncertainty analysis but to show how the IUQ could be performed taking advantage of the adopted 

methodology. For each parameter, a uniform prior PDF is set: ;(K) = D¿,� for K ∈ J�, ÀM and ;(K) = 0 

otherwise, where À and � are the upper and lower bounds, respectively (as listed in Table 1). It is worth 

mentioning that the values reported in Table 1 are rescaled factors (i.e., all the parameters have been 

Figure 4. Scheme of the PERSEO facility [51] 
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normalized with respect to their prior nominal values). For more details about the description of the 

parameters and the selection of the prior ranges, please refer to [35]. 

 

 

 

 

 

 

 

 

The power exchanged by the HX is used as the experimental data to perform the IUQ, because it conveys a 

considerable amount of information about the transient (e.g., the heat exchange between the HX tubes and 

the Heat Exchanger Pool HXP); thus, it is one of the most representative output. Figure 5 shows a 

comparison between the RELAP5-3D HX exchanged power computed for Test 7-Part 2 using the nominal 

values of the prior distribution and the corresponding experimental data. 
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Table 1. The uncertain input parameters selected for the RELAP5-3D model. 


� Parameter (multiplication factor) Parameter Name Lower bound Upper bound 
� Inner fouling factor Inner_FF 0.5 1.5 
� Outer fouling factor Outer_FF 1.0 1.5 
Á Injector K factor K_injector 0.5 1.5 
Â Sum of the steam line’s K factors  K_sum_steam 0.5 1.5 
Ã Sum of condensate line’s K factors K_sum_condensate 0.5 1.5 
Ä Diaphragm K factor K_ diaphragm 0.5 1.5 
Å Rockwool thermal conductivity k_rockwool 1.0 1.5 
Æ HXP first pipe flow area A_effective 0.5 1.5 

Figure 5. HX exchanged power (Test 7-Part 2). In yellow solid line, the experimental measurement; in blue dotted 

line, the RELAP5-3D simulation for the nominal values.  
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Since we consider only a single experiment (i.e., Test 7-Part 2), we absorb the dependence on 	 of the 

forward model ��(	, 
) into the definition of �� = ��(
) that represents the RELAP5-3D model. Such a 

model predicts the vector �� = J[](
; uD), … , [](
; uT)M, whose entries [](
; u) are the HX exchanged 

power during Test 7-Part 2 at times u. A RELAP5-3D simulation, performed using an Intel Core i7-7500U 

processor, takes around 2 hours. Simulations are carried out at the Energy Department of Politecnico di 

Torino by faculty members.  

 Data description 

Let [\ = B[D\ , … , [T\HI
 be the available experimental HX exchanged power time series measured during 

Test 7-Part 2. Latin Hypercube Sampling (LHS) is adopted to build the DOE � = J
(D), … , 
(v)M, that 

contains w = 180 training inputs, according to the prior distributions reported in Table 1. The 

corresponding RELAP5-3D output realizations �(m) are, then, stored into the ; × w training output data 

matrix � = B�(D), … , �(v)H with ; = 5723. Figure 6 shows that the ensemble of the w = 180 RELAP5-3D 

output realizations (i.e., time series) contained in � are affected by oscillations with a small signal-to-noise 

ratio. We apply the novel IUQ approach, based on SSAEs, on the dataset described here and compare the 

results with the standard approach based on PCA. 

 

 

 

In this work, the design variables vector 	 (that defines the conditions under which the PERSEO experiment 

is carried out) is fixed since oRST = 1; for this reason, the trends of the output training data reported in 

Figure 6. The ensemble of the � = �Æ^ RELAP5-3D output realizations contained in �, characterized by a small 

signal-to-noise ratio.  
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Figure 6 look very similar. If oRST Ê 1, the trends of the training output could be very different; 

consequently, the number of features required to map the outputs in the reduced space may increase, 

whereas the Kriging performances, associated with each feature should be assessed case by case, but this 

is out of the scope of the present paper.  

 Results  

To analyze the effectiveness of the proposed SSAE approach, in this  Section we compare the SSAE results 

with those obtained by a standard PCA-based dimensionality reduction approach of literature [20,31–35]. 

In particular, Section 5.1 shows 1) how PCA is not capable of dealing with non-filtered (raw) data and 2) 

proposes some reflections on the main limitations involved by data filtering as a possible solution to deal 

with such raw data. Moreover, to assess the capability of the SSAE to deal with raw data, in Sections 5.2.1 

and 0 the SSAE is fed with non-filtered (raw) and filtered time series, respectively. Section 5.3 shows the 

results of the forward uncertainty propagation performed through both the metamodel and the RELAP5-

3D model.  

 PCA-based dimensionality reduction 

Let � = J
(D), … , 
(v)M and � = B�(D), … , �(v)H be the w = 180 Design of experiment (DOE) points and 

the corresponding RELAP5-3D model response reported in Section 4.1, respectively. To perform the PCA, 

the ; × w data matrix � is centered, obtaining �ËR�6R�RL; then, the Singular Value Decomposition (SVD) is 

carried out for �ËR�6R�RL. Further details about PCA are given in Appendix B.1. A number ;∗ = 31 of PCs 

guarantees a cumulative percentage of variation explained at least to 95%. Then, ;∗independent Kriging 

metamodels are built, one for each feature (i.e., for each PC), using the w input-output training patterns 

given by � = J
(D), … , 
(v)M and # = Î(� − ���) = Ï8D(D) ⋯ 8D(v)⋮ ⋱ ⋮8T∗(D) ⋯ 8T∗(v)Ò, where ��� = Dv ∑ �(m)vmnD  and Î is 

the PCA transformation matrix. Each Kriging metamodel is trained to map from Θ ⊂ ℝL to 8~ ∈  ℝ (with � = 1, … , ;∗). To evaluate the capability of PCA of reconstructing the noisy transients, we transform back # 

into the original space 

�Ô = ��� N ÎI  # (18) 

and compute the reconstruction error �R����  through Eq. (9). We find that �R���� = 2.2647 × 10>:¾. 

In the current research, Matérn 5/2 correlation kernel, constant trend function and CV hyperparameter 

estimation are adopted for each Kriging metamodel, as done in [35] where data filtering is applied on the 

same training dataset, before PCA. Refer to Appendix A for further details on Kriging metamodeling. In order 
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to assess the predictive accuracy of each of the ;∗ = 31 Kriging metamodels, the normalized Leave One 

Out Cross Validation (LOOCV) error ª�««¬ is computed and reported in Figure 7. It is worth noticing that ª�««¬ increases for PCs of higher order, which means that the metamodel prediction capability decreases 

for higher-order PCs. Likely, the first PCs are those associated with the genuine signal variation (due to 

physical phenomena); on the contrary, PCs of higher-order relate to the higher noise in comparison with 

the experimental data of the HX exchanged power predicted by RELAP5-3D model that is significant for the 

case study proposed. Consequently, training a metamodel for the first PCs is easier since there is an 

underlying function (given by the physics of the phenomena) that links the inputs of � and the transformed 

output of #.  

According to its definition, an ª�««¬ close to 1.0 relates to scarce metamodel predictive capability; indeed, 

it implies that the LOOCV error of the �67 Kriging metamodel 

1w � ¯8~(m) − 8"(−�)]] U
(�)W°2w
�=1  

(19) 

is of the same order of magnitude of the transformed output sample variance ×Ø�J8~M: 

×Ø�B8ÙH = 1w �U8~(m) − 8~W2w
�=1  

(20) 

Because of the scarce performances that characterize most of the Kriging metamodels (for many of them ª�««¬ ≅ 1.0 (Figure 7)), they cannot be used to replace the RELAP5-3D model in the IUQ process. This 

shows that in this context, PCA cannot cope with raw (non-filtered) data; thus, this analysis is not carried 

out. 

Given the limitations of the PCA to cope with raw data (i.e., ª�««¬ close to 1.0 for most of the features), a 

possible solution is to filter the HX power exchanged predicted by RELAP5-3D (noisy) raw time series 

collected in � before applying PCA and Kriging metamodels. Although this allows removing the part of 

output variability due to oscillations, data filtering gives rise to a nontrivial issue, i.e., choosing a proper 

filtering technique (that should consider the smallest timescale on which physical phenomena take place 

during the transient). Moreover, although filtering raw data affected by numerical oscillation may appear 

reasonable, (1) justifying the choice of a particular filtering method rather than another is a nontrivial task, 

and (2) the IUQ results may be affected by the selection of the specific filtering method adopted. In Ref. 

[35], we apply a moving median filter (i.e., by the ”movmedian” MATLAB function) on the columns of the 

same dataset � before performing PCA and Kriging metamodeling, and finding that a smaller number of PCs 

(i.e., ;∗ = 4, rather than 31) is able to explain the same percentage of the variance of the dataset (i.e., 95%). These results are reported for completeness in Appendix B.2 and compared, in Section 5.2, to those 

obtained for the SSAE.  
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 SSAE-based dimensionality reduction 

5.2.1 Non-filtered (raw) data  

In this Section, we take advantage of the SSAE properties to perform dimensionality reduction without 

applying data filtering. The SSAE architecture and the pre-training hyperparameters are set according to 

Table 2. The hyper-parameters �D, �E, �Û and � are tuned following a trial-and-error approach based on the 

SSAE performances (i.e., �R����  and the ª�««¬ for each feature) (given that � = 3, ;∗ = �Û). More 

powerful tuning approaches (e.g., extensive grid search and evolutionary optimization) can be used, but at 

a much higher computational cost.  

 

Architecture Hyperparameters (SAE pre-training) ' Á 4 ^. ^Ã �� �^^ 2 � �� �^ 3 ^. ^^� �Á Æ   

 

Unlike PCA, there is no rule of thumb to define ;∗, i.e., �Û, which is here set to �Û = 8. The w = 180 

simulated time series collected in � are split into two groups: �I¥¦§i, that contains w6��m� = 162 time 

series, and �I\¨I that contains w6R�6 = w − w6��m� = 18 time series (i.e., 10% of the available data). � =3 basic SAEs are pre-trained using �I¥¦§i, with the hyperparameter reported in Table 2; then, they are 

stacked and fine-tuned according to the procedure described in Section 3.1.2. The fine-tuned SSAE thereby 

obtained is tested on �I\¨I obtaining a reconstruction error equal to �R���� = 8.4935 × 10>:¾. A 

separate independent Kriging is built for each feature and ª�««¬ is computed for each of them through 

(14). Therefore, �Û = 8 independent Kriging metamodels are built adopting the Matérn 5/2 correlation 

kernel, constant trend function and CV hyperparameter estimation. In this case, �R����  is computed on �I\¨I, whereas in the case of PCA �R����  is computed on �. We can notice that, even though �R����  is 

higher, it has the same order of magnitude of that obtained by PCA with filtered and raw data (Table 6). 

Figure 7 shows that the SSAE, without any user-experience-based data filtering approach, obtains ª�««¬ 

values that are comparable (i.e., between 0.040 and 0.260) to those of PCA applied to filtered data. 

Once the SSAE and the Kriging metamodels are trained, the algorithm recalled in Section 3.2 (and presented 

in Appendix C) is implemented to carry out Bayesian inference. The measurement error standard deviation QRST is set to 500 :¾ [53] and an adaptive Metropolis algorithm is applied to generate 8 parallel chains 

with 1 ∙ 10> iterations. It took almost 16 hours to compute the posterior using an Intel Core i7-7500U 

processor. According to [13], we post-process the samples by discarding, for each chain, the first half for 

burn-in to diminish the influence of the starting samples, as a conservative choice. The MCMC convergence 

Table 2. SSAE architecture and hyperparameters (non-filtered data). 
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is examined through the approach proposed in [13]. The KDE of the posterior marginals PDFs obtained 

through the SSAE with non-filtered data are displayed in Figure 8. Some summary statistics of the posterior 

distribution are reported in Table 3, whereas Table 4 shows the correlation among the calibration 

parameters. 

 


� Parameter Mean value Mode 5th percentile 95th percentile 
� Inner_FF 0.91 0.84 0.76 1.06 
� Outer_FF 1.25 1.22 1.04 1.46 
Á K_injector 1.25 0.97 0.74 1.48 
Â K_sum_steam 1.13 1.49 0.64 1.47 
Ã K_sum_condensate 0.91 0.61 0.53 1.42 
Ä K_ diaphragm 1.03 1.35 0.57 1.46 
Å k_rockwool 1.27 1.46 1.03 1.48 
Æ A_effective 0.80 0.84 0.57 0.98 

 

 

 
� 
� 
Á 
Â 
Ã 
Ä 
Å 
Æ 
� 1,0000 - - - - - - - 
� 0,0758 1,0000 - - - - - - 
Á -0,0815 -0,4110 1,0000 - - - - - 
Â -0,1261 -0,0720 -0,1443 1,0000 - - - - 
Ã 0,0006 -0,0943 0,0772 -0,1062 1,0000 - - - 
Ä -0,0723 -0,0788 -0,0279 0,0156 0,0249 1,0000 - - 
Å -0,0731 0,0623 -0,1287 -0,0523 -0,0490 -0,0092 1,0000 - 
Æ 0,2947 -0,4725 -0,0484 0,1701 -0,0192 0,0345 -0,0055 1,0000 

 

5.2.2 Filtered data 

For comparison purposes, we feed the SSAE with filtered data. The SSAE architecture is set according to the 

parameters reported in Table 5. Also in this case, a trial-and-error approach based on the SSAE 

performances (i.e., �R����  and the ª�««¬ for each feature) is adopted.  

 

Architecture Hyperparameters (SAE pre-training) ' � 4 ^. ^Ã �� Ã^ 2 � �� Ã 3 ^. ^^^� 

 

Table 3. Posterior summaries (SSAE with non-filtered data). 

Table 4. Correlation Matrix computed using the MCMC samples (SSAE with non-filtered data). 

Table 5. SSAE architecture and hyperparameters (filtered data).  
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The same train-test split procedure of Section 5.2.1 is implemented on �, and a reconstruction error equal 

to �R���� = 7.9071 × 10>:¾ is obtained. �E = 5 independent Kriging metamodels are built adopting the 

Matérn 5/2 correlation kernel, constant trend function and CV hyperparameter estimation. Table 6 and 

Figure 7 show, respectively, �R���� and ª�««¬ of the Kriging metamodels compared in the cases of: (1) PCA 

with non-filtered raw data, (2) PCA with filtered data, (3) SSAE with non-filtered raw data and (4) SSAE with 

filtered data. 

Reconstruction error .���/� 

PCA non-filtered data �. �ÄÂÅ × �^Ã$+ 

PCA filtered data �. �Á^Æ × �^Ã$+ 

SSAE non-filtered data (computed for �Ü�ÝÜ) Æ. ÂÞÁÃ × �^Ã$+ 

SSAE filtered data (computed for �Ü�ÝÜ) Å. Þ^Å� × �^Ã$+ 

 

 

Notice that performing data filtering on � before applying PCA allows reducing: (1) the number of PCs 

required to have the same cumulative percentage of variation explained (i.e., ;∗ = 4, instead of 31); and 

(2) the highest value of ª�««¬ (that is reduced below 0.20). In contrast, data filtering, for the SSAE 

architecture and hyperparameter setting proposed in Table 5, does not bring a significant improvement, 

Table 6. .���/�  in the case of: PCA with non-filtered data, (2) PCA with filtered data (3) SSAE with non-filtered data 

and (4) SSAE with filtered data.   

Figure 7. �'ßßàá in the case of PCA with non-filtered data, (2) PCA with filtered data (3) SSAE with non-filtered data 

and (4) SSAE with filtered data.    
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with respect to the case of SSAE with non-filtered data in terms of �R���� on test data and ª�««¬. In our 

case study, output training data have similar trends (as illustrated in Figure 6). If, on the contrary, training 

time series would have been very different, the number of extracted features (i.e., the number of neurons 

in the hidden layer) required to get the same SSAE reconstruction error �R����  could be higher (i.e., the 

ANN complexity increases). In this case, since we build an independent Kriging metamodel for each 

extracted feature (as shown Figure 1), the number of Kriging increases and the efficiency of each metamodel 

should be re-assessed (since it can not be a prior predicted). More sophisticated approaches than the simple 

trial-and-error (e.g., evolutionary optimization techniques) can be implemented to find the set of SSAE’s 

hyperparameters that minimize both �R����  and ª�««¬. However, this would be cumbersome considering 

that: (1) PCA is easier to implement and (2) at lower computational cost, it performs better in terms of �R����  and ª�««¬ with filtered data. Moreover, for PCA the �RST matrix does not need to be computed at 

each MCMC iteration (unlike the SSAE case, as shown in Appendix C), and this significantly reduces the 

computational cost required by the algorithm. In fact, in the case of SSAE with filtered data, the adaptive 

Metropolis algorithm takes almost 10.5 hours for 2 ∙ 10> iterations on an Intel Core i7-7500U and, 

considering that the MCMC algorithm developed for the PCA takes 2.5 hours for 10> iterations (on the 

same processor), the computational cost required by the MCMC algorithm in this case of SSAE is twice that 

required for PCA. Thus, we can conclude that using the SSAE is conveniently applied to raw data (as expected 

in real applications), avoiding filtering.  

From each chain, the first half of the samples are discarded for burn-in. A common practice adopted to 

reduce autocorrelation is thinning [13]. It consists in keeping every :67 sample from each sequence and 

discarding the rest: we kept every 200067 (out of 5 ∙ 10>), 400067 (out of 1 ∙ 10>) and 800067 (out of 2 ∙10>) sample from each chain for PCA with filtered data, SSAE with raw data and SSAE with filtered data, 

respectively. The KDE of the posterior marginals PDFs obtained through the SSAE with non-filtered data are 

displayed in Figure 8. The summary statistics of the posterior distribution are reported in Table 7. The 

marginal posterior distributions in Figure 8 cannot be used to draw samples, because the calibration 

parameters are not independent.  
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� Parameter Mean value Mode 5th percentile 95th percentile 
� Inner_FF 1.03 1.18 0.75 1.26 
� Outer_FF 1.32 1.46 1.05 1.49 
Á K_injector 1.17 1.24 0.63 1.47 
Â K_sum_steam 1.00 1.16 0.55 1.45 
Ã K_sum_condensate 0.98 0.61 0.54 1.44 
Ä K_ diaphragm 1.01 1.08 0.55 1.45 
Å k_rockwool 1.25 1.00 1.00 1.50 
Æ A_effective 0.98 1.14 0.63 1.20 

 

 

 
� 
� 
Á 
Â 
Ã 
Ä 
Å 
Æ 
� 1,0000 - - - - - - - 
� 0,3468 1,0000 - - - - - - 
Á -0,1763 -0,1013 1,0000 - - - - - 
Â -0,0319 0,0062 0,0441 1,0000 - - - - 
Ã -0,0018 -0,0038 -0,0048 -0,0074 1,0000 - - - 
Ä 0,0384 0,1051 -0,0768 -0,0130 -0,0158 1,0000 - - 
Å 0,0319 -0,0184 0,0331 -0,0270 0,0101 -0,0010 1,0000 - 
Æ 0,4391 0,2914 -0,3216 0,0207 0,0446 0,0317 -0,0491 1,0000 

 

Table 7. Posterior summaries (SSAE with filtered data).  

Table 8. Correlation Matrix computed using the MCMC samples (SSAE with filtered data). 

Figure 8. Prior distributions and posteriors’ kernel density estimations obtained adopting three different output dimensionality 

reduction techniques (i.e., PCA with filtered data and SSAE with both filtered and non-filtered data) in the IUQ process. 
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In all the cases examined, the marginal posteriors of Kâ, K>, Kã, Kä do not differ very much from their priors 

and are defined on the same supports of their priors, whereas for KD and Kå a significant update can be 

seen with respect to the priors. This is in line with the results found in [35], where the sensitivity analysis, 

carried out through first-order Sobol’ indices [55], revealed that Kâ, K>, Kã, Kä are less influential. In 

particular, for the PCA-based approach, the marginal posteriors of KD, KE, KÛ, Kå show a significant 

modification with respect to their priors and the posterior of Kå is peaked at the upper bound of the prior, 

whereas in both SSAE cases the marginal posterior of KE is quite similar to the prior, and the posterior of Kå 

is peaked near the prior mean value. 

As a general result, the posterior PDFs obtained through the SSAE, with filtered and raw data, are wider 

than those obtained through PCA. In this view, the PCA-based approach, providing sharper posterior PDFs 

(i.e., characterized by smaller variances), seems to allow reducing epistemic uncertainty about calibration 

parameters more than the SSAE-based approach. However, it is difficult to assess and comment on the 

consistency of such posterior PDFs; in this regard, Section 5.3 proposes the propagation of such uncertainty 

to check the consistency of the results with respect to experimental data.  

 Forward Uncertainty Quantification: comparison of SSAE and PCA  

To compare and assess the quality of the proposed IUQ approaches, we perform forward uncertainty 

propagation. In particular, (1) we simulate the posterior samples obtained from the MCMC after an 

appropriate thinning and (2) we compare the ensemble of time series obtained to the experimental data �� of Test 7-Part 2; this allows comparing the posterior PDFs obtained applying both PCA and SSAE. Both 

the RELAP5-3D model and the Kriging metamodels are used to propagate the posteriors' uncertainty. The 

Kriging-based forward uncertainty propagation is proposed in Section 5.3.1, whereas Section 5.3.3 shows 

the results obtained by propagating through the RELAP5-3D model.  

5.3.1 Kriging metamodels 

For each IUQ approach proposed, 100 posterior samples are simulated through the Kriging metamodels to 

obtain the predictions in the ;∗-dimensional reduced space. Such predictions are, then, transformed into 

the ;-dimensional space, adopting transformation matrix Î in the case of PCA and the SSAE decoders in 

the other case. In particular, Figure 9a, Figure 9b, Figure 9c compare the reconstructed experimental data ��� to the reconstructed Kriging predictions of 100 posterior samples, the prior nominal value, the posterior 

mode and the posterior mean value. 
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(a) 

 

(b) 

 

(c) 

 

In each case, the simulated posterior samples envelop ���. Moreover, in the case of PCA, the posterior's 

prediction ensemble (Figure 9a) shows smaller variance than that of the SSAE (Figure 9b and Figure 9c); this 

is in line with the narrower PDFs that characterize the posterior marginal KDE obtained applying PCA (Figure 

8). In general, the reconstructed Kriging predictions of the posterior samples obtained adopting PCA 

Figure 9. Reconstructed Kriging predictions of �^^ posterior samples, the prior Nominal value, the posterior mode 

and the posterior mean value, compared with the reconstructed experimental data. The results obtained applying 

PCA with filtered data are reported in Figure 9a, whereas Figure 9b and Figure 9c report the results obtained 

applying the SSAE with non-filtered and filtered data, respectively. 
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reproduce ��� better than the reconstructed Kriging predictions of the posterior samples obtained adopting 

the SSAE with both filtered and raw data. Finally, we can notice that, when the SSAE is applied, data 

filtering does not bring a significant improvement in terms of agreement of the simulated posterior samples 

with ���. It is worth mentioning that the low number of simulated posterior samples (i.e., 100)  is due to the 

fact that, as explained in Section 5.2.2, thinning has been performed on the MCMC samples to reduce 

autocorrelation, reducing the effective number of MCMC posterior samples to 1000 and 100, in PCA and 

SSAE cases, respectively.  

5.3.2 Safety margin calculation 

In BEPU methodologies, the results are expressed in terms of uncertainty ranges for the calculated Figure 

of Merit (FOM); this allows to compute safety margins with respect to safety threshold values. The current 

BEPU methods can be subdivided in: (1) probabilistic methods based on the propagation of input 

uncertainties (e.g., CSAU, GRS and ASTRUM), (2) deterministic methods based on the propagation of input 

uncertainties (e.g., AEAW and EDF-Framatome), and (3) methods based on the extrapolation of output 

uncertainty (e.g., UMAE). Following the GRS method [56], Wilk’s formula [57] can be applied to determine 

the number of simulations o that guarantees the confidence level � and the probability content æ [58]. In 

the case of one-sided confidence level on one FOM, the Wilk’s formula reduces to: 1 − æi ≥ � (21) 

This expression is valid for first-order Wilks’ formula, that is the case in which the highest (lowest) outcome 

is within the upper (lower) 5% range with at least 95% confidence. 

Following [35], the integral over the mission time ·vm��m�� = 5736 è (i.e., the duration of test 7 Part 2) of 

the HX exchanged power é(u) is selected as FOM, since it is a relevant parameter for the current analysis:  

� = ê é(u)ZuIë�ìì�í�
î  

(22) 

For demonstration purposes, in the three cases analyzed (i.e., PCA with filtered data and SSAE with both 

filtered and non-filtered data), the acceptance criterion for the selected FOM is set to 0.9���vm���, i.e., the 

system is considered failed if � < 0.9 Y é��vm���(u)ZuIë�ìì�í�î , where é��vm��� is the RELAP5-3D simulated 

HX exchanged power using as input the prior nominal values. According to Wilks’ formula [57], for each 

case,  o = 59 RELAP5-3D simulations are carried out to calculate the one-sided statistical tolerance limit 

with � = 95% confidence level and æ = 95% probability content (see Eq. (21)). According to Wilks’s 

formula, the lowest simulated value of � (defined as ���ðR�6) is within the lower 5% range with at least 95% confidence; thus, its margin to the assumed threshold value (i.e., 0.9���vm��� = 6.004 × 10ä:ñ) is 

computed as ½ = ���ðR�6 − 0.9���vm���. Table 9 reports the values of ���ðR�6 and the respective margins ½ (with respect to the threshold value 0.9���vm���); the latter values are also graphically reported, along 
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with the o = 59 computed values of �, in Figure 10a, Figure 10b and Figure 10c. It is important to remark 

that the uncertainty analysis carried out in this Section is performed only for demonstration purposes and 

involves only the propagation of epistemic uncertainty (i.e., the one characterized through the IUQ process). 

It can be noticed that the safety margins computed for the SSAE are lower than those obtained for the PCA 

with filtered data; this is a direct consequence of the larger variance that characterizes the posterior PDFs 

found through the SSAE-based approach of IUQ. In this regard, if aleatory uncertainty is also considered, 

the margin with respect to the assumed threshold value can even be lower; thus, for a realistic calculation 

of the safety margin, it is recommended to properly characterize such aleatory uncertainty and repeat the 

safety margin calculation. 

 �(/ò�0% � 

PCA with filtered data Ä. Å�Ä × �^Å $ó Å. ��^ × �^Ä $ó 
SSAE with non-filtered data Ä. ÁÄÄ × �^Å $ó Á. Ä�Æ × �^Ä $ó 

SSAE with filtered data Ä. ÁÆÆ × �^Å $ó Á. ÆÂÂ × �^Ä $ó 
 

(a) 
(b) 

Table 9. The lowest simulated values of HX exchanged energy and the respective margins with respect to the 

threshold value ^. Þ��/���1(. 
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(c) 

 

5.3.3 RELAP5-3D 

The good agreement observed for the PCA-based approach (applied to filtered data), between ��� and the 

simulated posterior samples in the Kriging-based forward uncertainty propagation must be further 

investigated when the RELAP5-3D BE model is adopted. The o = 59 available RELAP5-3D simulations, 

carried out to calculate the safety margins as in Section 5.3.2, are used to assess and compare the PCA and 

the SSAE from 1) a qualitative point of view and 2) a quantitative point of view, by computing the Signal to 

Noise Ratio. More precisely, Figure 11a, Figure 11b and Figure 11c compare the Test 7-Part 2 experimental 

data with respect to the RELAP5-3D predictions of the following input parameters: o = 59 posterior 

samples, the prior nominal value, the posterior mode 
�/0%���/��/��  and posterior mean value 
�/0%���/���1�   (these 

two latter obtained from the thousands of MCMC samples after burn-in).  

 

Figure 10. Safety margins with respect to the threshold value (i.e., ^. Þ��/���1() in the case of PCA with filtered data 

(Figure 10a), SSAE with non-filtered data (Figure 10b) and SSAE with filtered data (Figure 10c). 
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(a) 

 

(b) 

 

(c) 

 

One can notice that, when PCA is applied to filtered data, the RELAP5-3D simulated posterior mode �](
�/0%���/�,ôàõ�/�� ) and mean value �](
�/0%���/�,ôàõ��1� ) (and, in general, all the o = 59 simulated posterior 

samples) display a much wider noise with respect to the case in which the SSAE is applied to non-filtered 

data. Since the oscillations affecting the RELAP5-3D simulated HX power exchanged are higher in 

comparison with the experimental data, their signal-to-noise ratio can be considered a characteristic to 

Figure 11. RELAP5-3D predictions of � = ÃÞ posterior samples compared to experimental data and the RELAP5-3D 

prediction of the prior nominal value, the posterior mode and posterior mean value. The results obtained applying 

PCA with filtered data are reported in Figure 11a, whereas Figure 11b and Figure 11c report the results obtained 

applying the SSAE with non-filtered and filtered data, respectively. 
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evaluate their physical consistency: the lower the signal-to-noise ratio, the lower the physical consistency.  

In this regard, for the PCA and the SSAE with/without filter results shown in Figure 11, we compute the SNR 

(see Eq.(23)) of the o = 59 RELAP5-3D output time series: we model the (unknown) noise-free output ; × o matrix Ý with a moving median filter (with a 50 è sliding window to accommodate sudden power 

oscillations, i.e. ~1 ½¾, that are assumed to be unrealistic) and we compute the ; × o noise matrix ö by 

subtracting Ý from the non-filtered output (i.e., ÷�� = [~¥\�¦ø(
m) − ùm~  with � = 1,2, … , o and � = 1,2, … ;): 

ùo� = 20 logDî ⎝
⎛c∑ ∑ Vùm~VET~nDimnD

c∑ ∑ V÷m~VET~nDimnD ⎠
⎞ 

 

(23) 

For PCA and SSAE with/without filtering, the SNR values are equal to: ùo�ø¬¦ = 23.04 Zþ, ùo�¨¨¦\,��m�� = 31.12 Zþ and ùo�¨¨¦\,�m�6R�RL = 26.15 Zþ. Concerning this last point, the SSAE-based 

approach applied to raw data outperforms the PCA-based approach. Moreover, comparing Figure 11b and 

Figure 11c, we can notice that data-filtering does not provide any benefits both in terms of posterior mode 

accuracy (in predicting ��) and signal-to-noise ratio (characterizing the o = 59 simulated posterior 

samples), when the SSAE-based approach is applied. A possible reason is that filtered data may bias 

autoencoders and Kriging training. This may impair the metamodel generalization capability when fed with 

noisy data. This finally suggests that filtering should be avoided in favour of the use of raw data, whose 

information carried is significative and can be capitalized by the autoencoder in SSAE-based IUQ 

approaches. 

 Conclusions  

In the present paper, we propose a novel approach for the uncertainty quantification of T-H model code 

input parameters in case of noisy (i.e., small signal-to-noise ratio) time-dependent outputs, that paves the 

way for a novel dimensionality reduction method capable of dealing with raw data in the context of Bayesian 

IUQ. The approach is developed within a Bayesian framework and adopts a SSAE-based dimensionality 

reduction technique to extract significant features from the simulated time series and involves 

implementing Kriging metamodels for the quick emulation of such features.  

The effectiveness of the proposed approach has been firstly demonstrated considering (noisy) raw data 

simulated by a time-dependent RELAP5-3D model the PERSEO facility in relation to the power exchanged 

by the HX. The results show i) the capability of the adopted SSAE to reduce the input data dimensionality 

while preserving its most significant characteristics and ii) the ability of the proposed IUQ approach in 

dealing with (noisy) raw data. Moreover, the comparison of the proposed approach with a standard 

dimensionality reduction method (i.e., PCA), exhibit the inability of the latter in dealing with (noisy) raw 
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data. This highlights the novel characteristic of the SSAE-based approach, which, in contrast to the standard 

dimensionality reduction methods, allows going through the IUQ without resorting to filtering techniques, 

which are based on expert judgment and can affect the IUQ results. Moreover, the PDFs obtained applying 

the SSAE-based approach to raw data, when propagated through the RELAP5-3D code, give power 

exchanged by the HX time series characterized by a higher signal-to-noise ratio than in the PCA-based 

approach. This can be considered an element to assess the physical consistency of the uncertainty 

propagated to the code output, which theoretically should not be affected by large noise/oscillations.  

Also, the proposed approach has been applied to a filtered data set, still related with the RELAP5-3D model 

of the PERSEO facility. It can be concluded that performing data filtering before applying the SSAE does not 

bring any benefits in terms of metamodel accuracy and consistency of the propagated results with respect 

to experimental data. This is in line with the fact that SSAEs, being able to perform denoising, should not be 

affected by the noise. The comparison with the PCA-based approach (applied to filtered data) shows that i) 

PCA allows reducing epistemic uncertainty more than the SSAE-based approach since the former provides 

sharper posterior PDFs (i.e., characterized by minor variance) and ii) the MCMC sampling is computationally 

more expensive for SSAE than for PCA.  

Future research lies on the possibility of exploring: 1) more powerful tuning approaches to optimize the 

SSAE architecture (e.g., extensive grid search and evolutionary optimization); 2) new approaches of 

uncertainty propagation through DNNs (e.g., the Monte Carlo sampling, the entire-DNN unscented 

transform and the piecewise exponential approximation of the activation function ) taking, also, into 

account their computational cost; 3) new approaches, such as  multivariate Kriging metamodels [26], to 

take into account dependencies among the output components. In fact, another limitation that should be 

further investigated is the effect of building a separate independent metamodel for each feature extracted, 

i.e., assuming the features to be independent. 

Appendix 

Appendix A. Kriging Metamodeling 

A Metamodel (MM) is a functional approximation of the input/output relations of the original model that is 

faster to be evaluated. It is constructed from a set of input parameters and corresponding model responses 

obtained by running the original time-demanding model. In this work, we adopt the Kriging metamodel 

because it provides a direct estimation of the metamodel uncertainty �]] of equation (5).  
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A.1 Kriging Theory  

Let us consider a general mathematical model 8 = 8(
), where 8 is a scalar and 
 = JKD, … , KLM is a Z-

dimensional vector. Assume that  � = B
(D), … , 
(v)HI
is the Design Of Experiments (DOE) and ! =J8D, … , 8vMI are the corresponding w model responses. Kriging is a method of interpolation which assumes 

that the model output 8(
) is a realization of a Gaussian process indexed by 
 ∈ �
 ⊂ ℝ�. The 

mathematical form of a Kriging is given by: 

8(
) = � �~�~(
) N �(
) = 2Ü�(
) N �(
)�
~nD  

 

(A.1) 

The first term in Eq. (A.1), 2Ü�(
), is the mean value of the Gaussian process, also called the “trend”; it is 

given by � arbitrary function [�D(
), … , ��(
)] and the related coefficient [�D, … , ��]. The second term, �(
), is a Gaussian process with zero mean and covariance: 

��×B�U
(�)W,�U
(Ù)WH = QE�U
(�), 
(Ù)W (A.2) 

Where QEis the process variance and �(∙,∙) is the correlation function (also called correlation kernel) defined 

for any two points in the input domain �
.  

�(∙,∙)  is a function of the distance ℎ(∙,∙): 

�U
(�), 
(Ù)W = �Uℎ(
(�), 
(Ù))W (A.3) 

According to [19], ℎ(
(�), 
(Ù)) has the following expression: 

ℎU
(�), 
(Ù)W = ¹� 	K9(m) − K9(~)

9 �E  L

9nD ¼î.>
 

 

(A.4) 

Where the parameters � = J
D, … ,
LM are called length scale parameters. Table 10 and Table 11 show, 

respectively, some common correlation kernels and trend types that are implemented and compared in this 

work to find the best Kriging options. 
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Correlation Kernel Expression 

Exponential .U
(�), 
(Ù)W = ��B−&U
(�), 
(Ù)WH 

Gaussian .U
(�), 
(Ù)W = �� �− �� &�U
(�), 
(Ù)W� 
Matérn-3/2 .U
(�), 
(Ù)W = ¯� N √Á ∙ &U
(�), 
(Ù)W° ��B−√Á ∙ &U
(�), 
(Ù)WH 

 

Matérn-5/2 .U
(�), 
(Ù)W = 	� N √Ã ∙ &U
(�), 
(Ù)W N ÃÁ ∙ &�U
(�), 
(Ù)W���B−√Ã ∙ &U
(�), 
(Ù)WH 

 

 

Trend type Expression 

Constant (ordinary Kriging) 2Ü�(
) = 2^ 

 

Linear 2Ü�(
) = 2^ N � 2�
�
�

�n�  

 

Quadratic 2Ü�(
) = 2^ N � 2�
�
�

�n� N � � 2�Ù
�
Ù
�

Ùn�
�

�n�  

 

In line with the Kriging definition, ! and a generic model prediction 8(
) at the untried input location 
 are 

jointly distributed according to a multivariate Gaussian distribution: 

�8(
)! �~o ��2Ü�(
)�2 �  , QE � 1 �Ü(
)�(
) . �� 
(A.5) 

Where � is the matrix of regression function �(
) evaluated at the w design points (i.e.,  �m~ = �~(
�) ,    � = 1, … , w;    � = 1, … ,�); �(
) is the vector of correlations between 
 and the DOE points 

(i.e., �m = �U
, 
(�)W   � = 1, … , w); . is the correlation matrix (i.e., �m~ = �U
(Ù), 
(�)W   �, � = 1, … , w). 

The Kriging prediction (i.e., the mean value) 8̂(
) and the variance Q�(
)E  of the Gaussian random variable 8(
) are given by [59]:  

8̂(
) = �(
)I2� N �(
)I.,D(! − �2�) (A.6) 

Q�(
)E = Q2 �1 − �I(
).,D�(
) N ¯�Ü.,��(
) − �(
)°Ü(�Ü.,��),D¯�Ü.,��(
) − �(
)°�  (A.7) 

where 2� = U�Ü.,��W,D�Ü.,�! is the least square estimate of the regression coefficients.  

A crucial consequence of the Gaussian assumption is that: 

8(
)~oU8̂(
), Q�(
)E W. (A.8) 

Table 10. Common correlation kernels . 

Table 11. Common Trend Types 
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A property of the Kriging predictor is that it always interpolates the design sites. The Mean square error of 

the prediction (i.e., Q�(
∗)E ) collapses to zero as the untried point 
∗ gets close to the design sites and 

increases when 
∗ moves away from the design sites. Intuitively, a richer DOE will give a Kriging with a 

better prediction capability. However, increasing the DOE size is generally computationally intensive; 

therefore, selecting design sites through an efficient DOE approach is a crucial issue to be addressed. Latin 

hypercube sampling is one of the most popular DOE techniques [60], and it is adopted in this work.  

To formulate the general theory of Kriging, we introduced (� N Z N 1) hyperparameters (i.e., � regression 

coefficients 2, Z length scale parameters �, one process variance QE) that are unknown and thus must be 

estimated. Estimation methods such as Maximum likelihood estimation (ML) or Cross-Validation estimation 

(CV) are usually applied to estimate them. In this work, we adopt a software package, UQLab [19], to 

implement the Kriging metamodeling. Further details regarding the comparison between ML and CV can be 

found in [61].  

A.2 Kriging performance indicators 

The quality assessment for a Kriging model is usually performed considering the accuracy in reproducing 

the original model output at unobserved locations [62]. This is typically done by measuring the error in 

Kriging’s prediction using a validation dataset (i.e., a set of model simulations different from  �). However, 

this approach requires a considerable number of additional simulations that likely are computationally 

intensive. A computationally cheaper alternatives, namely the cross-validation (CV) can be used to estimate 

the metamodel quality without any additional simulation beyond those used to train the Kriging [62]. 

According to the Leave One Out Cross Validation (LOOCV) criterion, the metamodel is trained leaving one 

simulation out from the training dataset, and then it is used to predict the remaining simulation outcomes. 

Following this criterion the normalized LOOCV error ª�««¬ is computed as: 

ª�««¬ = 1w ∑ ¯8U
(�)W − 8"(−�)U
(�)W°2w�=11w ∑ (8(
(�)) − 8)2w�=1  

 

(A.9) 

where w is the training dataset size,  8̂(,m)U
(m)W is the prediction of the Kriging that is trained using all the 

points of �, except 
(m), 8 = Dv ∑ 8U
(m)WvmnD  . It should be noticed that in expression (A.9), the LOOCV error 

is normalized with respect to the training output sample variance (i.e., 
Dv ∑ U8U
(m)W − 8WEvmnD ). 
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Appendix B. PCA-based Inverse Uncertainty Quantification with filtered data 

B.1 Principal Component Analysis 

PCA is a space transformation from a high dimensional space to a lower-dimensional space such that 

transformed variables are uncorrelated and retain as much as possible of the variation present in the data 

set [30]. Singular Value Decomposition (SVD), as well as the eigendecomposition of the covariance matrix 

of the data, can be adopted to perform PCA; the former is proposed below. Let � = B�(D), … , �(v)H be the ; × w data matrix containing the w, ;-dimensional, model output responses (also called observations) 

(where �(m) = B[D(m), … , [T(m)HI
). The centered data matrix �ËR�6R�RL is defined as: 

�ËR�6R�RL = B(�(D) − ���), … , (�(v) − ���)H (B.1) 

Where  

��� = 1w � �(m)v
mnD  

(B.2) 

 

The SVD decomposition of �ËR�6R�RL is [63]: 

�ËR�6R�RL = À��I (B.3) 

Where À is a ; × ; unitary matrix whose columns  m  are called left singular vectors, � is a ; × w diagonal 

matrix whose entries r�~ are called singular values, �I is the conjugate transpose of � that is a w × w 

unitary matrix. The columns of �I are called right singular vectors. There is a direct relation between PCA 

and SVD [63]: 

• the entries of � (i.e., r�~) are the square roots of the eigenvalues (arranged in descending order) 

of �ËR�6R�RL�ËR�6R�RLÜ , thus they are proportional to the covariance matrix eigenvalues; 

•  ~ are the principal components vectors (PCs).  

To determine the  dimension of the principal subspace ;∗ one finds the smallest ;∗such that the cumulative 

percentage of variation explained  ��. p. , ∑ !"l∗"#�∑ !"l"#� ∙ 100� is at least equal to a threshold value (usually chosen 

between 95% and 99%) [20]. The first ;∗ PCs  ~ form the  ;∗ × ; transformation matrix Î: 

Î = ¹ DÜ⋮ T∗Ü ¼ 

 

(B.4) 
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The transformation of the data matrix into the feature space is given by: 

# = Î(� − ���) = B!(D), … , !(v)H = Ï8D(D) ⋯ 8D(v)⋮ ⋱ ⋮8T∗(D) ⋯ 8T∗(v)Ò 

 

(B.5) 

where # is a ;∗ × w matrix whose rows are called PC scores and columns represent the output high 

dimensional data projected into the features space. To antitransform a generic vector ! from the features 

space to the original space: 

� = ��� N ÎI  ! (B.6) 

B.2 PCA-based IUQ with filtered data 

Given the limitations of the PCA to cope with raw data (i.e., ª�««¬ close to 1.0 for most of the features), a 

possible solution is to filter the HX power exchanged predicted by RELAP5-3D (noisy) raw time series 

collected in � before applying PCA and Kriging metamodels. Although this allows removing the part of 

output variability due to numerical oscillations, data filtering gives rise to a nontrivial issue, i.e., choosing a 

proper filtering technique (that should consider the smallest timescale on which physical phenomena take 

place during the transient). Moreover, although filtering raw data affected by numerical oscillation may 

appear reasonable, (1) justifying the choice of a particular filtering method rather than another is a 

nontrivial task, and (2) the IUQ results may be affected by the selection of the specific filtering method 

adopted. Thus, by applying a moving median filter (i.e.,”movmedian” MATLAB function) on the columns of �, a smaller number of PCs (i.e., ;∗ = 4, rather than 31) is able explain the same percentage of variance of 

the dataset (i.e., 95%) [35]. We compute �R����  and ª�««¬ through (9) and (14), respectively, and we find �R���� = 2.1308 × 10>:¾, whereas the four ª�««¬ remain below 0.2, as shown in [35].  

Since for the proposed case study opC; = 1, the posterior formulations in case of PCA reduces to [35]: 

;(
V!�) ∝ ;(
) ∙ 1U√2bWT∗r|�| exp g− 12 J!\ − !"��(
)MI (�pC; N ��������),D J!\ − !"��(
)Mh 
(B.7) 

where !"��(
) is the mean value of the Kriging prediction and �RST = Î�QpC;2 Î·
 is the experimental 

uncertainty covariance matrix in the ;∗-dimensional reduced space. In the present work, QRST is set to 500 :¾ [53]. �������� is the covariance matrix associated with the Kriging prediction uncertainty (see 

(17)). Eight parallel MCMC chains with 5 ∙ 10> iterations are run by applying an adaptive Metropolis 

algorithm [64] implemented through the UQLab MATLAB package [65]. It took almost 2.5 hours to compute 

the posterior PDFs on an Intel Core i7-7500U processor. We post-process the samples discarding the first 

half of each chain for burn-in. The MCMC simulation convergence is examined through the approach 

proposed in [13]. The marginal Kernel Density Estimation (KDE) [66] of the posterior PDFs obtained through 
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PCA with filtered data is shown in Figure 8. The summary statistics of the posterior distribution (i.e., mean 

values, modes, 567 and 9567 percentiles) are reported in Table 12. The results reported in this Section 

concerning the application of PCA on filtered data are elaborated from [35].  

 


� Parameter Mean value Mode 5th percentile 95th percentile 
� Inner_FF 0.90 0.90 0.86 0.94 
� Outer_FF 1.36 1.40 1.28 1.43 
Á K_injector 1.41 1.49 1.25 1.49 
Â K_sum_steam 0.96 0.88 0.56 1.40 
Ã K_sum_condensate 0.99 1.06 0.55 1.45 
Ä K_ diaphragm 0.96 1.30 0.54 1.44 
Å k_rockwool 1.21 1.04 1.02 1.45 
Æ A_effective 1.43 1.48 1.33 1.50 

. 

 

Appendix C. Bayesian Inference (MCMC sampling) 

The challenging objective of this Section is to formulate the likelihood ;U!�V
W in the case of non-linear 

dimensionality reduction of the output (e.g., SSAE). This problem can be tackled by propagating the 

uncertainty of ��~�(�(
), �QRSTE ) through the SSAE’s decoder. Monte Carlo (MC) sampling and the 

Unscented Transform [67] have been employed in past works to propagate the uncertainty through Deep 

Neural Networks; that is, given a multivariate distribution of the input layer (e.g., ��~�(�(
), �QRSTE ), the 

mean vector !(�) and the covariance matrix �(�) of the output layer � are estimated [67,68]; however, these 

methods (particularly the MC sampling) can be computationally expensive [67,69]. Following the approach 

proposed in [69], in this work, we use Extended Kalman Filtering (EKF) [49] to propagate ��~�(�(
), �QRSTE ) through the SSAE encoder in order to derive an expression for the likelihood ;U!�V
W. 

EKF is an algorithm that is used to estimate the state of non-linear discrete-time dynamic systems when the 

system state cannot be directly measured. In the EKF, the system’s state at time-step 5 is treated as an 

uncertain quantity characterized by a mean vector !(�) and a covariance matrix �(�). The EKF algorithm 

consists of two steps: the prediction step and the update step. In the prediction step the system’s state !(�) 

is predicted along with its error covariance �(() starting from (1) the process noise, (2) the control input and 

(3) the previous step’s state. In the updating step, the prior estimates computed in the prediction step are 

updated (through indirect measurement of the system state) to find the posterior estimate of the state and 

and its error covariance. For further details about Kalman filtering refer to [49]. 

Table 12. Posterior summaries (PCA with filtered data). 



39 

 

 

 

 

In the context of EKF applied for the uncertainty propagation in Deep Neural Networks, the concept of 

“system” does not refer to any real physical system; in fact, we treat the layers of the SSAE encoders as the 

states of a fictitious unforced (i.e., without a control input) system at different time-steps (i.e., the input 

layer of the SSAE !(î) represents the system state at time 5 = 0, the second layer !(D) represents the 

systems state at time 5 = 1 et cetera). Moreover, only the prediction step of the EKF algorithm is applied 

since there is no real physical system that allows measurements (used in the update step). Let us assume 

that the SSAE encoder is composed of � N 1 layers and that !(�) and �(�) are, respectively, the vector 

representing the state estimate (i.e., the mean value) and the covariance matrix of the layer 5, such that: 

$(�),~,9 = %�×(8(�),~ , 8(�),9) (C.1) 

 

The system evolves from the state (read: layer) 5 − 1 to the state 5 through a non-linear transformation: 

!(�) = Q(+(�)!(�,D)  N -(�)) (C.2) 

where Q(∙) = R(∙)R(∙)&D is the sigmoid activation function of the SSAE, +(5) is the SSAE weight matrix between 

layer 5 − 1 and layer 5, -(�) is the bias vector for layer 5. Using the equation of the EKF’s prediction step, we 

can find the state estimate !(�) and the covariance matrix �(�) for each layer: 

!(�) = QU+(�)!(�,D)  N -(�)W (C.3) 

Figure 12. Example of DNN where ' = Á. 
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�(�) = �(()�(�,D)�(() N '(() (C.4) 

where  �( = ∇!()*�)!( is the Jacobian matrix and  '( is the process noise covariance matrix that takes into 

account the inherent error introduced by the dimensionality reduction itself (i.e., the error related to the 

fact that the SSAE is not a perfect model). In this work, under the hypothesis that the SSAE is a perfect 

model, '( is neglected. If a sigmoid activation function is adopted, It can be shown that: 

�(�),~,9 = Q 	� ¾(5),�,�� ∙ 8(5−1),� N -(5),��+1 − Q 	� ¾(5),�,�� ∙ 8(5−1),� N ,(5),��- ∙ ¾(5),�,: 

 

(C.5) 

where �(�),~,9 and ¾(5),�,: represent, respectively, the element at the �67 row and :67 column of the �(�) 

and +(5) matrices; !(5−1),� is the �67 entry of !(5−1). Iteratively applying equations (C.3) and (C.4), one can 

propagate ��~�(�(
), �QRSTE ) through the SSAE encoder in order to derive the distribution of !� that has  

mean value !(�) and the covariance matrix �(�). It should be noted that, since the sigmoid function is non-

linear, the Jacobian matrices �(�), and, in turn �(�), both depend on the input vector !(î) ≡ �(
) that is a 

priori unknown since the Kriging metamodels predict directly !"(')��(
). To address this problem, we 

reconstruct !"(')��(
) (through the SSAE decoder) obtaining ���(
) that is eventually used to derive �(�) 

through the procedure shown above. This procedure, unlike in the case of PCA, is repeated for each iteration 

of the MCMC algorithm because �(�) depends on 
. It is unlikely to assume that ;U!�V
W is exactly 

multivariate Gaussian because of the non-linear transformations introduced by the sigmoid activation 

function; however, it still can be approximated by Gaussian distribution: 

;U!�V
W = �U!�|!(�), �(�)W (C.6) 

Considering the observation reported above; for each iteration of the MCMC sampling, we propose the 

following algorithm to determine and compute the analytical expression of the likelihood: 

1. Compute the Kriging prediction !"(')��(
) in the ;∗-dimensional features space;  

2. reconstruct the Kriging prediction through the SSAE decoder in order to obtain ���(
); 

3. impose !(î) = ���(
) and �(î) = �QRSTE , then compute �(�) applying the EKF; 

4. assume the likelihood ;U!�V
W to be Gaussian distributed: !�~oU!�|!(')��(
), �(�)(
)W = !(')��(
) N oU^ , �(�)(
)W (C.7) 

        according to the Kriging theory: 

!(')��(
)~oU!"(')��(
), ���mµm�µ(
)W = !"(')��(
) N oU^ , ���mµm�µ(
)W (C.8) 

where �������� is the covariance matrix associated with the Kriging prediction uncertainty, that 

is a ;∗ × ;∗ matrix having the mean square errors of each feature prediction as diagonal entries: 
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�������� = ¹Q81(º)2 0 00 ⋱ 00 0 Q8;∗(º)2 ¼ 

 

(C.9) 

 

5. finally, substitute equation (C.8) into (C.7) and assume that oU^ , �(�)W and oU^ , ���mµm�µW are 

statistically independent, then ;U!�V
W can be written as: 

;U!�V
∗W = oU !"(')��(
), �(�)(
) N ��������(
)W (C.10) 

 

Since in this work oRST = 1, considering equation (C.10), the posterior PDF reduces to: 

;U
V!�W ∝ ;(
) 1U√2bWTr|�| pC; g− 12 B!\ − !"(')��(
)HI  �,D B!\ − !"(')��(
)Hh 
(C.11) 

where � = �(�)(
) N ���mµm�µ(
). Note that �(�)(
), in the expression (15) of Section 3.2, coincides with �RST(
). 
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