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Chaotic behavior refers to a behavior which, albeit irregular, is generated by an

underlying deterministic process. Therefore, a chaotic behavior is potentially controllable.

This possibility becomes practically amenable especially when chaos is shown to

be low-dimensional, i.e., to be attributable to a small fraction of the total systems

components. In this case, indeed, including the major drivers of chaos in a system into

the modeling approach allows us to improve predictability of the systems dynamics.

Here, we analyzed the numerical simulations of an accurate ordinary differential equation

model of the gene network regulating sporulation initiation in Bacillus subtilis to explore

whether the non-linearity underlying time series data is due to low-dimensional chaos.

Low-dimensional chaos is expectedly common in systems with few degrees of freedom,

but rare in systems with many degrees of freedom such as the B. subtilis sporulation

network. The estimation of a number of indices, which reflect the chaotic nature of a

system, indicates that the dynamics of this network is affected by deterministic chaos.

The neat separation between the indices obtained from the time series simulated from

the model and those obtained from time series generated by Gaussian white and colored

noise confirmed that the B. subtilis sporulation network dynamics is affected by low

dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal

driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase

B (Spo0B). We then analyzed the parameters and the phase space of the system

to characterize the instability points of the network dynamics, and, in turn, to identify

the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for

which the whole system is highly sensitive to minimal perturbation. In summary, we

described an unappreciated source of complexity in the B. subtilis sporulation network by

gathering evidence for the chaotic behavior of the system, and by suggesting candidate

molecules driving chaos in the system. The results of our chaos analysis can increase our

understanding of the intricacies of the regulatory network under analysis, and suggest

experimental work to refine our behavior of the mechanisms underlying B. subtilis

sporulation initiation control.

Keywords: systems biology, computational modeling, sensitivity analysis, low dimensional chaos, signal

transduction, sporulation, Bacillus subtilis
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1. INTRODUCTION

Bacterial spores are important contaminants in food, and the
spore forming bacteria are often implicated in food safety and
food quality considerations (Carlin, 2011). Most microbial spore
forming bacteria respond to stress (e.g., nutrient deprivation) by
inducing the expression of an appropriate suit of adaptive (stress-
response) genes to help them cope with adverse environmental
circumstances; an extreme example is endospore formation
(Ihekwaba et al., 2014).

Since sporulation is an energy consuming process that
requires a significant reorganization of cellular activity, the
decision to commit to spore formation is subject to the result
of integration of multiple signals by a complex gene regulation
network.

The initiation of sporulation is one of the decisive moments in
spore formation, as exemplified by the bacterium Bacillus subtilis.
The changes in gene expression and morphology induced by
sporulation are regulated in B. subtilis by a complex network
involving more than 120 genes (Stragier and Losick, 1996;
Fawcett et al., 2000).

The DNA-binding protein Spo0A is the master regulator for
entry into sporulation in B. subtilis. The concentration level
and the phosphorylation state determine the ability of Spo0A
to alter transcription. Upon phosphorylation, Spo0A undergoes
an allosteric change that re-orientates a phenylalanine residue
and allows the molecule to bind DNA (Muchová et al., 2004)
and activate key genes that drive the positive regulation of
sporulation, particularly the spoIIA, spoIIE, and spoIIG genes
involved in establishing compartment-specific transcription
under the control of σF (spoIIA operon and the spoIIE gene) and
σE (spoIIG operon) (Satola et al., 1991, 1992; York et al., 1992).
Phosphorylated Spo0A also acts as a repressor, blocking the
expression of the abrB gene. This repression has the consequence
of setting up a self-reinforcing cycle that contributes to the
further accumulation of Spo0A at the start of sporulation (Fujita
and Losick, 2005; Tojo et al., 2013). Indeed, the inhibition that
phosphorylated Spo0A exerts on abrB gene expression leads
to the depletion of the AbrB protein from the cell and to
the accumulation of σH, with the net result of enhancing the
expression of KinA, Spo0F and of the Spo0A gene itself (Strauch
et al., 1993; Tojo et al., 2013).

Spo0A activation is under the control of a complex network
capable of integrating diverse physiological and environmental
signals, and relaying signals through a three-level phosphorelay
down to the response regulator Spo0A. Various mathematical
models of B. subtilis sporulation mechanisms can be found in
the literature, among the most recent ones we mention (Kuchina
et al., 2011; Sen et al., 2011; Narula et al., 2012; Kothamachu et al.,
2013; Vishnoi et al., 2013; Ihekwaba et al., 2014).

This paper is based on the model proposed in Ihekwaba
et al. (2014), which integrates most of previous mathematical
modeling works on B. subtilis sporulation initiation. The
model we consider encodes the relationships among the time-
dependent concentrations of sporulation signals, histidine
kinases, phosphorelay proteins and sporulation initiation
proteins in the form of a deterministic differential model

having 27 variables. Simulation of the differential equations via
numerical integration provides predictions about the evolution
of the B. subtilis sporulation initiation regulation network,
given the initial state of variables. Ihekwaba et al. (2014) also
performed a sensitivity analysis of the model to explore the set of
possible behaviors with varying the values of its parameters (i.e.,
the kinetic rate constants).

In this paper, we continue the analysis of model behavior,
with the aim of investigating whether the time series of the
variables, as predicted by the differential equations model, are
affected by deterministic chaos, or simply chaos. A chaotic system
is a system that is predictable up until a given time, after which
it becomes unpredictable (i.e., long term unpredictability) due
to its sensitivity to initial conditions (Kellert, 1993). Even if
the initial state is known at a very accurate level of detail,
any imprecision in its quantification, no matter how small,
grows quickly (exponentially) with time, rendering long-term
prediction impossible.

Identifying chaos and its drivers in a biological system
provides useful information (i) to understand the origins of the
observed dynamics (Weiss et al., 1994; Lecca et al., 2016), and
(ii) to shed light into the control mechanisms that a biological
system may have implemented to maintain a stable activity even
when subject to perturbations of its initial conditions (Sinha,
1997). Both chaotic dynamics and stochastic dynamics exhibit
a complex phase space structure and are not predictable, but
chaos is not stochastic noise (Lecca et al., 2016). Indeed, a
chaotic dynamics is governed by deterministic laws in which
no randomness is involved, whereas a stochastic dynamics is
governed by rules involving random variables. As a consequence,
if the laws and the drivers of the dynamics of a chaotic system are
known, its unpredictability can potentially be controlled (Sinha,
1997; Lai, 2014).

Low-dimensional chaos occurs when a reduced number of
contributing species are responsible for the complex dynamics.
Such a low-dimensional chaos is of particular interest in
biology (Skinner, 1994; Kaneko, 2006; Vasseur, 2015). Since
in a biological system affected by low-dimensional chaos the
variables governing the spatial and temporal dynamics are few
in number, a low-energy control of unpredictability of the system
dynamics can be implemented and a simpler model of a complex
dynamics can be provided. Low-dimensional chaos is expected
to be common in systems with few degrees of freedom (Skinner,
1994), but is expected to be rare in systems with many degree
of freedom such as the sporulation network of B. subtilis. The
results of our analysis show that only few molecular species are
contributing to the appearance of deterministic chaos in the
dynamics of the modeled network.

2. THE MODEL

In Ihekwaba et al. (2014), a mathematical model of the network
regulating Bacillus subtilis sporulation initiation was proposed.
The model represents at the molecular level the sequence of
events that lead to the activation of the early genes under control
of the master regulator molecule Spo0A, distilling and extending
the results obtained in various modeling studies focused on
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systems where sporulation is induced by an artificial inductor, the
Isopropyl-D-1-thiogalactopyranoside (IPTG) (see for instance
Narula et al., 2012), and modeling as well the induction of
sporulation that occurs in wild-type cells.

A high-level diagrammatic description of the molecular
network governing sporulation initiation in B. subtilis is provided
in Figure 1, where pointed arrows represent activation and blunt
arrows indicate repression.

The B. subtilis sporulation network model considered in
this study is the published model by Lecca et al. (2016)
and Ihekwaba et al. (2014). It follows the topology of the
network shown in Figure 1, thereby encompassing three distinct
sub-models:

1. input signal, representing the sporulation initiation processes
induced by the signals on the histidine kinases;

2. phosphorelay, encoding the signal transduction along the
phosphorelay components, from histidine kinases downwards
to the master regulator Spo0A;

3. gene expression, modeling the target gene expression
activation operated by the activated effector Spo0A.

In the following section, we explain the structure of each
sub-model, and use a graphical notation to represent
activation/repression (arrows with non-solid ends) which is
introduced in Figure 1. In our modeling, we consider both
transcription and translation of proteins. For each species
involved in a synthesis process (i.e., transcripts and proteins), the
model includes a degradation reaction, not shown in the model
diagrams for clarity.

2.1. Input Signal Sub-model
The input signal sub-model, shown in Figure 2, represents the
regulation effects that artificial inducers (in this case IPTG) and
cell produced sporulation signals (modeled by species SS) have on
the HKs. In the model, reactions are consecutively numbered. In
our model, of the five known kinases that have been identified

as being capable of initiating sporulation in B. subtilis (Jiang
et al., 2000), we only considered the histidine kinase KinA. This is
the major kinase responsible for initiation of sporulation and its
overexpression during exponential growth is sufficient to induce
entry into sporulation (Fujita and Losick, 2005).

The IPTG regulation of sporulation is rendered by the
indirect release of inhibition for the transcription initiation
of KinA (Eswaramoorthy et al., 2009; Narula et al., 2012),
exerted by the lactose repressor (LacI) on the binding site
incorporated into the promoter. The addition of IPTG causes a
conformational change in the LacI protein, bringing it (reaction
r17) to an inactive form (LacI_d) that has very low affinity
for the KinA promoter. The consequence of the inhibition
release is an increased level of KinA transcription (reaction
r11). In the diagrammatic representation, we use a “droplet”
notation for species that are not explicitly represented, such
as genes in transcription reactions. The LacI conformational
change is however reversible (see reaction r18). Molecules of
KinA transcript are translated into protein molecules (reaction
r12), which can reversibly bind (reactions r13 and r14) to form
dimers. KinA dimers have the ability to autophosphorylate
(reaction r15), producing the active species that initiates the
phosphorelay signaling (Wang et al., 2001; Eswaramoorthy et al.,
2009). We model the dephosphorylation and the unbinding
of the KinA dimer as a single reaction (r16). The model also
considers the activation of the histidine kinase caused by the
naturally occurring sporulation signals (SS), which accelerate the
KinA autophosphorylation reaction and can lead B. subtilis into
sporulation alone. Last, the model includes the positive effect that
active Spo0A has on the transcription of KinA, via the double
repression feedback loop that links phosphorylated Spo0A with
AbrB, and AbrB with KinA.

2.2. Phosphorelay Sub-model
The phosphorelay sub-model depicted in Figure 3 is based
on phosphorylation, dephosphorylation and phosphotransfer

FIGURE 1 | The sporulation initiation network in B. subtilis is activated by signals that first cause the activation of histidine-kinases (HKs). This can

occur either via the direct accumulation of the natural sporulation signals in the cell or via artificial induction (IPTG), both which have been considered in our modeling.

The activated HKs transfer phosphor groups to the phosphorelay mediator proteins Spo0F and Spo0B, until activation of the transcription factor Spo0A. The

phosphorylated form of the master regulator protein Spo0A activates the genes (spolla, spolle, and spollg) that govern forespore and mother cell specific transcription

factors and exerts a positive feedback on phosphorelay components through the repression of abrB gene expression.
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FIGURE 2 | The input signal model represents the artificial sporulation initiation induced by IPTG through the effect on KinA, as well as the activation

of KinA dimers by unknown sporulation signals (SS) generated under unfavorable environmental conditions.

FIGURE 3 | The phosphorelay sub-model encodes the transfer of phospho groups from activated KinA to Spo0F, which then leads to Spo0A

phosphorylation via the phosphotransferase Spo0B. Dephosphorylation of Spo0F and Spo0A is modeled by abstracting the phosphatase species.

reactions. Our model includes the main phosphorelay species
Spo0F, Spo0B, and Spo0A, which together form a cascading
phosphotransfer (de Jong et al., 2010; Sen et al., 2011). For
each of these proteins, the model includes a gene transcription
reaction (r21, r22, and r23), and a translation reaction (r24,
r25, and r26). The phosphorylated KinA dimer transfers the
phosphate group to Spo0F (reaction r27), phosphorylated
Spo0F transfers the phosphate group to Spo0B (reaction r29),

and finally phosphorylated Spo0B transfers the phosphate
group to Spo0A (reaction r210). In the model, phosphorylated
Spo0F and phosphorylated Spo0A spontaneously lose the
phosphate group (reactions r28 and r211). Finally, we
include in the model the phosphorelay self-activation loop
induced by phosphorylated Spo0A, which as already described
positively affects the transcription of both Spo0F and Spo0A
species.
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2.3. Gene Expression Sub-model
Phosphorylated Spo0A up-regulates transcription from spoIIA,
spoIIE, and spoIIG promoters. The gene expression sub-model
shown in Figure 4 encodes the activation of transcription exerted
by Spo0A, and includes transcription reactions (r31, r32, and r33)
and translation reactions for AA, AB, and AC proteins (r34, r35,
and r36), IIE protein (r37) and GA and GB protein molecules
(r38 and r39). Notice that AA, AB, and AC, and also GA and
GB, are transcribed polycistronically from the spoIIA and spoIIG
operons, respectively (Narula et al., 2012).

In the rest of the paper and in the Supplementary Material,
we adopt the following notation to indicate the variables
corresponding with the molecular species of the model: the
name of the protein is written in lowercase (e.g., Spo0A, spo0a),
the transcript of the gene is denoted by the suffix “_t” (e.g.,
the transcript of gene Spo0A is denoted by spo0a_t), and the
phosphorylated form of the protein is indicated by the suffix “p”
(e.g., the phosphorilated form of protein Spo0A is spo0ap). The
mathematical specification of the model and its parameters are
given in Tables S1–S4. The time is measured in seconds (s), and
the molecular species concentration in nM.

3. DETECTING CHAOS IN B. SUBTILIS

SPORULATION NETWORK DYNAMICS

A system is affected by deterministic chaos if its dynamics is
governed by deterministic rules and any change in the initial
state, no matter how small, grows quickly with time, rendering
long-term prediction of the system behavior impossible. A system
is affected by low-dimensional chaos if only a small number of
variables exhibits a chaotic dynamics, i.e., an aperiodic irregular
time-behavior (Tél and Gruiz, 2005; Layek, 2015).

The presence of low-dimensional chaos in biological systems
is of particular interest, because it indicates that the variables
governing the spatial and temporal behavior of the systemmay be
few in number. Thismeans that the dynamics of the systemmight

be controlled by only a few crucial variables. The complexity
of control inherent in chaotic systems may be important in
the dynamics of gene expression regulation. Therefore, it is of
particular interest to assess the presence of low-dimensional
chaos in a complex system such as the B. subtilis sporulation
network, as this analysis allows the identification of the variables
(few in numbers) that control the predictability of the dynamics
of the whole system.

There are two-established methods to explore chaotic
behavior of a dynamical biological system. The first one is
a direct analysis of the experimental time series, combined
with the development of algorithms for computing relevant
indices quantifying the features of the system dynamics. The
second is the implementation of a model developed directly
from the experimental observations that aims to account for the
essential mechanisms at work in the real system and explain
the dominant behavior. Then, a subsequent analysis focuses on
the simulated time series obtained by model solution and its
phase space in order (i) to evaluate the control parameters,
(ii) to detect the system components (e.g., genes, proteins,
chemical species, etc.) that exhibit a chaotic dynamics, and (iii) to
investigate the robustness of the dynamics against perturbations.
We implemented the second approach, because the inclusion in
the analysis of a model of the systems dynamics affords not only
the identification of the drivers of chaotic dynamics, but also
the conceptualization of their role and of their effects within the
mechanisms of interaction with other molecular species. In the
next section, we provide a detailed explanation of this analysis.

3.1. Sensitivity Analysis
We undertook local sensitivity analysis to assess the sensitivity
of the solutions of the system’s equations to the variation of
individual parameter in the system. We discussed the feasibility
of global sensitivity analysis of the system to variation in
parameters in the Supplementary Information.

We randomly sampled NP values from a uniform distribution
for each parameter (i.e., kinetic rate constant). The uniform

FIGURE 4 | The gene expression model represents the transcriptional activity of phosphorylated Spo0A, which binds to the Spoll promoters and

promotes transcription initiation for the important sporulation initiation proteins, AA, AB, AC, IIE, GA, and GB.
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distributions were positively defined on the maximal range of
parameter variability in which the system of ordinary differential
equations has a unique solution (i.e., it is not underdetermined).
We determined this range Iq∗ (ph) by attempting to solve the
system of equations for different sets of parameters P(q) = {ph},
h = 1, 2, . . . ,NP, obtained by varying the value of q ∈ N

+ in the
interval [2, 30] in the following expression

Iq(ph) =

[

ph

q
, q× ph

]

, h = 1, 2, . . . ,NP (1)

The maximal interval of parameter variation is defined by the
maximal value of q for which the system of differential equations
has a unique solution.

The parameters were changed one at a time while keeping
the values of the others fixed. Since for each parameter ph we
sampled NP values, we performed NP model simulations, i.e.,
one simulation for each sampled value in the range of parameter
variability Iq(ph). The index of sensitivity of the time series xs(t),
(s = 1, 2, . . . , d, where d is the number of molecular species in
the system), with respect to the change of the h-th parameter
from the value ph to the value p′

h
is calculated as the mean

of the standard deviations of the distributions of the simulated
values of the variable over the range of parameter variability and
over time, i.e.:

SIs,h =
1

N

N
∑

k= 1

(

1

NP − 1

NP
∑

r= 1

(x(r)s (tk|ph ← p′h)− xs
(r)

(ph← p′h))
2

)
1
2

(2)

where N is the length of the time series, and

xs(ph ← p′h) =
1

NP

NP
∑

k= 1

xs(tk|ph ← p′h). (3)

With the expression ph ← p′
h
, we denote the replacement of value

ph with the value p′
h
.

3.2. Complexity Indices
In order to detect the presence of chaos in B. subtilis
network dynamics, for the time series of each molecular
species we calculated a set of indices that capture
different aspects of the complexity. This set of indices
includes:

1. Lyapunov exponents (λ): they measure the rate of separation
of infinitesimally close trajectories in the phase space
generated by slightly different values in the initial state of the
system. The largest Lyapunov exponent is usually considered
important in the determination of chaotic behavior. A positive
value for the largest Lyapunov exponent indicate orbital
instability and chaos (Kaneko and Tsuda, 2001; Sprott, 2003;
Kalitin, 2004).

2. fractal dimension (DF): a statistical index for pairwise
distances of the points of a time series; it indicates how a set
of points fills its space and thus quantifies the complexity of
the behavior of a trajectory;

3. sample entropy (SE): a measure of data regularity; a smaller
value of sample entropy indicates more self-similarity in the
data of the time series and a less noise (less disorder);

4. time lag (TL): the time after which the auto-correlation of the
time series is negligible;

5. embedding dimension (DE): similarly to the fractal
dimension, it measures topological complexity of a time
series. A set of points has embedding dimension DE if DE

is the smallest integer for which it can be embedded into
RDE without intersecting itself. So, DE is the minimum
dimension of a space in which a trajectory in the phase space
reconstructed from the observed time series does not cross
itself (in this case the dynamics is deterministic) (Abarbanel,
1996; Tamma and Khubchandani, 2016).

In chaotic systems, small differences in the initial condition result
in strongly different solutions. Therefore, a chaotic system is
unpredictable in the sense that the variability of the prediction
induced by small changes in the initial conditions is unacceptably
high in comparison to the difference of the initial states.

In deterministic systems, complete knowledge of the rules of
the dynamics and of the initial state (i.e., values for the abundance
of the system’s components at initial time t0–sometimes called
initial conditions) x(t0), is sufficient to determine x(t) at each
t > t0. In chaotic deterministic systems, if the initial state is
changed by a small value ǫ , two trajectories that were initially
close, will exponentially separate. Formally, if x(t) and x′(t) are
the two trajectories generated by the initial states x(t0) and x

′(t0),
and if |x(t0)− x′(t0)| < ǫ, we have that

|x(t)− x′(t)| ∼ ǫeλt (4)

where λ is the angular coefficient of the straight line defining
ln |x(t)− x′(t)| as a function of time t:

ln |x(t)− x′(t)| = λt + ln ǫ.

Using Equation (4) it is possible to predict the time t∗ after
which the predicted trajectory is too imprecise. Indeed, if δ is the
tolerance on the precision of the prediction, then from Equation
(4) ǫeλt

∗
∼ δ, and therefore

t∗ ∼
1

λ
ln

δ

ǫ
. (5)

The expression in Equation (5) suggests that t∗ can be arbitrarily
increased by decreasing ǫ. However, de facto, it is not possible to
obtain a value of t∗ much greater than 1

λ
. For instance, if we want

to increase t∗ by one order of magnitude, we have to decrease ǫ by
a factor e10 ∼ 104. This example points out that the dependence
of t∗ on the ratio δ

ǫ
is so weak that in Equation (5), the only term

that strongly influences t∗ is λ (Vulpiani, 2004; Cencini et al.,
2009; Lecca et al., 2016).

The system of differential equations describing the dynamics
of the B. subtilis sporulation network is a d-dimensional system,
where d is the number of molecular species involved in the
system. At each instant of time t the system is contained in
a d-dimensional sphere in the phase-space. In particular, this
d-dimensional sphere is centered at x(0) (x(0) belonging to the
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attractor) and has radius ǫ. The time evolution of the system
dictated by the equations deforms the sphere into an ellipse. If
li(t) denotes the length of the i-th semi-axis of the ellipse at time
t, the characteristic Lyapunov exponents (λ1 ≥ λ2 ≥ · · · ≥ λd)
are defined as follows:

λi =
1

t
ln

li(t)

ǫ
, i = 1, 2, . . . , d. (6)

If λi > 0, the i-th semi-axis grows with time; in contrast, if
λi < 0 the i-th semi-axis shrinks with time. In a system extremely
sensitive to the initial conditions, at least one of the Lyapunov
exponents is greater than zero.

For each molecular species i in the B. subtilis network
we have calculated the maximal Lyapunov exponent from the
corresponding simulated time series, i.e., the Lyapunov exponent
at the maximum observed time, formally defined as follows

λmaxi = lim
t→∞

lim
ǫ→0

λi (7)

The greater a positive maximal Lyapunov exponent, the faster the
rate of divergence of the two trajectories x(t) and x′(t). Thus, the
Lyapunov coefficients were used to measure the contribution of
each molecular species to the system’s dynamics. In this study,
we used the Rosenstein et al. (1993) algorithm to estimate the
maximal Lyapunov exponent.

The Lyapunov exponents capture the unpredictability in a
system’s evolution which can be generated by slightly different
initial states. However, unpredictability could depend also on an
irregular aperiodic behavior of the abundance of some molecular
species in the system.

To capture this aspect of a chaotic dynamical system, and,
most importantly to distinguish it from noise, we have estimated
the fractal and the embedding dimensions of the time series of
each gene and protein in the system. Both fractal and embedding
dimensions are generalizations of the topological dimension and
measure the dimensionality of the space occupied by the set of
points of the time series. The more complex and irregular the
distribution of the points in space is, the higher the fractal and
embedding dimensions of the system.

We estimate the fractal dimension as a correlation dimension
(Theiler, 1990; Ding et al., 1993), defined in terms of the
correlation integral C(ǫ):

C(ǫ) = lim
N→∞

gǫ

N2
(8)

where N is the number of points in the time series, and g is
the total number of pairs of points that dist from each other is
less than ǫ (a graphical representation of such close pairs is the
recurrence plot (Marwan et al., 2016). The correlation integral
estimates the probability that a pair of points of the time series
is separated by a distance less than ǫ. For ǫ << 1 it can be shown
(Theiler, 1990) that

C(ǫ) ∼ ǫDF (9)

where DF is the correlation dimension. For a sufficiently large,
and evenly distributed, number of points in a time series, a log-
log graph of the correlation integral vs. ǫ can be used to estimate

DF (Kantz, 2004). The more complex and irregular a time series
is, the higher its correlation dimension, as the number of ways for
points to be close to each other is greater (Higuchi, 1988). Indeed
the fractal dimension corresponds to the number of the degrees
of freedom of the time series (Mera and Morán, 2002).

Unlike topological dimension, the fractal dimension can take
non-integer values, indicating that a set of points of a trajectory
can fill its space qualitatively, and quantitatively, in a different
way from an ordinary geometrical set. For instance, a curve with
fractal dimension very near to 1, behaves quite like an ordinary
line, but a curve with fractal dimension greater than 2 winds
convolutedly through space very nearly like a surface or a volume.
As a consequence, if a time series of a gene or protein has a fractal
dimension significantly greater than 1, the dynamics of that gene
or protein is more likely affected by chaos than by noise.

The sample entropy SE adds further information to that
provided by the Lyapunov exponents and the fractal dimension,
as it is a direct measure of the unpredictability of a time series
(Mao, 2011). Indeed, SE estimates how much a given data
point depends on the values of a number m of preceding data
points, averaged over the whole time series. SE is computed as
the negative logarithm of the conditional probability that two
similar samples from the time series remain similar at the next
point (Richman and Moorman, 2000; Azar and Vaidyanathan,
2016). To calculate the sample entropy, points matching within
a tolerance ǫ are computed until there is no match according to
this condition. Formally, if

X(t) = {x(t1), x(t2), . . . , x(tN)} ≡ {x1, x2, . . . , xN}

is a time series of length N, the sample entropy is defined as in
the following by Azar and Vaidyanathan (2016), Sokunbi (2014),
and Richman and Moorman (2000).

SE(m, r,N, τ ) = − ln
U(m+ 1)(ǫ)

U(m)(r)
(10)

where Bi is the number of j where |X(i)− X(j)| ≤ r, and

U(m)(ǫ) =
1

N −mτ

N−mτ
∑

i= 1

Bi

N − (m+ 1)τ

Xm(i) = {xi, xi+τ , . . . , xi+(m− 1)τ }

Xm(j) = {xj, xj+τ , . . . , xj+(m− 1)τ }

1 ≤ j ≤ N −mτ , j 6= i.

Xm(i) is called template vector of lengthm of the time series X(t),
and an instance where a vector Xm(j) is within ǫ of Xm(i) is called
a template match. The quantity Bi

N− (m+ 1)τ
is the probability

that any vector Xm(j) is within r of Xm(j). Finally, τ is called
time delay, and in our analysis it has been set equal to the time
lag T∗L , that is an estimate of the time at which the time series
behavior becomes unpredictable. It can be computed using the
auto-correlation function method (Zeraoulia, 2011) and is taken
as the lag time T∗L at which the auto-correlation function

rTL =

∑N−TL
i= 1 (xi − x)(xi+TL − x)

∑N
i= 1(xi − x)2

. (11)
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FIGURE 5 | Heatmap summarizing the results of sensitivity analysis. The color of the cell is indicative of the value of the sensitivity index S as given in

Equation (2), categorized by intervals.

first crosses zero. This choice of τ in the estimation of sample
entropy is motivated by the need to capture also non-linear
autocorrelation properties of the time series (Kaffashia et al.,
2008). For instance, it has been proved that with a unity time
delay (Kaffashia et al., 2008), the sample entropy measures
only the linear autocorrelation properties of the time series. A
lower value of SE (and a higher value of T∗L) indicates higher
predictability of the time series, while a higher value of SE (and
a lower value of T∗L) indicates lower predictability.

Finally, we also considered the embedding dimension as a
measure of time series complexity. The embedding dimension
of a time series is the smallest dimension required to embed
it, and it can be estimated by the Cao’s algorithm (Cao,
1997). In our analysis, the parameter m in the definition
of sample entropy has been set equal to the embedding
dimension.

3.2.1. Distinguishing Noise from Chaos
Since both the presence of chaos and the presence of noise are
manifested as topological and statistical complexity of a time
series, our analysis aims to distinguish chaos from noise. In the
past decade many methods in a different application domains
have been proposed to make this distinction, the most recent
are reported in Skiadas and Skiadas (2016), Ravetti et al. (2014),
Rohde (2008), Gao et al. (2006), and Rosso et al. (2007).

We adopted a simple well established method based on
the comparison of the complexity indices identified above and
obtained from the time series simulated by the model with those
obtained from Gaussian white noise, colored noise and power-
law noise (Skiadas and Skiadas, 2016). The expectation is that
sample entropy, time lag, and embedding dimension for the non-
noisy candidate chaotic times series are significantly different
from those estimated for the white and colored noise time

Frontiers in Microbiology | www.frontiersin.org 8 November 2016 | Volume 7 | Article 1760

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lecca et al. Analysis of Bacillus subtilis Sporulation

TABLE 1 | Molecular species and the parameters mostly controlling their

dynamics.

Molecular species Parameters

aa degp,k_trl_aa

spo0a degp,k_trl_spo0a

dimkina k_trl_kina,Kk_tr_kina_laci

spo0ap k_trl_kina,degp

ac k_trl_ac,k_trl_kina

iie k_trl_iie,degp

spo0bp k_trl_spo0a,k_trl_kina

ab degp,k_trl_ab

laci_d degp,degm

ga degp,k_trl_ga

spo0b degp,k_trl_spo0b

gb degp,k_trl_gb

spo0f degp, k_trl_spo0f

series. Moreover, the time behavior of the Lyapunov exponents
is expected to be non-linear for the noise and at least linear for
chaotic non-noisy time series (Gao and Zheng, 1994).

3.3. Analysis of the Jacobian Matrix: The
Time Evolution of the Phase Space
In order to explore the phase space of the systems and calculate its
equilibria and its time evolution we analyzed the Jacobian matrix
J of the system of ordinary differential equations describing the
dynamics.

J =













∂f1
∂S1

∂f1
∂S2

. . .
∂f1
∂Sd

∂f2
∂S1

∂f2
∂S2

. . .
∂f2
∂Sd

. . . . . . . . . . . .
∂fd
∂s1

∂fd
∂s2

. . .
∂fd
∂sd













(12)

where fi =
dsi
dt
, and si is the abundance of the i-th molecular

species in the system (i = 1, 2, . . . , d).
A steady state point seq = {s

eq
i }, i = 1, 2, . . . , d, of the systems

is defined by a solution of the system of algebraic equations as in
the follows:

dsi

dt
= 0, i = 1, 2, . . . , d.

The stability of a steady state point is determined by the sign
of the real part of the eigenvalues of the Jacobian matrix. In
particular, if the real parts of all eigenvalues are negative, the
steady state point is stable. It’s termed sink, because, there is a
basin around it, and any initial condition in that basin will result
in a trajectory falling in toward the steady state point.

If the real parts of all the eigenvalues are positive, the steady
state point is unstable. It is termed source, because, starting from
an initial point close to it, the trajectory will move away from it. If
the real parts of the eigenvalues are of different signs, the steady
state point is called a saddle point. It is unstable, attracting along
some axes and repelling along others. If there are also complex
components, the nature of the fixed point doesn’t change (it’s still

FIGURE 6 | Barplot showing the values of the complexity indices

maximal Lyaopunov exponent (A), fractal dimension (B), time lag (C),

and embedding dimension (D) estimated from the time series of each

molecular species in the system. A red line marks the average value.

a sink, source, or saddle point) but with a twist. If the eigenvalues
are purely complex, then there are closed orbits around the fixed
point.

The eigenvectors of the Jacobian matrix give the axes along
which the behaviors indicated by the eigenvalues are centered. So,
the eigenvector associated with a negative eigenvalue is a vector
along which the fixed point attracts. The eigenvector associated
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FIGURE 7 | Sample entropy is a measure the repeatability or

predictability within a time series. spo0bp has a sample entropy about six

times greater than the sample entropy of the other molecular species.

with a positive eigenvalue is an axis along which the fixed point
repels.

4. RESULTS

In this section we collect the results of three different analyses:
(i) the parameter sensitivity analysis, (ii) the model time series
analysis, and (iii) the phase space analysis. The first two analyses
capture different aspects and manifestations of the presence of
chaos and their outputs are sets of molecular species whose
behavior is a likely candidate for chaotic dynamics. The final
result is an intersecting set of molecular species that represents
the consensus set of molecular species whose dynamics is affected
by chaos. The third analysis aims at determining how the
topology and the parameters of the network of interactions
among the molecular species evolves with time. This last analysis
allows the determination of the time variation of the active
degrees of freedom in the system (Hilborn, 2000).

4.1. Kinetic Rate Constants Controlling the
Dynamics
We explored the parameters’ space in which the systems of
ordinary differential equations that represent the model has a
solution. We found that the largest range of variation for the
parameters at which the systems still admits a unique solution
is defined by

I(ph) =

[

ph

10
, 10× ph

]

, h = 1, 2, · · · ,NP (13)

where ph is the value of the h-th parameter assigned from
experimental data. For each parameter we randomly sampled 50
values from a uniform distribution positively defined in I(ph).
In turn these were used in simulations to give sensitivity indices
according to Equation (2). In Figure 5 a heatmap shows the value
of the sensitivity index collapsed into intervals.Moreover,Table 1
lists the variables and the parameters which affect them most.

FIGURE 8 | Complexity detected in the B. subtilis sporulation network

dynamics is due to low dimensional chaos and not to noise. For the time

series of molecular species spo0a, spo0b, spo0ap, spo0bp, spo0f, and

spo0fp, all the indices of complexity are significantly greater than those for the

time series of Gaussian white noise.

Appreciable parameter sensitivity is only apparent in an interval
ranging from a tenth to ten times the parameter value obtained
from data. The dynamics of the majority of the molecular species
is robust with respect to the variations of the parameters’ values
on smaller intervals (see Figure S2). The molecular species spo0a,
spo0b, spo0ap, and spo0bp are the most sensitive to perturbation
of parameters even on small intervals.

4.2. Complexity Indices Identify the Drivers
of Chaotic Dynamics
Figure 6 gives a graphical summary of the complexity indices
estimated for the time series of each molecular species. The
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TABLE 2 | Sets of molecular species with values of the complexity indices indicative of presence of chaos.

Index Variables % of total

nr. of variables

Positive Lyapunov exponent dimkina, dimkinap, spo0f, spo0fp, spo0b, spo0bp, spo0a, spo0ap 32

Fractal dimension (above the average) kina_t, kina, dimkina, dimkinap, spo0fp, spo0a, spo0ap, spollg_t 32

Embedding dimension (above the average) kina_t, kina, dimkina, dimkinap, spo0fp, spo0a, spo0ap, spollg_t 36

Time lag (below the average) laci_t, laci, laci_d, spo0f_t, spo0f, spo0b_t, spo0b, spo0bp, spo0a_t 64

spo0a, spolla_t, spolle_t, aa, ab, ac, iie

Sample entropy (above the average) spo0f, spo0bp, spo0a 12

Complex trajectory in phase space ga, gb, spo0a, spo0a_t, spo0b, spo0f_t, spollg_t 28

Recurrence plot reveals chaos spo0b, spo0bp, spo0a, spo0ap, aa, ab 24

High parameter sensitivity aa, spo0a, dimkina, spo0ap, ac, iie, spo0bp, ab, laci_d, 52

(ordered by sensitivity) ga, spo0b, gb, spo0f

The third column reports the percentage of species scoring positive to the test of chaos according to a set of indices.

FIGURE 9 | Species scoring positive to complexity indices. Species are organized according to the different sets of complexity indices they resulted to be

positive to. (A) spo0b_t, laci, and laci_t are characterized by uniformly irregular recurrence plot, a short time lag and an embedding dimension greater than the

average. Indeed, they belong to the intersection of the set of species listed on rows 3, 4, and 7 of Table 2. (B) spo0a has a maximal positive Lyapunov exponent, a

large sample entropy and is fractional in dimension. Indeed, it belongs to the intersection of the sets of species listed on rows 1,2, and 5 of Table 2. (C) spo0b has a

maximal positive Lyapunov exponent, an embedding dimension greater than 1, a short time lag, and a high sensitivity to parameters. It belongs to the intersection of

sets of species on rows 1, 3, 7, and 8 of Table 2.

majority of the molecular species have positive Lyapunov
exponents, fractional dimension, time lag between 0 and 400 (that
is the about 3% of the time range used in the simulation), and
embedding dimension greater than 1. Figure 7 shows the sample
entropy values and reports that the highest vale of sample entropy
is assumed by spo0bp.

To distinguish chaotic from noisy dynamics, we compared
the complexity indices of the time series of each variable with
the mean and the standard deviation of the complexity indices
estimated from 50 time series of white Gaussian noise of
mean µ = 0, variance σ 2 = 1 generated for each variable
and having amplitude equal to the range of variability of the

variable. The heatmap in Figure 8 shows, on the left side, the
frequency at which the noisy time series has an index value
higher than that observed for the time series from the real model.
Comparison of indices under chaotic and noisy conditions
is performed for each index (shown by column) and each
variable (shown by row). The heatmap on the right side shows
correlation between Lyapunov index and time points in the
time series. Column “Cor_Lyapunov_time” displays statistical
significance for Pearson’s correlation relating Lyapunov exponent
and time. Column “Cor_Lyapunov_time_white_noise” displays
similar information for the time series of white Gaussian noise
generated for each variable. We found that sample entropy,

Frontiers in Microbiology | www.frontiersin.org 11 November 2016 | Volume 7 | Article 1760

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lecca et al. Analysis of Bacillus subtilis Sporulation

TABLE 3 | Coordinates of the stable steady state point of the model solved

with initial conditions si (t = 0) = 0 ∀i = 1, 2, . . . , 25.

Molecular species Coordinate (nM)

laci_t 17.24

laci 18.27

laci_d 2855.29

kina_t 77.89

kina 674.32

dimkina 1719.72

dimkinap 81.81

spo0f_t 20.68

spo0f 1219.14

spo0fp 26.7

spo0b_t 41.1

spo0b 3683.52

spo0bp 2.09

spo0a_t 23.92

spo0a 2350.24

spo0ap 1921.15

spolla_t 76.6

spolle_t 57.45

spollg_t 81.74

aa 7979.31

ab 3542.82

ac 880.92

iie 660.73

ga 2316.09

gb 940.06

FIGURE 10 | Heatmap representation of the Jacobian matrix

eigenvectors (EVs) evaluated at the steady state point reported in

Table 3.

time lag and embedding dimension are significantly higher in
the model time series than in the white noise time series. The
Lyapunov exponents are significantly greater for the white noise
time series compared with the model’s time series, except for

FIGURE 11 | All the eigenvalues of the Jacobian matrix at the steady

state point are negative and thus the steady state point is a stable

attractor.

spo0a, spo0ap, spo0bp, spo0f, and spo0fp. This result suggests that
these molecular species exhibit remarkable chaotic dynamics.
The left part of the heatmap confirms a non linear time behavior
of the Lyapunov exponents of the white noise time series, and
suggests a linear time behavior of the Lyapunov exponents of
the model’s time series. Again, this result distinguishes between
chaotic dynamics and random noisy dynamics (Gao and Zheng,
1994). In the Supplementary Material (Figures S4–S6), we report
similar results obtained in the comparison of the complexity
indices of the model’s time series with the ones for the colored
and power law noise.

For each index of complexity, Table 2 (and a graphical
summary of it in Figure 9) reports the set of molecular species
where results indicate the presence of chaos. In this Table, we
also included two qualitative indicators of the presence of chaos,
such as a complex phase space (i.e., convoluted trajectories)
and recurrence plot. These plots are provided in Supplementary
Material (Figure S7), and visualize a square matrix, whose
elements are the times at which a state of a dynamical system
recurs (columns and rows correspond then to a certain pair of
times) (Marwan et al., 2016, 2007). We refer the reader to the
Supplementary Material for a comprehensive description of the
recurrence plots analysis.

The variable spo0b is the one with the largest set of complexity
indices whose values point to the presence of chaos.

4.3. Phase Space Analysis
We solved the systems of differential equations setting to zero the
initial concentration of all the molecular species (i. e. si(t = 0) =
0∀i = 1, 2, . . . , 25), and we found that the system has one steady
state point, whose coordinates are shown in Table 3. This point
is a stable equilibrium, as the eigenvalues of the Jacobian matrix
(Figure 10) of the system are all negative (Figure 11).

We also calculated the value of the elements of the Jacobian
matrix at different time points to determine its time evolution.
Since the entries of the Jacobian matrix are the partial derivatives
of the rate equations with respect to the variables [i.e., Jij =
∂fi
∂Sj

(Equation 12)], the Jacobian matrix can be represented by

a weighted graph, where the nodes represent the variables (i.e.,
the molecular species) and the edge weights are the elements
of the matrix Jij. We introduced the estimate of the error on
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FIGURE 12 | Graph with adjacency matrix equal to the Jacobian matrix at time t = 0 s. The graphs shows the basal reactions, i.e., those that initiate the time

evolution for the network.

FIGURE 13 | Graph with adjacency matrix equal to the Jacobian matrix at time t = 500.
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Jij defined as 1Jij = prec ×
∂2fi
∂S2j

, where prec = 10−8 is the

precision of the numerical solution of the model, and set the

threshold of 20% on the relative error ER =
1Jij
Jij

. Edges with

ER < 20% were retained and and allowed for the estimation
of the number of active degrees of freedom in the system, i.e.,
the number of variables involved in active interactions (Hilborn,
2000). Hence, the graphs derived from the Jacobian matrices
estimated at different time points are temporal snapshots of the
molecular interaction network.

TABLE 4 | Minimum, first quartile, median, mean, third quartile, and

maximum of the distributions of the Jacobian matrix values (i.e., edge

weights of the networks) at times t = (0, 500, 1000, . . . , 7500).

Time (sec) Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0.00 0.02 0.07 0.20 0.16 1.80

500 0.00 0.01 0.07 3.09 0.50 48.00

1000 0.00 0.01 0.07 3.09 0.50 48.00

1500 0.00 0.01 0.07 3.04 0.50 47.00

2000 0.00 0.01 0.07 3.04 0.50 47.00

2500 0.00 0.01 0.07 3.03 0.50 47.00

3000 0.00 0.01 0.07 3.04 0.50 47.00

3500 0.00 0.01 0.07 3.04 0.50 47.00

4000 0.00 0.01 0.05 0.90 0.46 11.00

4500 0.00 0.01 0.05 2.76 0.50 43.00

5000 0.00 0.01 0.06 3.30 0.50 52.00

5500 0.00 0.01 0.07 3.36 0.50 53.00

6000 0.00 0.01 0.07 3.25 0.50 51.00

6500 0.00 0.01 0.07 3.20 0.50 50.00

7000 0.00 0.01 0.07 3.14 0.50 49.00

7500 0.00 0.01 0.07 3.09 0.50 48.00

Steep changes of the values of the quartiles reveal an irregular behavior of the dynamics,

and reflect the presence of chaos.

The graphs derived from the Jacobian matrix estimated at
different time points are time snapshots of the interaction
network of the molecular species. These graphs visualize the
interactions that are active (i.e., with an edge that has a weight
significantly different from zero) at a given time, and thus
provide an approximate estimation and representation of the
number of active degree of freedom of the system. We report in
Figures 12, 13, the graphs obtained from the Jacobian matrices
evaluated at times t = {0, 500} s. For t > 500 s the variations of
the Jacobian matrix are minimal and thus not shown here (in the
Supplementary Material we provide the graphs for t > 500 s in
GraphML format).

In Table 4, we observe a rapid increment of the edge weights
from t = 0 to t = 500, than a plateau till t = 4, 000, and then a
decrement at t = 4, 000 s. These changes reflect the changes of the
topology of the network of B. subtilis sporulation initiation. These
steep decrements and increments are expressions of a stiff and
highly non linear dynamics, and in turn confirms the presence of
chaos (unpredictability) in (of) it.

Sensitivity to Initial Conditions
In order to assess the existence and, eventually, the sensitivity of
the steady state point in response to perturbations of the initial
conditions, we introduced a set 1 of perturbations of different
magnitudes: 1 = {1h, h = 1, 2, . . . , 7}, where 11 = 10−5 and
1i+ 1 = 101i, i = 1, 2, . . . , 6. We perturbed the initial state of
one variable at a time by 1h (h = 1, 2, . . . , 7), and calculated the
steady state point with the Newton-Raphson method (Deuflhard,
2004; Bressoud, 2007), which is one of the most consolidated
and efficient algorithms for finding the zeros of a function
(Hoppensteadt, 1993; Ortega and Rheinboldt, 2000).

As shown in Figure 14, this analysis allowed detecting
a number of species which, once perturbed, can cause
different types of complex evolutionary trajectories from the
initial state of the system. Perturbing the initial state of the

FIGURE 14 | The heatmap describes the systems ability to reach the steady state in response to seven different perturbation values of each species.

System’s response is described by three features: MSS, PRECISION and NO STEPS. Depending on the perturbation magnitude of the initial state, the

Newton-Raphson methods warns about the non-convergence to a steady state. This occurs when, depending on the initial conditions, the system has multiple

steady states (MSS), and the Newton-Raphson solution methods flips unpredictability among them (Bloomfield, 2014). MSS is a binary feature assuming 1 if the

system reaches multiple steady states and 0 otherwise; PRECISION is the precision in computation of a single steady state (reported in negative log scale.); NO

STEPs is the number of steps required converge to a single steady state. Perturbations extent is shown for each systems species by a color bar. The map shows that

the perturbation of laci_t, laci, laci_d, and kina causes an unresolved multi-stationarity.
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FIGURE 15 | Embedding dimension in response to perturbation of the initial state of the system variables. On the vertical right axis, the name of perturbed

species is reported, whereas on the left vertical axis the order of magnitude of the perturbation is reported. laci_t, laci, laci_d, kina_t, spo0b and spo0b_t embedding

dimension is highly sensitive to perturbation of the initial conditions.

laci_t, laci, laci_d, kina_t and kina species caused the most
noticeable consequence, preventing the system from reaching
the steady state, irrespectively of the applied perturbation
extent. This finding reflects the role of the species as starters
of sporulation dynamics. For another subset of species, such
as spo0a, aa, ab, ga, and gb, perturbing the initial state
caused an increase in the number of iterative steps required

by the Newton-Raphson method to reach the steady state,
compared to the majority of the species in the system. This
effect is indicative of increased complexity in the evolving
system.

Furthermore, as shown in the Supplementary Material,
we also found that the perturbations of the initial state of
all the species cause variations in the minimum embedding
dimension of spo0b, and spo0b_t, as well as of laci_t, laci, laci_d,
kina_t (Figure 15). Quantification of the increase in minimum
embedding dimension upon perturbation of the initial state is a

further indication of the high sensitivity to perturbations, for the
species highlighted by the initial analysis of complexity indices,

such as spo0b, spo0b_t, and for the species emerging from the
previous characterization of perturbation experiments.

Perturbations of initial conditions also cause variations of
the Kaplan-Yorke ratio (i.e., (

∑j
i= 1 λi)/λi+ j, where j is the

largest integer such that
∑j

i= 1 λi > 0) of spo0b_t, kina_t,
and gb and of the Kolmogorov-Sinai entropy (i.e., the sum of
positive Lyapunov exponents) of kina_t (Figures S8–S10). Hence,
by multiple analyses the system showed a highly unpredictable
behavior to perturbation of the initial state, as reflected by
exponentially growing separation of the trajectories as well as by
the topological complexity of the time series.

CONCLUSIONS

We have presented a detailed, and original analysis of the B.
subtilis sporulation initiation network dynamics. This analysis
aimed to detect the presence of low-dimensional chaos in the
dynamics of the system. Unlike more common approaches
to chaos detection, this analysis includes and, is based on,
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a mathematical model of the B. subtilis sporulation initiation
dynamics. This approach allows a comprehensive explanation
of the mechanisms through which those molecular species with
chaotic dynamics interact with the others and propagate the
effects of chaos throughout the system.

Our analysis has: (i) assessed sensitivity of the dynamics by
varying the kinetic parameters and the initial state of the model
to determine the dynamic control parameters and identify the
most crucial molecular species; (ii) calculated the complexity
indices of the time series obtained from the model, and used
these to identify the drivers of chaotic dynamics, and finally, (iii)
calculated the Jacobian matrix of the system of equations as a
function of time to find the steady state points and their nature
to give an estimate of the number of active degrees of freedom of
system as function of time.

We found that the dynamics of the B. subtilis sporulation
initiation network is affected by low-dimensional chaos and
identified Spo0B as the principal driver of the chaotic dynamics
in this system. Spo0B scored positive for the majority of the
chaos indices. This result suggests a new role for this molecular
species, which so far has received little attention, and highlights
the importance of its dynamics and interactions within the
network model structure. Our analysis also indicates additional
experimental work that could be conducted to improve our
understanding of the sporulation network and to determine
the role of Spo0B. On one hand, it would be important to
conduct phosphoproteomics experiments tomeasure the amount
of phosphorylated species, for which no experimental data is
yet available. On the other hand, the study of Spo0B mutated
(overexpressed/silenced) strains would refine our knowledge
about the dynamics of the 3-level B. subtilis phosphorelay and the
so far elusive mechanisms that could be regulating its expression.
Other molecular species that also showed positive results for the
test of chaos were spo0a, spo0b_t, laci, and laci_t. Thesemolecular
species also represent the degrees of freedom that are active
during most of the range of the simulated time. These species
have been identified as the drivers of the chaotic dynamics of

B. subtilis sporulation initiation network model, and have an
active role in determining its predictability.

One of the most challenging goal of studying a complex
biological system is to control it. In this vein, our work proposes
a method to identify the drivers in our B. subtilis sporulation
initiation network on which such methods of chaos control
might be applied. At the same time, our work highlights
the need to investigate on these drivers and their mechanism
of interaction in in order to successfully implement chaos
control.
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