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Abstract. The emerging research field developed to optimize the collaboration 

of human-robot systems for Industry 4.0 gives a central role to the tracking of 

human motion. Inertial Measurement Units (IMUs) represent a suitable solution 

to unobtrusively monitor workers in the industrial environment. However, the 

computation of IMUs orientation usually causes drift problems and affects the 

kinematics estimate. Moreover, the traditional Euler angles decomposition from 

the mutual independent orientation of IMUs is affected by mathematical singu-

larities and it does not include joint constraints to avoid violation of physiological 

motion range. To overcome these limitations, this work aimed at developing a 

Denavit-Hartenberg upper limb model consistent with standard biomechanical 

guidelines and an optimization framework for the real-time tracking of human 

motion. At each time step, the joint variables of the model were estimated mini-

mizing the difference between the modeled segments orientations and those ob-

tained with the sensor fusion. The proposed method was validated with synthetic 

and real robot data, verifying the influence of a considerable drift on the estimate 

accuracy. Finally, a comparison between the optimized joint kinematics and the 

one obtained with traditional methods was made. 
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1 Introduction 

The fast technological development of Industry 4.0 promotes the concept of auto-

mation supporting workers with robots and realizing collaboration at different levels 

[1]. Accordingly, a research field focused on optimizing the performance, applicability, 

and effectiveness of human-robot systems has been developed [2]. To guarantee an 

appropriate reactive behavior by both the human and the robot, the shared workspace 

can be enriched with sensors for the tracking of human motion. This operation is usually 

performed with accurate vision devices such as stereophotogrammetric systems and 

RGB-D cameras [3–5]. However, problems of occlusion, encumbrance, and long set-

up and calibration times make these systems inadequate for many industrial scenarios. 

To overcome these limitations, wearable motion capture technologies such as Magneto-
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Inertial Measurement Units (MIMUs) have been introduced. Indeed, since they are 

portable, easy to wear, and minimally invasive, they represent a convenient solution to 

unobtrusively monitor subjects in their ecological environments. Consequently, MI-

MUs have become important tools for the real-time capturing of human motion [6–10].  

Each MIMU contains a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial 

magnetometer on a single chip. The orientation of a MIMU with respect to a global 

reference frame is usually estimated through a sensor fusion process combining infor-

mation of acceleration, angular velocity, and magnetic field. However, in the industrial 

environment, magnetometer readings can be negatively influenced by ferromagnetic 

disturbances. Hence, the sensor fusion process has to be performed only using IMUs 

signals (acceleration and angular velocity), with additional biomechanical constraints 

and specific calibration procedures [11, 12] to compensate for the drift on the horizontal 

plane. Moreover, the time integration of the angular velocity, typically corrupted by a 

non-stationary offset, causes drift problems in the computation of each IMU orientation 

[13], consequently affecting the kinematics estimate. The reduction of drift effects is 

usually carried out by subtracting from the angular velocity signal recorded during a 

dynamic acquisition the mean value registered during a static acquisition. However, 

this procedure is not completely effective because the offset is affected by run-to-run 

changes producing a residual difficult to be eliminated [13].  

In a scenario of collaborative robotics, the accurate estimation of the human upper 

limb kinematics is a fundamental requirement. According to the International Society 

of Biomechanics (ISB), upper arm (UA) and forearm (FA) angular kinematics can be 

fully described with five angles and one subject-specific parameter called carrying an-

gle [14]. This estimation is based on a previous modeling of the human upper body, 

identifying rigid segments connected by joints. Considering IMUs mounted on human 

segments, shoulder and elbow angles can be estimated by decomposing the relative 

orientation between consecutive IMUs into corresponding Euler angles. Even if easy 

and fast to apply, this technique does not consider the joints physiological range of 

motion nor the maximum angular change at each time step, and it is affected by math-

ematical singularities.  

To overcome the above-mentioned limitations, the aim of this work was to propose 

a Denavit-Hartenberg (DH) upper limb model consistent with ISB guidelines and to 

develop an optimization framework enabling the real-time tracking of the human mo-

tion. This procedure allowed to set the limit for each joint and to restrict the maximum 

angular variation between two consecutive time steps. Values of the joints degrees of 

freedom (DoFs) were estimated step by step by minimizing the difference between the 

modeled UA and FA orientations and those assessed from IMUs with the sensor fusion 

algorithm. Considering the analogy between a human arm and a robotic arm [15], the 

proposed model was validated with synthetic and actual IMU data recorded using a 

robotic arm to mimic an upper limb. In both cases, the influence of a considerable drift 

on the estimate accuracy was verified by means of recordings of about 20 minutes. 

Finally, the joint kinematics obtained through the model-optimization framework and 

the one estimated with the traditional Euler decomposition of the relative orientation 

were compared. 
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2 Materials and methods 

2.1 DH model of the human upper limb 

The standard DH convention was adopted to model the human upper limb in agree-

ment with the guidelines of ISB. A chain of two rigid links (UA and FA) was identified. 

A 6-DoFs model with revolute joints was defined. In detail, the shoulder was consid-

ered a spherical joint with 3 DoFs: the elevation plane angle (q1), the elevation (q2), 

and the intra-extra rotation (q3). The elbow was considered a universal joint with 2 

DoFs: the flexion-extension (q4) and the pronation-supination (q6). Moreover, a fixed 

subject-specific carrying angle (q5) was introduced to model the physiological abduc-

tion of FA with respect to UA. The DH model and parameters are reported in Fig. 1. 

 

 Fig. 1. DH model of the human upper limb in agreement with ISB guidelines 

2.2 Optimization framework 

The proposed optimization framework is schematized in Fig. 2. At each time step, 

the process minimizes the difference between the orientation computed from IMUs 

through the sensor fusion algorithm (�̂�𝑈𝐴 and �̂�𝐹𝐴) and the orientation estimated using 

the DH model (𝑅𝑈𝐴 and 𝑅𝐹𝐴) with guess values qguess of joints DoFs, for both UA and 

FA. The orientation residuals 𝑅∆ for both links are represented in terms of sets of an-

gular coordinates α, β, γ. Then, the six angular coordinates obtained for UA and FA are 

combined in a 3x2 matrix consisting in the objective function fR(q). A minimization 

process is applied to fR(q) to make the error of the estimation of q converging to zero. 

The output of this process is the vector of optimal values qopt at each time step. 
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Considering the physiological range of motion of joints and, if known a-priori, the 

range of analyzed movements, limits can be identified to bound the optimal solution. 

Moreover, the maximum angular rate of each DoF can be constrained between two 

consecutive time steps. The solution convergence at each time step is promoted setting 

the initial guess equal to the qopt values obtained at the previous time step. The minimi-

zation was implemented in MATLAB with a non-linear least squares solver.  

 

 Fig. 2. Orientation-based optimization process 

2.3 Data acquisition 

The proposed optimization method was validated using both synthetic and robot-

IMU data related to many different movements. In detail, the motion analyzed for this 

work involved a time variation in two DoFs, mimicking a shoulder flexion-extension 

and an elbow flexion-extension, simultaneously. 

Synthetic data. Realistic IMU data were generated assuming the origins of both IMUs 

reference frames coincident with the elbow and wrist centers, and their axes aligned 

with (x3, y3, z3) and (x6, y6, z6), respectively. To simulate the desired motion, a 5th order 

polynomial point to point trajectory was planned varying both q2 and q4 from 0 to 170 

deg and back in 3 s [16]. In addition, q1, q3, and q6 were set to the fixed values of 90, -

90, and 0 deg, respectively. The trajectory was repeated for 400 cycles (~20 minutes, 

sampling frequency = 100 Hz) to obtain the reference qref. A recursive process linking 

accelerations and angular velocities to DoFs was applied to generate the corresponding 

ideal IMU signals. In addition, the gravity vector projected on the IMU local reference 

frame was subtracted from the calculated acceleration. Then, IMUs signals were cor-

rupted with additive noise, whose characteristics (Table 1) were derived from those 

computed in static for 18 IMUs (Xsens MTw, The Netherlands) with the Allan Variance 

[17]. The static noise was generated using the IMU simulation model Sensor Fusion 

and Tracking Toolbox in MATLAB. Starting from the same seed, two static recordings 

were produced to simulate the gyroscope bias residual. Then, the mean value of gyro-

scope data estimated for the first recording was subtracted from the correspondent one 

of the second recording. The residuals amounted to [0.0233, 0.0270, 0.0184] and [-

0.0215 -0.0076 -0.0119] dps for UA and FA gyroscope data, respectively. 
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Table 1. Noise characteristics for accelerometer and gyroscope. 

Xsens – MTw (18 IMUs) Accelerometer (mean + 3 STD) Gyroscope (mean + 3 STD) 

Noise density 0.0012 (m/s2)/√Hz 0.0079 dps/√Hz 

Bias instability 0.0013 m/s2 0.0054 dps 

Random walk 6.9181×10-5 (m/s2)/√Hz 0.0004 dps/√Hz 

Robot generated data. The robot arm Kinova Jaco2 was used for the framework vali-

dation with real data. The most relevant robot technical specifications are: reach = 985 

mm; maximum command/s = 36 dps and 48 dps for shoulder/elbow and wrist actuators, 

respectively. Acquisitions were made through the software MATLAB at 100 Hz via 

Ethernet line. The robot has 7 joints, but its motion has been planned to generate tra-

jectories involving only the first six DoFs, consistently to the scheme of Fig 1. 

The inertial sensor system was composed of two wireless IMUs (Xsens MTw, The 

Netherlands), both containing a tri-axial accelerometer (range ± 160 m/s2) and a tri-

axial gyroscope (range ± 2000 dps). Once the influence of the temperature on gyroscope 

readings was limited through a warm-up period of 10 minutes, a static acquisition was 

performed to compute the gyroscope biases. Then, the two IMUs were positioned on 

robot UA and FA (symmetrically at 0.21 m from the elbow center). Each unit was fixed 

manually aligning its y-axis with the longitudinal axis of the correspondent robot link. 

Data were acquired through the Xsens software MT Manager (v. 4.6) at a sampling 

frequency of 100 Hz. Considering the previously defined DH model, the robot was 

programmed to move at its maximum speed from the configuration qstart = [90 50 -90 0 

0 0] to qend = [90 120 -90 150 0 0], back and forth. The robot executed the movement 

for 20 consecutive minutes (~ 150 cycles) actuating each joint individually. 

2.4 Signal pre-processing, kinematics estimation and error evaluation 

Synthetic data. The orientation of both IMUs was obtained through the sensor fusion 

algorithm in [18]. For each IMU, the parameter value was optimally selected by mini-

mizing the difference between the reference and the sensor fusion orientation [19, 20]. 

Robot generated data. The reference joints coordinates (qref) were obtained 

resampling robot data at a constant frequency of 100 Hz. Moreover, they were synchro-

nized to IMU signals with the cross-correlation technique [19]. The high-frequency os-

cillation caused by the robot was eliminated from IMU signals through a low-pass filter 

(8th order Butterworth, cut-off frequency equal to 4 Hz). Then, the bias computed in 

static was removed from gyroscope readings. Exploiting the gravity vector, IMUs were 

mathematically aligned to the robot surface parallel to the corresponding axes. As well 

as for synthetic data, IMUs orientations were obtained with a sensor fusion process 

using optimal parameter values and then converted into rotation matrices [18]. 

Both for synthetic and robot data, the qopt vector was obtained by feeding the opti-

mization framework with both model and sensor fusion-based orientation matrices. 

Since the motion was planar, q1 and q3 were bounded in the range 90 ± 1 deg, while the 
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others were allowed to span between –5 and 160 deg. Moreover, the maximum angular 

change between two consecutive time steps was limited to 2 deg for q2, q4, and q6, while 

it was forced to be null for q5. Finally, Euler angles qEul were computed from the same 

orientation matrices to compare the proposed optimization and the traditional methods 

for the estimation of angular kinematics. The estimate accuracy was evaluated in both 

cases computing the following quantities: eopt = rms(qopt – qref) and eEul = rms(qEul – qref). 

3 Results 

The computation time (mean ± standard deviation) of the optimization process 

amounted to 24.4 ms ± 4.8 ms (mean frequency around 40 Hz). Table 2 contains errors 

for both synthetic and robot data. Fig. 3 shows the trend of q2 and q4, comparing the 

real robot kinematics to the model-driven one. 

Table 2. Joint angle errors (deg). 

  q1 q2 q3 q4 q5 q6 Mean 

Synthetic 
eopt 1.0 5.6 0.9 5.5 0 1.9 2.5 

eEul 9.0 4.9 0 4.9 6.1 7.7 5.4 

Robot 
eopt 1.0 0.3 0.7 2.9 0 1.3 1.0 

eEul 5.8 1.2 1.3 3.0 5.3 3.6 3.4 

 

 

Fig. 3. Real robot kinematics vs optimized kinematics for q2 and q4. 

4 Discussions and conclusions 

In this work, an upper limb model and an optimization framework for the real-time 

tracking of human motion were proposed for scenarios of collaborative robotics.  
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Although IMUs represent a suitable solution for the joint kinematics estimate, one of 

their main limitations over long periods consists in the angular drift due to the integra-

tion of the gyroscope bias residuals. As highlighted in Table 2, the integration over 20 

minutes can lead to a huge drift, even if residuals are low and the sensor fusion filter is 

driven with optimal parameter values thus reflecting the best achievable performance. 

Moreover, in line with [19, 20], it is interesting to observe that different scenarios (UA 

or FA and synthetic or robot data) require to set different optimal parameter values. 

Errors obtained for joint angles computed with the traditional Euler inversion (eEul) are 

high, especially for the DoFs estimated when IMU axes were aligned with the vertical 

direction during the motion. In these cases, the exploitation of the gravity direction is 

not sufficient to compensate for the drift. Considering the optimization framework, er-

rors are lower (on average 2.5 vs 5.4 deg for synthetic data, 1.0 vs 3.4 deg for robot 

data) since motion speeds and ranges were known a-priori. In addition, errors related 

to robot data were in general lower when compared to synthetic ones, because the sim-

ulation was thought to be more challenging in terms of speed and intensity than the test 

with the robot. Finally, the proposed optimization framework could not be completely 

effective in reducing the drift for q2 and q4 as they spanned a large range of motion. 

However, contrary to the traditional Euler decomposition, the proposed method offers 

the possibility to limit variations between two consecutive time steps within reasonable 

values, thus mitigating the sensor fusion errors (Fig. 3). Overall, results of this study 

demonstrated the effectiveness of the optimization framework proposed for the real-

time tracking of human motion in collaborative robotics. Current efforts are devoted to 

exploit the complementary information offered by linear accelerations and angular ve-

locities. Indeed, the minimization of multiple objective functions derived from meas-

urements with different sources of errors may improve the drift compensation [13]. 
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