
22 September 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Security Automation using Traffic Flow Modeling / Bussa, Simone; Sisto, Riccardo; Valenza, Fulvio. - (2022), pp. 486-
491. (Intervento presentato al convegno IEEE 8th International Conference on Network Softwarization (NetSoft 2022)
tenutosi a Milano) [10.1109/NetSoft54395.2022.9844025].

Original

Security Automation using Traffic Flow Modeling

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/NetSoft54395.2022.9844025

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970468 since: 2023-09-09T05:29:49Z

IEEE

Security Automation using Traffic Flow Modeling
Simone Bussa, Riccardo Sisto, Fulvio Valenza

Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—The growing trend towards network “softwariza-
tion” allows the creation and deployment of even complex net-
work environments in a few minutes or seconds, rather than days
or weeks as required by traditional methods. This revolutionary
approach made it necessary to seek automatic processes to
solve network security problems. One of the main issues in
the automation of network security concerns the proper and
efficient modeling of network traffic. In this paper, we describe
two optimized Traffic Flows representation models, called Atomic
Flows and Maximal Flows. In addition to the description, we have
validated and evaluated the proposed models to solve two key
network security problems - security verification and automatic
configuration - showing the advantages and limitations of each
solution.

Index Terms—Traffic modeling, Security Automation, Network
Security Functions

I. INTRODUCTION

Nowadays, computer networks continue to grow in size and
importance. Emerging technologies such as Software-Defined
Networking and Network Functions Virtualization have intro-
duced dynamism and flexibility in networking, making the
configuration and verification of network security critical [1],
[2]. The typical manual management approach, frequently
based on trial-and-error, can no longer be used in these
scenarios. These techniques, besides being cumbersome and
time-consuming, lack a comprehensive view of the network
behavior and, as such, are error-prone and can make the
network security significantly hard to maintain. In view of
these factors, automatic processes and tools that configure and
verify the correctness of network security in a formal and
deterministic way are becoming crucial, as they enable the
automatic prevention of the violation of security properties
and service downtimes [3], [4].

A key problem in the automation of network security
management based on formal approaches is the proper and
efficient modeling of network traffic, which is the basis for
modeling network security properties. Formally modeling how
the packets originating in the source of a communication
can be actually forwarded and modified in a network is a
complex task, which involves modeling: (i) the packets that
can cross a network; (ii) the paths that each packet can follow
in the network; and (iii) the transformations that each network
function can produce in the packets that traverse it.

Unfortunately, in the literature, only few studies that use
formal network traffic models for automatic network security
management are available [3], [4], [5], [6], [7], [8], and they
are mostly limited to simple networks, which include packet
filters and simple transformers, and only to reliability verifica-

tion. We are therefore still far from a context of real networks
made up of a large number of network security functions
(NSFs) and with the goal to automatically configure and/or
verify them. The state of the art mostly fails against those
challenges mainly for reasons of efficiency and scalability.

In this paper, we characterize and compare two novel and
optimized approaches, called respectively Atomic Flows and
Maximal Flows, to represent, identify, and aggregate network
traffic, as required in the processes for formal automatic
security management. Specifically, we analyze the advantages
and limitations of the two models, to solve two main problems:
automatic security configuration and verification. Having de-
fined the two approaches, thus, we implemented each of them
in two existing frameworks, Verigraph [3] and Verefoo [9],
which aim to solve respectively a classical Reachability and
Refinement problem.

The remainder of this paper is structured as follows. In
Section II, we introduce some key concepts about network
traffic modeling. In Section III and IV, we present the Atomic
Flows and Maximal Flows model. In Section V, we make a
detailed comparison between the two approaches. Finally, in
Section VI we give a summary of related work and Section
VII we present the conclusions and future work.

II. APPROACH

As mentioned in the introduction, in this paper we describe
two different and optimized approaches, called Atomic Flows
and Maximal Flows, to identify and aggregate the network
traffic. Before getting to the core of the discussion, we must
first introduce some general concepts about how we assume
the network and its security properties are modeled.

A. Network Model

We consider the modeling approaches that define the net-
work as a graph whose nodes represent the network functions
and endpoints (i.e., web clients, web servers, routers, firewalls,
VPN gateways, NATs, etc). Each node may have a set of input
and a set of output ports, each port could be controlled by an
ACL, which describes whether a packet with a certain header
can pass through that port or not. We denote 𝐼𝑎 the set of
packets allowed to pass, and 𝐼𝑑 the set of those denied. We
call these sets the domains of the port. If an output port is
not controlled by an ACL, this means that all traffic can pass
through that port, i.e., 𝐼𝑎 is the set of all packets while 𝐼𝑑 is
empty. The packets that enter a function and that cannot be
transferred to any output port are discarded by the function.

A packet that enters through an input port could be trans-
formed before being transmitted through an output port. The
most common transformations are header rewriting, encapsu-
lation and de-encapsulation. The transformation behavior is
modeled by a function 𝑇 , which is characterized by a set
of input domains each one corresponding to a set of output
domains. For a forwarder that simply forwards packets without
modifying them, for example, function 𝑇 has a single input
domain 𝐷, that matches all the packets, 𝑇 is the Identity
function, and the output domain is 𝐷 as well. For a NAT,
instead, there are three main domains, 𝐷1, 𝐷2, 𝐷3, undergoing
three distinct transformations: a packet that matches with 𝐷1
is affected by the Shadowing operation, one that matches
with 𝐷2 by the Reconversion operation, whereas for one
that matches with 𝐷3 no transformations are applied, and
the packet is simply forwarded (or discarded, depending on
the NAT configuration policy). The choices of forwarding
and transforming a packet are made based on some packet
contents, usually some header fields. Hence, we model packets
only considering such packet fields. Predicates over these
fields are used to model classes of packets.

Definition II.1. Predicate: A class of packets, also called
traffic, is modeled as a predicate defined over variables that
represent some packet fields. In this way, packets that do not
differ in these fields are represented by the same class.

There are several ways to represent a predicate (i.e., BDD,
Tuple Representation [10], Wildcards Expressions [11], FDD
[12], etc.). In this work, we reuse the approach introduced
in [3]: a predicate is the conjunction of sub-predicates, one
for each packet field that is considered, and this conjunction
is denoted by the tuple of its sub-predicates. Here, for sim-
plicity, we consider IP packets, modeled by predicates over
the IP quintuple (IP source, IP destination, port source, port
destination, protocol type). We also consider that each sub-
predicate can represent ether a single value, or a range of
values, or the full range, denoted by the wildcard "*". For
example, a valid tuple is (10.0.0.1, 30.0.5.*,80, *, tcp).

B. Traffic flows

Having defined the predicates that represent packet classes,
let us now define the concept of Traffic Flow. In analogy
with [3], a traffic flow represents a flow of packets that can
cross a network. The traffic flow model describes how a certain
class of packets is forwarded and transformed from its source
to its destination.

Definition II.2. Traffic flows: A Traffic Flow 𝑓 ∈ 𝐹 is
formally modeled as a list of alternating nodes and predicates,
[𝑛𝑠 , 𝑡𝑠𝑎, 𝑛𝑎, 𝑡𝑎𝑏, 𝑛𝑏, ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑].

Each node in the list corresponds to a node crossed by
the flow in the path, starting from the source node 𝑛𝑠 (that
generates traffic 𝑡𝑠𝑎) and arriving at the destination node
𝑛𝑑 (that receives traffic 𝑡𝑘𝑑). Each generic traffic 𝑡𝑖 𝑗 is the
class of packets transmitted from node 𝑛𝑖 to 𝑛 𝑗 in the flow.
While crossing a node, the traffic can be forwarded, possibly

changed, or dropped. In this way, traffic flows are used to
describe the forwarding and transformation behavior of a
network and of its NSFs. The main advantage of this approach,
compared to the alternative modeling approaches, is that the
NSFs can be modeled in a simpler way, as the models do not
need to deal with all the single packets but they can deal with
a few equivalent classes of packets.

The definition of traffic flows given above allows some
freedom concerning the granularity of flows, i.e., it is possible
to consider fewer flows characterized by larger packet classes
or more flows characterized by simpler packet classes. We
need modeling solutions that enable efficient and scalable
refinement and verification algorithms. However, which ap-
proach is better to achieve this goal is difficult to tell, as
both the number of flows and their complexity may have an
impact on the complexity of such algorithms. In this work,
therefore, we propose and study two different approaches for
the identification and computation of flows. The first one,
called Atomic Flows, simplifies the representation of packet
classes as much as possible, leading to many simple flows,
while the second one, called Maximal Flows, reduces the
number of flows, aggregating as much as possible several flows
together, leading to few but complex flows.

C. Network Security Policy

When we want to model network traffic to verify or refine
some security properties, we are interested in a subset of all
traffic flows that are possible in the network. The interesting
flows can be selected by considering only certain sources
and destinations for the flows, according to the Security
Policies. For example, a security policy about isolation could
be expressed by a set of rules, each one taking the form
𝑝 = (𝐶, 𝑎), where 𝑎 is the action to perform on network
packets that match the condition 𝐶. From the condition 𝐶

of a rule, we can extract a quintuple predicate 𝑡 expressing
the source-destination pair for our flow: 𝑡 = (IPSrc, IPDst,
pSrc, pDst, tProto), where: 1) the source and destination nodes
of the flow have IP addresses matching respectively t.IPSrc
and t.IPDst, 2) the source traffic satisfies t.IPSrc and t.pSrc
((t.IPSrc, *, t.pSrc, *, *)), 3) the destination traffic satisfies
t.IPDst, t.pDst and t.tProto ((*, t.IPDst, *, t.pDst, t.tProto)).
Example: (10.0.0.1, 30.0.5.1, 200, 80, TCP) is a condition on
TCP traffic that exits from port 200 of node 10.0.0.1 and is
directed to port 80 of node 30.0.5.1.

D. Running example

To better understand the proposed approaches, we will use
the simple scenario described in Fig. 1 as a running example.
Specifically there are two sub-nets of clients (10.0.0.0/24 and
20.0.0.0/24) and a server (30.0.5.2 in sub-net 30.0.5.0/24).
There is a NAT just outside the 10.0.0.0/24 sub-net, performing
the Shadowing operation only on IP address 10.0.0.1, and a
firewall with its own Access List, containing only one rule.
In this scenario we want to compute the traffic flows linking
the subnet of clients 10.0.0.* with the server 30.0.5.1, without
any limitation on the port numbers and protocol type. The

Fig. 1: Example scenario

Fig. 2: From predicates to atomic predicates

quintuple expressing this condition is (10.0.0.*, 30.0.5.1, *,
*, ANY). The corresponding flows can take two paths, either
passing through the NAT or through the 20.0.0.0/24 subnet.

III. ATOMIC FLOWS

The basic idea behind the Atomic Flow approach is based on
the concept of Atomic Predicate, first presented in [8]. Given
a set of predicates of the network, it is possible to compute
the set of totally disjunct and minimal predicates (Atomic)
such that each predicate of the first set can be expressed
as a disjunction of a subset of those in the second set. In
other words, it is possible to split each complex predicate
(representing for example a NAT input class, source traffic,
etc) into a set of simpler and minimal Atomic Predicates.
An example is shown in Fig. 2. Starting from P1 (predicate
representing packets traveling from the subnet 10.0.0.0/24 to
30.0.5.1) and P2 (predicate representing packets from 10.0.0.1
to the subnet 30.0.5.0/24), it is possible to compute the set of
corresponding Atomic Predicates.

From the set of Atomic Predicates we can compute the set
of Atomic Flows.

Definition III.1. Atomic Flows: A flow 𝑓 = [𝑛𝑠 , 𝑡𝑠𝑎, 𝑛𝑎, 𝑡𝑎𝑏,
𝑛𝑏, ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑] is defined as atomic if each traffic 𝑡𝑖 𝑗 is an
atomic predicate.

Since the atomic predicates are disjoint and unique within
the network, the advantage is that it is possible to assign
them simple identifiers (e.g., integers) and then use only these
identifiers in all computations, instead of using the more
complex explicit representations (BDD, Tuple Representation,
etc.). The goal is to split each traffic flow into sub-flows that
are as simple as possible and totally disjoint from one another,

so that it is possible to replace each predicate, defined within
the flow, with its identifier.

In developing our approach, we took a cue from algorithms
described in paper [8], that defines how to compute the set of
atomic predicates starting from a general network predicates.

A. Atomic Flows Example

Let us now see, through the running example, how the
approach with Atomic Flows works (Fig. 3).

First, we need to compute the set of Atomic Predicates,
limiting them to only those related to the security policies
that we want to investigate. As we said, we want to compute
all the traffic flows linking the subnet 10.0.0.* with the server
30.0.5.1. Therefore, we must generate the atomic predicates
corresponding to source traffic (10.0.0. *, *, *, *, ANY)
and destination traffic (*, 30.0.5.1, *, *, ANY), plus all the
predicates included in the domains of the network functions
found along the paths. The network functions crossed by at
least one path are NAT and FW, and the corresponding input
domains can be seen in Table A and Table B of Fig. 1. In
addition, the set of atomic predicates must also include the
predicates resulting from possible transformations. The final
resulting set of atomic predicates, each one associated with its
integer identifier, can be seen in Table A of Fig. 3.

Having defined the set of atomic predicates, we can model
the forwarding and transformation behavior of the NSFs as
functions working on integers. This is the main advantage of
this approach. The resulting functions can be seen in tables
B and C of Fig. 3. We can see, for example, how the atomic
predicate AP(3), which arrives in input to the NAT, matches
its input domain D1 and is transformed into AP(7), or how
the same AP(3) is the only predicate allowed to pass through
the FW. At this point, we can compute the Atomic Flows. We
start from the set of atomic predicates representing the traffic
generated by the source 10.0.0.*, that is AP(1) to AP(4) and
AP(9) to AP(12). Each single atomic predicate is propagated
along each path linking source to destination, taking into
account that, crossing a node, it can be transformed into one or
more different disjoint atomic predicates or it can be dropped.
Moreover, some generated Atomic Flows can be discarded
because they are not part of the solution (i.e., they do not
arrive at destination with the correct IPDst, pDst and tProto) or
because they have reached the destination without reaching the
destination of the path (i.e., their destination is an intermediate
node). As the result, we have four Atomic Flows. As we can
see, they are all disjoint and they are simple alternation of
nodes and integer identifiers of the atomic predicates.

IV. MAXIMAL FLOWS

The second approach we propose makes use of Maximal
Flows, and originates in a concept exactly opposite to that
of Atomic Flows. Whereas with Atomic Flows we tried to
split as much as possible each traffic flow, so that it contains
only minimal and disjoint traffics that can be subsequently
identified with an integer identifier, reaching the highest level
of granularity but also a higher number of flows, with this

Fig. 3: Atomic Flows

approach we try to do the opposite by aggregating flows
together. That is, we try to reduce the number of generated
flows, considering only a subset of them, which is smaller but
equally representative: the set of Maximal Flows. All flows
represented by the same maximal flow (we could indicate them
as subflows of the maximal flow) behave in the same way
when crossing the network, so that it is sufficient to consider
the maximal flow and not each single flow that it represents.

Definition IV.1. Called 𝐹𝑟 the set of all possible flows of the
network, the corresponding set of Maximal Flows 𝐹𝑀

𝑟 matches
the following definition:

𝐹𝑀
𝑟 = { 𝑓 𝑀𝑟 ∈ 𝐹𝑟 |� 𝑓 ∈ 𝐹𝑟 .(𝑓 ≠ 𝑓 𝑀𝑟 ∧ 𝑓 𝑀𝑟 ⊆ 𝑓)}

The set 𝐹𝑀
𝑟 is defined as a subset of 𝐹𝑟 that contains only

the flows that are not subflows of any other flow in 𝐹𝑟 . In
other words, we aggregate in the same Maximal Flow all the
flows behaving in the same way, and then we consider for our
analysis only 𝐹𝑀

𝑟 which has a smaller size than 𝐹𝑟 .
Since Predicates within a Maximal Flow are the result of

aggregating together multiple traffics, they are a disjunction of
several quintuples and, for this reason, they cannot be Atomic.
In this case they cannot be replaced by integer identifiers
but they have to be represented by other more complex data
structures (BDD, Wildcards Expressions, etc.).

Further details on Maximal Flows and the algorithms to
compute them can be found in our previous work [9].

A. Maximal Flows Example

Analyzing the results in Fig. 4, we see that each flow
begins with a traffic that is as general and inclusive as
possible (the largest traffic that satisfies the security policy
we are considering). The basic idea, in fact, is to start with
a large maximal flow (which includes as many subflows as

possible) and then divide this flow into smaller flows only
when necessary, for example when it encounters a function
for which at least two sub-flows (of the large flow we are
considering) have different behaviors.

This happens, for example, in the NAT and in the FW. In
the NAT, the incoming flow is divided into two new flows: the
first one starting from predicate (10.0.0.1, 30.0.5.1, *, *, ANY)
which undergoes the shadowing operation and is transformed
into (30.0.0.1, 30.0.5.1, *, *, ANY), and the second one which
is forwarded unchanged. The main flow in this way is split into
two different flows. The same happens considering the FW and
its forwarding domains. Also in this case the incoming flow is
split into two new flows: the first one matching with Ia, and
the second one matchig with Id.

Fig. 4: Maximal Flows

V. DISCUSSION AND COMPARISON

In this section, we first evaluate the single performance
to compute the Atomic Flows and Maximal Flows, then
we analyze the advantages and limitations of each approach
applied in existing automatic security management tasks, such
as security verification and configuration.

In this evaluation, the networks used as test cases differ in
a set of configurable parameters: number of security policies
intended as pairs of sources and destinations (req), number
of web clients present in the network (WC), number of web
servers (WS), number of NATs (NAT), number of firewalls
(FW) and number of rules configured within each firewall.
Moreover, each approach proposed in this paper has been
implemented in Java.

Results of the first analysis are shown in Fig. 5.a (time taken
to compute the set of flows) and Fig. 5.b (number of generated
flows). Looking at the two charts, we can say that: (i) The
solution for the computation of the Atomic Flows is slower
than the one of the Maximal Flows. Most of the time is spent
on the initial computation of the set of Atomic Predicates. The
algorithm for computing Maximal Flows, on the contrary, is
a simple recursive function mostly parallelizable, so it is very
fast; (ii) The solution with Atomic Flows generates a greater
number of flows. This can be easily understood since with
Atomic Flows we split each flow into minimal flows that are

(5.a) Traffic Flows computation time (5.b) Number of generated flows (5.c) Time Reachability Verigraph2.0

(5.d) Time Refinement Verefoo

simpler and disjoint, while with Maximal Flows we try as
much as possible to aggregate them; (iii) Finally, the advantage
of Atomic Flows is that they allow to represent each predicate
as a simple integer, while with the Maximal Flows approach
this is not possible. As we have seen in Fig. 3, with the Atomic
Flows approach, the NSFs can work with the integer identifier
of each predicate, while using Maximal Flows they have to
work with the complex explicit representation of it.

As already introduced, the next step was to use the two
approaches to solve two network security-related problems:
policy refinement and verification, where an optimized defini-
tion of traffic flow plays a crucial role. Specifically, Policy
refinement is the process that translates high-level policies
into low-level system configurations [9]. This is a critical
task for the system security that, if not carefully performed,
may lead to either incorrect or sub-optimal implementations.
Computer-aided automatic tools are therefore needed to assist
administrators in the translation of network security policies,
because when this translation is performed by hand the risk of
errors increases. On the other hand, Policy verification deals
with checking whether a set of policies is correctly enforced in
a system [3]. Typically, Policy verification is used to validate
an hand-made refinement, to detect possible anomalies derived
from the policy translation. Definitely, Policy Refinement
and/or Verification should be done every time there is a change

in the network policies and building automatic tools that assist
the administrator can really help to speed up the process and
increase reliability at the same time.

Concerning the verification process, to evaluate our novel
approaches, we extended Verigraph2.0 [3], a framework that
aims to solve Reachability problems, i.e., verifying if different
nodes in the network can communicate or not. While for the
refinement, we extended the framework Verefoo [9]: given
a number of Security Policies (Reachability or Isolation be-
tween two endpoints), the framework is able to provide the
automatic allocation and configuration of packet filters so that
all the policies are satisfied, if possible. Both the proposed
frameworks use an SMT solver (MaxSMT in the case of
Refinement) and processes consist of two phases: a first phase
for the computation of the Traffic Flows and a second phase
in which the solver tries to find a solution that satisfies all the
requirements, reasoning with the previous generated flows.

Using the solver requires modeling the predicates defined
within each flow. This is particularly critical for the approach
using Maximal Flows. As the solver can only work with
basic data types, in this case, the explicit representation of a
predicate becomes: 4 integers for source IP, 4 for destination
IP, 2 integers for source port range, 2 for destination port and
a string for protocol type. On the contrary, with the approach
using Atomic Flows, the SMT (MaxSMT) solver works with
simple integers, each one identifying a predicate. This results
in a disparity 1 integer VS 13 variables per predicate. A
possible advantage of the Maximal Flows approach, that
slightly mitigates this disparity, is due to the fact that it
generates a smaller number of flows, as we have seen in
Fig. 5.b. Therefore, even if the solver requires 13 variables
to represent each predicate, predicates are fewer in number.
However, in general, we expect the SMT (MaxSMT) phase
to be solved more quickly with the Atomic Flows approach.
While for the first phase, as we have seen in Fig. 5.a, the
approach with Maximal Flows is much more performing.

As we can see from Fig. 5.c, to solve the Reachability prob-
lem in Verigraph2.0, the approach using Maximal Flows (right
bar for each test case) is advantageous over the Atomic Flows
one (left bar). The initial time spent to compute the Atomic
Predicates turns out to be decisive. They also introduce more

flows and requirements the solver must consider. If, instead,
we analyze the example of the Refinement problem in Verefoo
(Fig. 5.d), we see that the approach using Atomic Flows is
much more performing than the one using Maximal Flows.
This can be explained by the fact that, in the Reachability
problem, the SMT phase (colored orange) has a relatively
equal weight with respect to the first flows computation phase
(colored blue). The SMT solver has only to check if the con-
figurations of the network meet the security policies. Hence,
the SMT phase is solved quickly, and the initial phase of flows
computation is decisive. And this is disadvantageous for the
Atomic Flows approach. For the Refinement problem, on the
other hand, analyzing Fig. 5.d, we can see that the MaxSMT
problem has a much greater weight in both approaches with
respect to the first phase of flow computation (color orange
in predominant in each bar over blue). The solver, in fact,
has to allocate and automatically configure the packet filters
needed to satisfy the issued security policies. In this case,
using Atomic Flows, the initial time spent to compute the set
of Atomic Predicates brings enough advantage to make leaner
and faster the resolution of the MaxSMT problem, which is
very slow using Maximal Flows.

VI. RELATED WORK

A first study on the possibility of using automatic tools
to verify network properties was presented here [13]. This
work proposed a new approach to check in a static way
the reachability between end-points of a network, by looking
at the configuration state of routers, firewalls and stateless
transformers. This was followed by many other researches,
to find algorithms that verify network properties (not just
reachability): [5], [4], [6], [7], [8], [3]. For all these works,
the main issue is how to efficiently model the network and
the network functions.

HSA [5] (and its successor [11]) models packets as points in
the Header Space and network nodes as functions transform-
ing a packet from one point to another point (or points) in
that space. The behavior of a packet along a path (that is what
we consider a flow) is obtained by composing the functions of
the nodes it crosses. Veriflow [4] deals with disjoint Equivalent
Classes (EC) of packets, that are sets of packets experiencing
the same forwarding actions throughout the network. For each
EC, the tool builds a Forwarding graph representing the paths
this EC can take according to the forwarding behavior of the
network. NoD [6] models headers fields as separate variables
(not just a flat sequence of 0s and 1s as in [5]) and then
expresses network functions as Datalog rules. Symnet [7] uses
symbolic execution to perform static analysis. The novelty of
this work is SEFL, a programming language used to express
the data plane of the network in a symbolic-execution friendly
manner. SEFL is used to model packets and network functions
later used by Symnet to perform the symbolic execution.
Another work that particularly inspired us is APVerifier [8],
in particular for the concept of Atomic Predicates explained
in section III. This work shows the benefits of working
with minimal and disjoint predicates that can be replaced

by integer identifiers. Operations on complex predicates, each
one represented by a disjunction of atomic predicates, become
operations on a set of integers.

In general, all the works mentioned above define network
and traffic models to solve specific tasks (i.e., reachability,
loop-freenes, cross-consistency etc.) and cannot be used to
solve other network-related problems. The novelty of our
proposed approach is that it is general enough to be applied
to different contexts and uses, as we have seen in section V,
to solve both verification and configuration problems.

VII. CONCLUSIONS

We resumed the definition of Traffic Flows that allow to
describe the behavior of a network. We then proposed two
novel approaches, called Atomic Flows and Maximal Flows,
to limit or simplify the number of generated flows, in order
to respond to scalability issues. Both the two approaches have
different characteristics, so advantages and disadvantages. The
computed Flows can then be used within automatic verification
tools to solve various network-related problems. The type of
problem they are going to solve and the specific tool with
which they are going to interface will determine which of
the two approaches perform best. As future works, we are
planning to extend our approach by supporting other types
of verification, related for example to information disclosure,
latency constraints, and reliability.

REFERENCES

[1] W. Yang and C. Fung, “A survey on security in network functions
virtualization,” in Proc. of the IEEE NetSoft Conference, 2016.

[2] L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A model for the
analysis of security policies in service function chains,” in Proc. of the
IEEE Conf. on Network Softwarization (NetSoft), 2017.

[3] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, “Improving the formal verification of reachability policies
in virtualized networks,” IEEE Trans. on Net. and Serv. Manag., vol. 18,
no. 1, 2020.

[4] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Ver-
iflow: Verifying network-wide invariants in real time,” in Proc. of the
{USENIX} Symp. on Net. Syst. Design and Impl., 2013.

[5] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. of the {USENIX} Symp. on Net.
Syst. Design and Impl., 2012.

[6] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. of the {USENIX}
Symp. on Net. Syst. Design and Impl., 2015.

[7] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proc. of the ACM
SIGCOMM Conference, 2016.

[8] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Trans. on Net., vol. 24, no. 2, 2016.

[9] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated firewall configuration in virtual networks,” IEEE Tran. on
Dep. and Sec. Comp., 2022, in press.

[10] E. G. Wong, “Validating network security policies via static analysis of
router acl configuration,” Tech. Rep., 2006.

[11] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. of the {USENIX} Symp. on Net. Syst. Design and
Impl., 2013.

[12] A. R. Khakpour and A. X. Liu, “Quantifying and querying network
reachability,” in Proc. of the Inter. Conf. on Distr. Comp. Systems, 2010.

[13] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of ip networks,” in Proc.
of the IEEE Conf. of the IEEE Comp. and Comm. Societies., 2005.

