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Hierarchical Curl-Conforming Vector
Bases for Pyramid Cells

Roberto D. Graglia™, Life Fellow, IEEE, and Paolo Petrini™, Member, IEEE

Abstract— Advanced applications of the finite-element method
use hybrid meshes of differently shaped elements that need
transition cells between quadrilateral- and triangular-faced ele-
ments. The greatest ease of construction is obtained when,
in addition to triangular prisms, one uses also pyramids with
a quadrilateral base, as these are the transition elements with
the fewest possible faces and edges. A distinctive geometric
feature of the pyramid is that its vertex is the point in common
with four of its faces, while the other canonical elements have
vertices in common with three edges and three faces, and that
is why pyramids’ vector bases have hitherto been obtained with
complex procedures. Here, we present a much simpler and more
straightforward procedure by shifting to a new paradigm that
requires mapping the pyramidal cell into a cube and then directly
enforcing the conformity of the vector bases with those used
on adjacent differently shaped cells (tetrahedra, hexahedra, and
triangular prisms). The hierarchical curl-conforming vector bases
derived here have simple and easy to implement mathematical
expressions, including those of their curls. Base completeness is
demonstrated for the first time, and results confirming the avoid-
ance of spurious modes and faster convergence are also reported.

Index Terms— Electromagnetic fields, finite-element methods,
higher order vector elements, numerical analysis, pyramidal
elements.

I. INTRODUCTION

ERY accurate 3-D models that balance computational

efficiency with geometric flexibility are obtained using
the hybrid meshes of tetrahedra, hexahedra (bricks), and pris-
matic cells together with interpolatory [1], [2] or hierarchical
vector bases [3]-[5] of high order. All these divergence- and
curl-conforming bases are now reported in a single book [6].
Curl-conforming bases with continuous tangential components
across adjacent cells in the mesh are used in finite-element
method (FEM) applications to discretize the vector Helmholtz
operator. Hierarchical bases are preferred in applications that
implement p-adaptive refinement techniques, because they
easily allow for a selective expansion using a different order
in different regions of the computational domain, which
often leads to reduced computation time and more accurate
results [7]-[9]. It is difficult to create conforming hybrid
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meshes without pyramid elements. (The definition of the con-
forming mesh is given, for example, in [6, Ch. 2].) Pyramids
with a quadrilateral and four triangular faces are in fact the
most obvious natural fillers for discretizations mostly formed
by other differently shaped cells. For example, pyramids are
required when one has to link a coarse to a dense mesh of
bricks (see [10, Fig. 2] and [11, Fig. 1]).

This article presents the pyramid’s bases that conform to and
complete the hierarchical curl-conforming families reported
in [6]. Our new basis functions are obtained directly, simply
by multiplying the lowest order vector functions given in [11]
by a suitable set of generating scalar polynomials, thereby
using, in essence, the same technique already used in [3]-[6]
to obtain the bases for the other 3-D elements. More impor-
tantly, this article provides ready-to-use expressions of the
vector basis functions, normalized to obtain relatively low
mass-matrix condition numbers (CN) in FEM applications.

As with the other hierarchical volumetric elements in [6],
our new pyramid bases have four distinctive features: 1) the
vector basis functions are subdivided from the outset into three
different groups of edge-, face-, and volume-based functions;
2) each basis function is obtained by using one generating
edge-, face-, or volume-based scalar polynomial whose ana-
lytical expression involves all the dependent variables that
describe the cell; 3) the generating polynomials are either
symmetric or antisymmetric with respect to the variables that
describe each edge and face of the cell, and are organized
hierarchically; and 4) in each group, the generating polynomi-
als are mutually orthogonal for inner product defined by the
integral on the volume, the face, or the edge of the cell.

To put our work in perspective, note that in the late 1990s,
practitioners were satisfied with using pyramidal bases at
most of the first order [11]-[13], as it was not clear the
number of volume-based functions needed for higher orders.
Research in this area has then received a new impetus from
2010 onward, with important results published mainly in
applied mathematics journals (see [14]-[18] and references
therein). Unfortunately, the specialized literature has privileged
theoretical aspects so that it is difficult to extract from this
literature ready-to-use recipes for computational applications.
In fact, until now, the use of higher order pyramid bases has
been hampered by the complex procedures used to generate
them. Also, as discussed in this article, in the volume, inside
the pyramid, the vector basis functions have a fractional form
that is more complicated than that proposed in [11], as it
became apparent in other papers [13], [15]-[18] published
after [11]. Indeed, as noted in [19], for orders higher than the
first, the bases in [11] lead to spurious modes, because they are
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constructed with multiplicative polynomials of the parent vari-
ables that vary linearly in the so-called parent pyramidal cell.
The correct multiplicative functions are obtained here by
working in a different space of scaled parent variables, which
we call the grandparent space, where the pyramidal cell is
mapped by a cube on which we compute the FEM volume
integrals; in the grandparent cube, the vector basis functions
and their curl, as well as the multiplicative functions and their
gradient, all have polynomial form.

Although the bases in [11] can yield spurious modes, they
are complete in their space and, on the pyramid boundary,
they can take the same “polynomial” expression as those of
differently shaped elements. This has prompted us to reverse
the derivation technique adopted elsewhere [17], as the edge-
and face-based functions reported here have been derived
starting from the known expression of the functions of adja-
cent, differently shaped elements (so to speak, by imposing
a tangential continuity at the boundary of the cell), while the
volume-based functions are obtained thanks to simple analyti-
cal and geometric considerations. Our volume-based functions
differ from those given in [16] and [17]; their order does not
exceed that of the edge- and face-based vector functions whose
number and order are dictated by continuity with adjacent
elements. In our opinion, this amounts to saying that the main
problem that researchers have had up to now to build the
pyramid’s bases is to find the simplest and most direct way to
build the volume-based vector functions, and then prove the
completeness of the whole family which, to the best of our
knowledge, is given here for the first time in the Appendix.
The proof in the Appendix shows that a complete vector base
is obtained using multiplicative scalar functions of the grand-
parent domain of well-determined maximum polynomial order.

The rest of this article is structured as follows. In Section II,
we explain why the basis functions and their curls shall belong
to a common (polynomial) subspace to be identified from the
outset. Section III describes the geometric representation of
the pyramidal element, while the variables used to define the
polynomial bases are discussed at length in Section IV, which
also reports the lowest order base. The higher order bases
are given in Section V, while numerical results are reported
in Section VI. Readers may find it useful to review [11]
for a detailed introduction to the notation and other back-
ground information, as well as the fundamental paper [17]
that inspired ours.

II. BASIS FUNCTIONS’ SUBSPACES

Polynomial vector bases accompany tetrahedral, brick, and
prismatic cells in a completely natural way, because only
three edges and three faces branch off from the vertices of a
tetrahedron, a brick, and a triangular prism. Conversely, since
the pyramid has four edges and faces converging at one vertex,
it is necessary to explain why to look for polynomial bases
for the pyramid as well. In this regard, we observe that FEM
problems are usually formulated in terms of a single main
unknown: either the magnetic field H or the electric field
E. The other field is determined by the curl of the main
field, as imposed by one of the Maxwell’s curl equations.
For example, to clarify, the electromagnetic fields that can
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exist within a 3-D cavity formed by perfectly conducting
walls, containing homogeneous or inhomogeneous dielectric
and magnetic materials, may be found by solving one of the
following vector Helmholtz equations [6]

1

V x (E—VX H) —kK*u,H =0 (D
1 2

Vx| —VXE)—keE=0 ()
Uy

where €.(x,y,2) and w,(x,y,z) denote the relative per-
mittivity and relative permeability functions, respectively.
(Section VI reports some results for pyramid-shaped cavities
obtained by solving Helmholtz’s equation numerically.) FEM
formulations in terms of H or E do not show significant differ-
ences except for the different way used to impose the boundary
conditions. In fact, curl-conforming bases are derived with no
reference to the main field we want to represent, since E and
H swap in the dual problem. In all 3-D FEM applications, the
curl-conforming basis functions €2 are expressed in the most
convenient way, i.e., using three coordinate gradient vectors
Vé,, V&, and V&, (which are curl-free); the curl of the basis
functions can then be expressed in terms of unitary basis
vectors €%, €7, and £° (see [1] and [6] and Section IIT). Thus,
for the pyramid, we may write

Q= Aavéa + Abvéb + Acvfc (3)
1
VxQ= 7(3(1 ¢+ B,€" + B ) 4)

where A; and B; turn out to be nonpolynomial functions of
the parent variables. Without specifying the subspace to which
they belong, here we can only require that (3) and (4) are
finite-energy functions. Of course, this is too little, since H
and E are interchangeable and constrained by Maxwell’s curl
equations, and especially because we may wish to rewrite €2
in terms of the unitary basis vectors. It is therefore reasonable
to expect and require that vector basis functions and their
curls belong to a much better specified common subspace,
perhaps a polynomial one, as it happens for all the other
elements.

Since we know the lowest order pyramidal basis functions
from [11], in Section IV, we easily identify the polynomial
subspace in common to the basis functions and their curls.
There, we see that the coefficients A; and B; in (3) and (4) are
polynomials of variables other than the parent ones, although
related to them. The higher order volume-based vector func-
tions are obtained by inspection once we understand which
variables we must use to get vector bases of polynomial form.

III. ELEMENT GEOMETRY REPRESENTATION IN CHILD
AND PARENT SPACE

With reference to Fig. 1, any child pyramid in the observer’s
space r = (x, y, z) is a mapping of the same parent pyramid
obtained through the shape functions of five parent variables
& = (4,8, 5,8, &) that vary linearly across the element.
The faces are numbered to correspond to the indexing of
the associated parametric coordinates; that is, the j-th face
of the pyramid lies on the parametric surface {; = 0. The
quadrilateral face lies on the coordinate surface &s = 0, while
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Fig. 1. Shape functions map the parent pyramid in the left to the child
pyramid in the center. In the grandparent space (7, &), the shape functions

and the basis functions take polynomial form, while the pyramid is described
by the cubic cell shown in the right.

the four triangular faces have coordinate ; = 0, with j =1 to
4. We choose as independent coordinates &, &, and s, so that
V& - (VE x V&) is strictly positive (see Fig. 1), while &
and & are dependent coordinates. Gradient (V¢,) and edge
(£45) vectors are defined in the child space and calculated
as summarized in Table I. Notice that the triangular faces
1 and 3 are opposite to each other and have in common
only the vertex of the pyramid, as happens for faces 2 and
4. Henceforth, the subscripts that label the triangular faces are
always computed modulo 4 meaning, for example, &;_| = &
for j =1, and &, 4 = ¢ for y = 4. Similarly, the edges are
given a two-index label deriving from the two faces sharing the
edge. The pyramid’s edges shared by two triangular faces are
called rriangle edges to distinguish them from the mixed edges
lying on the quadrilateral face and in common to only one
triangular face; this naming is the same as used in [17]. The
edges indicated by two dummy indices y and y + 1 are always
triangle edges and, to lighten the notation, we will often set

y +1=09. 5)
The & variables are linked by the dependence relations [11]

S+&+E =1
H+&+E =1 (6)

that hold also on each face of the cell. In fact, the parametric
coordinates ¢, &3, and &s used to describe the triangular face
& = 0 (as well as the & = 0 face) are dependent on each
other as in the first of (6). The coordinates &, &, and &5 which
describe the faces & = 0 and & = 0 are dependent on each
other as in the second of (6). Finally, for the quadrilateral
face & = 0, one has the two dependency relations obtained
from (6) by setting & = 0. On the pyramid’s tip, one has &5 =
1, while (6) forces the remaining four coordinates to vanish.

IV. LOWEST ORDER BASIS FUNCTIONS AND NEW
PARADIGM TO DERIVE HIGH-ORDER BASES

One of the main objectives of this section is to clarify
which variables to use to get pyramidal bases of polynomial
type, because certainly these bases are not of polynomial
type if we specify them using the parent variables introduced
in Section III. Thus, in addition to the parent coordinates,
we introduce four scaled coordinates, for j =1, 2, 3, 4

nj =1 (N

Vi = (8
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with dependence relations (for & # 1) stemming from (6)

m+m=1 m+n=1 9

These coordinates, used also in [17], transform surface inte-
grals on the triangular face £; = 0 of the parent pyramid (i.e.,
a triangular simplex) into integrals on a unit square, while
volume integrals on the parent pyramid become integrals on
the unit cube of the (1, &5)-space, as shown in (10) and (11)

~1 1-¢5
/ / G(&j+1,Es) dEj4 ds
o Jo

1 1
=/0 /0 (1= &) G[(1 = &)njer, &]dnj1dss (10)

1 1=¢s pl1=G5
/ / / G (&) & d& s
0 0 0

1ol
= / / / (1 —&)* G, &) dny diga dés.
o Jo Jo

The kernel on the right-hand side of (11) could be used to
cancel singular terms that the function G(n, &s) could have
at the vertex of the pyramid, in {s = 1. For example, tip
singularities could occur if the tip of the pyramid is an
isolated vertex of the structure under consideration. To model
physically permitted singularities, one should develop and use
singular basis functions, which are beyond the scope of this
article.

Most important of all is that the vector basis functions
and their curl take a simple polynomial form in terms of
the grandparent variables (3, s), as summarized in Table I,
whereas they have a fractional form when using & parent
variables [11]. The same happens to the shape functions; for
example, the interpolatory shape functions used in [11] take a
polynomial form by using (7) to replace the parent variables
with the new grandparent ones.

In this regard, we immediately claim the fundamental result
used to derive our bases which stems from (8), namely
that the curl of any linear combination of terms such as
nt nf ¢Z(1 — &)VE, (where the subscript a in V&, is 1, 2,
or 5), and the gradient of any linear combination of terms
such as 7 nf ¢Z(1 —&s) takes a polynomial form in the space
(9, &s). (Of course, each term of these linear combinations can
have different values of the exponents «, £, and z.)

With reference to Table I, the factor (1 —¢)> guarantees the
polynomial form to 2,5 and its curl, while the proof that the
polynomials 2,5 agree with the aforementioned fundamental
result is obtained by highlighting their nonzero curl component

arn

Q,5=2n,12 M52 (1 = &) Vi — V|42 1522 &5 (1 = &5) ]

12)
which gives (fory =1to4,and o=y + 1)
V X Q5 =2V 0542 (1 —&)] x V&5
= =2 (ny+2Lss + nss24y5) /T (13)

The curl-free polynomial vector on the right-hand side of (12)
guarantees tangential continuity between adjacent elements
and cannot be omitted. In fact, recall that the basis functions of
Table I have a constant tangential (CT) component along each
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TABLE 1
PYRAMID’S GEOMETRY REPRESENTATION AND LOWEST ORDER CURL-CONFORMING BASE

The element Jacobian (7) and the gradient vectors (V&)
T =" x e

Ve, = £28

ve = £ -

Ve = 8, -

J

Vi =— (V& + V&),  Vi=— (Vi + V)

are expressed in terms of the unitary basis vectors £, £2,
£5 which are the derivatives of the element position vector
T with respect to the independent coordinates &1, & and
&s5. The element edges are formed by intersection of pairs
of zero-coordinates surfaces, and the edge vectors

Loy = T Vi x V§,

are directed along the cross product of the associated
coordinate gradients. The edges are given a two-index
label deriving from the two coordinate indices appearing
in this cross product. The unitary basis vectors determine
the following eight edge vectors

bos = —lys = 01 fos = 0> — 4!
bos = —L15 = 02 Ly =05 —p' —p2
o= £ by = 0° — 02

with £15, €3, €34, €41 oriented towards the tip of the
pyramid and £5, €25, €35, £45 arranged counterclockwise
when viewed from the tip of the pyramid. The mixed edges
15, 25, 35, 45 are in common with a triangular face and
the quadrilateral face; the triangle edges 12, 23, 34, 41 are
shared only by triangular faces.

By counting modulo 4 all the subscripts obtained by
varying v from 1 to 4 and by setting

d=v+1
the eight basis functions and their curl take the form
Qy5(1) = 1120512 VE — &(1 = &) V42 1542]
Qy5(r) = (1= &)*ny42 Vs

V x Q) = -2 (1y+2 €55 + 542 £y5)
Ls(r) =

V x 0 5(7’) f 2.64+2
V x 975(,’,) _ 27 W+j +
with
me TR (1-6)Vn, =V V6

For example one gets
Q34(r) =mn2 (1 —285) V& — &5 [12 VE +m1 V]
V x Qay(r) = 2(ml" — ) /T

Dependencies among higher order functions arise from
linear combinations of the bases which contain one of
the following identities as a factor (with ., = —€2p,)

(1= &5) 125 + 17129y 425] =0, fory=1,2
(1= &) My +n3Qy3] + 2,5 =0, fory=2,4
(1= &) [12Qy2 + 142q4] + Q45 =0, fory=1,3

The completeness relations are:
925(7") — 945(1‘) — 923(’!’) — 934(’?) = Vf1
Q35(r) — Qu5(r) — Daa(r) — Qa1 (r) = V&
Qia(r) + Da3(7) + Laa(r) + L (r) = V&5

Qo5(r) — Qus(r) = (1 - &)? Vi,

Qs5(r) — Qus(r) = (1 —&)* Vi
V x [Q34(r) + Qui ()] = 2£4 )T
V X [Qa(r) + Qui ()] = 2£%)T
V X [Qs5(r) + Qus(r)] =22/ T

element edge which matches with that of the curl-conforming
zeroth-order functions of the adjacent element having brick,
tetrahedral, or prismatic shapes [11].

Once again, (12) is the sum of two polynomial functions.

1) The curl-free component is a polynomial, because it is
the divergence of a polynomial that contains the factor
(1—-4¢).

2) The nonzero curl component, clearly polynomial, has
also polynomial curl, since it contains the factor (1 —¢s).

It is fascinating how our fractional functions of space & unfold
into polynomials simply by mapping the pyramid to a cubic
cell whose vertices are the intersection points of three edges.
As mentioned in Section II, it is reasonable to insist that
this also applies to all other higher order functions, if only
for uniformity and for energy considerations based on (11).
We therefore state the following.

POSTULATE: In terms of the scaled variables, the
curl-conforming basis functions of the pyramid are
polynomials with polynomial curl.

As postulated, the higher order functions are obtained simply
by multiplying the lowest order functions of Table I by
polynomials of the space (1, &), and the order of a function

is that of its multiplicative polynomial. The lowest order
functions of Table I have zero order (in fact, on the boundary,
they match the zero-order functions of adjacent elements).
Expressions (7)—(13) wipe old habits [11] and allow to
derive the pyramid’s basis functions by shifting to a new

paradigm.
1) The vector components of the basis functions and of the

curl of the basis functions are polynomials of the vari-
ables n, &s. Unisolvency and base completeness must
be proved in the space described by the grandparent
variables.

2) Each higher order vector function is obtained by mul-
tiplying one vector function of zero order by a scalar
generating polynomial which, in turn, is the product of
normalized orthogonal polynomials (the same was done
in [3]-[6]).

3) The multiplicative polynomials are defined in the grand-
parent cubic cell of Fig. 1 (whose vertices are the points
of intersection of only three edges and faces).

4) On the pyramid border, the multiplicative polynomials
that generate the edge- and face-based functions coincide
with those for the adjacent elements, no matter what
shape they have.
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According to this new paradigm, once the importance of the
(1 — &) factor previously discussed is understood, we imme-
diately derive the volume-based bubble functions and obtain
all the others by simply imposing, on cell’s boundary, the
tangential continuity of the pyramid basis functions with the
other known expressions valid for differently shaped cells.
So keep in mind that it is only for the sake of brevity that
conformity with differently shaped elements is “demonstrated”
in Section V “after” the axiomatic definition of the basis
functions.

Also note that the dependency relations [see (6) and (9)]
ensure that the homogeneous polynomials of order p of the
&-domain

,+1€tsa r+s+t=p (14)
are polynomials of order p in & of the (n, &s)-domain
Wi [L=&)T &) r+s+r=p (15)

while, the other way around, the product of (1 — &)? times a
polynomial of order p in #; is a polynomial of global order
p in ¢;, &i1o. In particular, we get

P
(1=&)? zdk(zﬂj - l)k

k=0

= Zaka — &) (1 — my42)"
= Zak &+ &)™ k( §/+2 Zb &rery
k=0
(16)

where the coefficients b,, depend on the coefficients ay, as well
as on the value of p. Equation (16) is useful to assess the
global order of the multiplicative polynomials we introduce
in Section V. Notice that (14) neglects the condition that ¢;
and ;4 are zero at the tip of the pyramid, while (15) takes
automatically into account the fact that (14) must vanish at
& = 1. The same is true for (16) which vanishes at & = 1 for
p > 1, a condition that we would have to impose if we used
the expression on the right-hand side of (16).

V. HIGH-ORDER BASIS FUNCTIONS

The edge- and face-based functions are derived by con-
sidering two groups: one consisting of functions associated
with the mixed edges and another associated with the triangle
edges. Each function is the product of a zero-order vector
function times a multiplicative scalar polynomial that we
construct by using the normalized polynomials Q,(x,y) of
Table II and the normalized Jacobi’s polynomials of Table III
that we readily evaluate for any order using their appropriate
recurrence relations [6], [20], [21]. We already used these
polynomials to construct the hierarchical bases reported in [3]
and [5]; for example, the edge-based polynomials shown in
the upper part of [3, Table II] coincide with Q,(&,, &) by
setting y.q = & = (1 — &, — &). Referring back to (16), note

5627

TABLE 1I
POLYNOMIAL Q, (x, y)
Definition:

Qo) =VEF 1G4y P (27)
where P, is the Legendre polynomial of order n.
Properties:

Qn(xv y) = (_1)77. Qn(y7 JZ‘)
Qn(z,0) =+2n+ 1z

Q,(0,0) =0forn>1

Recurrence relation:

Qo(z,y) =1 Qi(z.y) =V3(z—y)
Qn(l',y) = % [V 4TL2 - l(x - y)Qn—l(xay)
- Dy g 0 Quate yﬂ

that (6) and (9) yield

On (§y+la§y—l) = (] - 55)" Qn(’?yﬂ, 77}1—1)
=V2n+1(1-&)" Pn(”/erl - ”yfl)
= (1-&)" Au(1y4+1) (17)

and that the polynomials of Table III are functions of (2z—1),
with

21— L=myp1 —my—1

25, — 1 =1n, —n)42. (18)

Equation (7) and the first of (18) show that, apart from the
normalization constant, the polynomials (17) coincide with the
shifted scaled Legendre polynomials

é:erl no__
rl2(f2g) oo

used also in [17] and [22].

On the pyramid border, the edge- and face-based functions
match those given in [6] for the tetrahedron, the brick, and
the prism, and this guarantees the mutual orthogonality of the
edge-based functions on the edges and faces of the pyramid,
as well as the mutual orthogonality of the face-based functions
on the pyramid’s faces. The edge- and face-based functions
are not mutually orthogonal for integrals on the volume of the
pyramid. They can be rendered mutually orthogonal on the
volume by adding to each of these functions an appropriate
linear combination of the volume-based functions.

O (§y+la§y—l)

1
V2n +1 (19

A. Volume-Based Functions

Volume-based vector functions have zero tangential compo-
nent on all cell faces and are obtained by inspection observing
that the gradients Vi; = —V ;> are orthogonal to both faces
n; = 0 and 754, = 0. The three fundamental bubble functions
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TABLE III
NORMALIZED ORTHOGONAL POLYNOMIALS

Normalized polynomial P, (z)

Normalization coefficient

Weight function

Ap(z) = N, PO (22 — 1)

N,=+V2n+1 1

B,(2) = Ny P2 (22— 1)

2n+5)(n+3)(n+4) 3(1— 2)2 22

o

3n+1)(n+2)

Cy™(2) = Ne PP 09 (22 — 1)

(1 _ Z)2m+1 22

N _\/(2m+n+2)(2m+n+3)(2m+2n+4)

(n+1)(n+2)

D, (z) = Ny P*9(22 — 1)

Ny=+v2n+3 (1-2)?

The polynomials P,,(z) in the left column are obtained by rescaling the shifted Jacobi polynomials pd (22 —1) of order
n, being P, = P the Legendre polynomial. The system of polynomials pd (2z—1) is orthogonal on the interval [0, 1]
with respect to the weight function (1 — 2)® z%. The normalization coefficients depend on the order n of the polynomial
itself, as well as on the value of the integer m that defines the exponent « of the corresponding weight function, reported
in the right column for clarity. The polynomial systems listed in the left column satisfy the orthogonality relation

/0 w(z) Pn(2) Pe(z)dz = dps

being d,,, the Kronecker delta function. These polynomials have a zero derivative for n = 0, while for n > 0 we have

d B Poy1(22—1)— (22— 1)P, (22— 1) d B (3,3)
e An(z) = (n+1)N, 5202 = 1) e Bn(z) = (n+5)NyP, 77 (22 —1)
g—z CM(z) = (@m+n+4) N, PP 23, 1) % Dn(z) = (n+3)N;P®V(22-1)

of the lowest order possible

Qp) =& = &G)mnsVin
=—&mm(Va +mVés)
Rpr =G(1 = E5)mmaVm
=&mna(VEr +mVis)
Rp3 = mmn3naVés

(20)

have a nonphysical singular curl in s = 1 and therefore do
not belong to the polynomial base. In fact, the lowest order
polynomial functions with polynomial curl are obtained simply
by multiplying (20) by (1 —¢s), which immediately allows us
to write all the higher order polynomial bubble functions in
the form

9511( =1 =S)Bj1(m) Bi-1(&) An(n2) 1
Q,B,i = (1 —¢&) Bj_1(m2) Bi—1(&s) Ax(n11) 22
952 =(1-4&)Bi—1(11)Bj—1(n2) Di(&5) 23s3.

In terms of the zeroth-order vector functions of Table I, the
bubbles (21) read as follows:

9};;( = 95}( =& Bi—1(m) Bi—i1(&s) Ax(n2) R15
Q7 = @7 =& Bj1(n2) Bio1(&5) Ar(m) s
Q% =1 —=&)mmmn
x[Bi—1(n)Bj-1(n2) Di(&5)]| Vs
being Vs the sum of the functions 25, 253, R34, and 4
associated with the triangle edges (see Table I at bottom left).

2D

(22)

Before proceeding further, let us see the differences with
respect to the bubble functions proposed by other authors,
bearing in mind that our bubbles (21) contain the factor
(1 — &)™ with n = 1, which is the minimum value of n that
guarantees polynomial curls. A factor (1 — &)" appears in
the expression of the bubble functions of the fourth family of
[17, eqgs. (9.26), (B.35)] and in all those of [16], but in those
expressions, n depends on the maximum value between two of
the indices i, j, and k and can be greater than unity. Since the
other basis functions have no factors that depend on the values
of a pair of indexes, it is not clear to us why some bubbles
should contain a factor (1 —¢&s)" instead of the factor (1—¢&) as
in the case of our bubbles (21). By substituting the functions
of the fourth family of [17] for our Slfi‘z, assuming that they
are equivalent, we have found the occurrence of spurious
modes. We also observe that the expression of the higher order
functions in [17] involve integrated Legendre polynomials,
while we always use orthogonal Jacobi’s polynomials. It is
certainly possible to use integrated Legendre polynomials
instead of orthogonal Jacobi’s polynomials (normalized as in
Table III); we have tried it, and we have seen that, by doing
so, the mass matrix CN increases by at least two orders of
magnitude.

Our p-order complete curl-conforming set has a total of
3p%(p + 1) bubble functions, since each Rz, 25>, and Lp3
generates p>(p + 1) functions hierarchically organized as
follows.

1) For p =0, there are no bubble functions.

2) For p = 1, the set is made up of %, @5 .
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TABLE IV
BUBBLE FUNCTIONS’ CURLS

V<l = A’“}’“) [ ns Bj—1(m) Ui(&) £!
& Bioa () Vi) ¢

v = 2 ) Vi) €
& Bia(63) Vi) €'

Vx Q5 = Dé@“mmﬁqmﬂ%mﬁf

—nams Bj_1(n2) Vi(m) €7
=0 -t —ne
d
T, =2z2(1—2)—B,_
()= 21— 9) = Bua(2)

Un(z) =T,(2) — (32 — 1) Bj—1(2)

Vo(z) =Th(2) — (22 —1)B,—1(2) mn=tiorj

3) For p > 2, one has to increment the set of order (p — 1)
with p(3p — 1) polynomials Slf;-k obtained for

i=p, j=1top, k=0top—1
i=1ltop—1, j=p, k=0top—1
i=1ltop, j=1ltop, k=p

where Slﬁk stands for 95}{ Slfﬁ or SZ,B}Z

Table IV reports the curls of the bubble functions in terms
of the unitary basis vectors of Table 1.

For the maximum value p assumed by the indexes i, j, and
k, the component in V& of the bubbles (21) is of order (p+1)
in 71, 12, and &s. The V& component of the bubbles (21) is of
order p in 771 and (p + 1) in 7; similarly, the V& component
is of order p in 7, and (p+1) in #;. The same happens for the
vector functions associated with the triangle and mixed edges
that we consider in the following two subsections. All these
do not happen by accident, and it is used to demonstrate the
completeness of the bases in the Appendix.

B. Functions Associated With the Mixed Edges
Higher order vector functions

7S _ pggrS
Qijk = Hijk SzyS

(23)

associated with the mixed edge y5 (for y = 1, 2, 3, 4) are
obtained simply by multiplying the zeroth-order function

Rs=(n, = 1)1 =& [V +VEa] Q4
by (p + 1)(3p + 2)/2 hierarchical polynomials
Hige (1-&)
Hoyjsk = ny Bj-1(y) Ag(ny+1) 25
HI & (1 =&)Y e &)

obtained for k +i < p. Set (25) has (p + 1) edge-based

polynomials Hoyoi that naturally form a hierarchical subset for
k ranging from O to p, in the sense that for p = 0, the subset
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contains only the polynomial HOyO%, while for p > 1, one has
to increment the set of order (p — 1) with the polynomial Hgoi,.

We then have p(p + 1) face-based polynomials H, ;k that
vanish on face y (where #, = 0) and are based on the
&s = 0 face; they are hierarchically organized as follows.

1) For p = 1, the set consists of the polynomials H{jy
and H])).

2) For p > 1, the set of order (p — 1) is augmented
by adding p polynomials Hoy;k, obtained for k =
0,1,...,p—1, plus p polynomials H; ji, obtained for
j=1,...,p.

Finally, we have p(p + 1)/2 face-based polynomials H;’(’)i
that vanish for & = 0 and are different from zero on the
¢, = 0 triangular face; that is, they are based on face y and
hierarchically organized as follows.

1) For p = 1, the set consists of the polynomial H]j,.

2) For p > 1, one has to increment the set of
order (p — 1) with p polynomials Hl%i obtained
fork=0,1,...,p—1withi = p — k.

(Note that the number of polynomials indicated here holds for
any mixed edge and does not depend on the shape of the cell,
be it a pyramid or a triangular prism [5], [6].)

To show that the edge-based functions Hjy, 2,5 conform
to the basis function of adjacent cells, we observe that on the
quadrilateral face &s = 0, the simplified expression

i = AEn) = VEFT PG &) 26)
5=

matches that of the edge-based polynomials given in [5] for
the prism, and in [4] for the brick while, to prove conformity
on the triangular face #, = 0, recall that

Hig|, = 0= & Aulna) = Q& ém) @D

and then observe that for (&, 1, &, -1) = (&, &), the polyno-
mials (27) coincide with the edge-based polynomials reported
in the upper part of [3, Table II] obtained for y., = & =
(1—=¢,—&). Equally simply, it is proved that on the triangular
face, the multiplicative polynomials Hoyoi coincide with those
of the triangular prism given in [5, Table III].

As for the face-based polynomials H(%Jsk we note that on
the quadrilateral face {5 = 0, we have n, = ¢,, so that we get

Hoyjsk s=0 & Ny Ny Pi(&y 1 — 5%1)13;2—21) & — &) @9

which is the same expression holding for the face-based
polynomials of the brick cell reported in [4, eq. (12)]. (The
Na and Nb values are obtained from Table II.)

Finally, and in a similar way, to demonstrate the conformity
of the polynomials Hl-{)i based on the triangular face &, =
0 with those of the adjacent cell (possibly of tetrahedral or
prismatic shape), it is sufficient to compare their expression
with those reported in [5, Table III] and [3, Table II].

As already done in [3]-[5], the sign of the vector func-
tions (23) must be adjusted if the orientation of the mixed
edge is opposite to the “reference” one, or different from that
of the adjacent cells, as a consequence of (27) and of the
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TABLE V
CURLS OF THE VECTOR FUNCTIONS ASSOCIATED WITH THE MIXED EDGES
1-¢&)kA 1-¢&) ’“A
V x Q5 = (1= &) " Ar(me) 65) £ (12) {ET (2+k) 77381} V x Qg = (1= &) Axlm) {f O (&) € — n3Vin(&s) £ ]
_ k 1- KA
v x Q- (1= &)k Ay (n3) 55) Ar(n3) |:£T @+ k) 774£2] v x Q% = (1 —&)" Ar(ns) 55) k(13) {55 c® (¢5) €7 _n4‘/m(£5)£2]
k 1—&5)"Ag(
v x 0%, = U 55)/1’“ ) [+ @+ pme] |V x = ( 527 8 [55 O (&) €7 + mVik(5) £']
_ 1—-&)FA
VX Qi - M [+ @+ k] | V<0 = ( &’)j L) [e; o) () € + mViu(€) €]
=0l = Vie(2) = [(3+ K)z — 1] O, (2) — 2(1 - z)i—zcﬁ)l(z)
V x QL° Ak (1m2) {[T;(m) — B; 8L+ 02—
0jk = 7 i(m) i—1(m)] m £+ Vi(m) (772 )}
A
v x 3, = ’“}"3) {(T30m) = Bi-a(m)] 12 € + Vi) (m €~ £°))

T;(n3) + Bj—1(n3)] mi £ + V;(n3) (n2 €2 — £°)}

5(ma) + Bj—1(n4)] n2 e+ Vi(na) (771 A

Ty(z) = 2(1 - 2) =By (2)

—0)} V() =Ty(2) - 22— 1) By ()

symmetry relations of the Legendre polynomials

77y—1) = (—1)kPk(’7y—l - ’7V+1)'

Table V reports the curls of the vector functions (23) in terms
of the unitary basis vectors of Table 1.

P41 — (29)

C. Functions Associated With the Triangle Edges

To lighten the notation used to define the basis functions
associated with the triangle edge £, = ¢&; =0 (for y =1, 2,
3,4, and 0 = y + 1), henceforth we set

Go=0=&) (1=m)0 —n5) = (1 =&5) 252
highlighting the following key features.

(30)

1) On face s = 0 and face n, = 0, one gets Ey(; =&
and Ey(; = &40, respectively.

2) Ey& = (1 — &) along the edge y & where #, 12 1542 = 1,
while it vanishes on the two triangular faces opposite to
the edge at issue where 7, 12 7512 = 0.

3) The gradient of (30) takes the polynomial expression

V&= (myns = 1)VE = 102V = 02V, (31)
That said, the higher order vector functions
o o
QL =H; 2, (32)

are simply obtained by multiplying the lowest order function
€, by (p + 1)? hierarchical polynomials

Hio 0i(5.8,0)
H(%}](;c =1é Cy:)] (ézy) O (555 Sy +2)
Hiy, & CY (&) 0u(Ss, &)

(33)

which all have a gradient of polynomial form in the space
(7, &). This implies that the curl of (32) takes a polynomial
form in the space (n, ¢s), since Hl]k, 2,5 and its curl have
the polynomial form in this space. [The polynomial form of
V Qi (&, Ey(;) stems from (31).]

Set (33) has (p + 1) edge-based polynomials H, OOk’ that is,
for p = 0, this subset is simply formed by H(goo’ while, for
p > 1, one has to 1ncrement the subset of order (p — 1) with
the polynomial H0

Set (33) then has p(p + 1)/2 polynomials Ho/,k based on
the & = 55 = O triangular face, organized as follows.

1) For p =1, the set consists of the functions H(;’]%

2) For p > 1, one has to 1ncrement the set of
order (p — 1) with p functions H] 0/ k obtained for
k=0,1,...,p—1with j = p —k.

Finally, the p(p + 1)/2 polynomials H,%z based on the &, =
1, = 0 triangular face are hierarchically organized as follows.

1) For p =1, the set consists of the polynomial Hlyof).

2) For p > 1, one has to 1ncrement the set of
order (p — 1) with p polynomials H; Ok obtained for
k=0,1,...,p—1withi = p —«.

The curls of the functions (32) are given in Table VI.

The vector functions (32) naturally conform to the basis
functions of adjacent cells. For example, along the y J-edge,
one gets Z,,(; =1-—¢& and

H) = Qu(&s, 1 —
00k & =50 Or(Ss és)

= V2k+ 1 P25 — 1)

which proves that Hgo‘i conforms to the edge-based polyno-
mials given in [3], [5], apart from a possible sign adjustment.

(34)
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TABLE VI
CURLS OF THE VECTOR FUNCTIONS ASSOCIATED WITH THE TRIANGLE EDGES

EDGE-BASED FUNCTIONS’ CURL - The curls (in terms of the unitary basis vectors of Table 1) are
VX QR = (24 k) Qul6s, Ei2) [~ +00€?] [TV x Qe = 24+ k) Qulés, Ea) [+l — ma€?] /T

V x Q% = (24 k) Qr(Es, &23) [-mel' —mul®] /T V x Qb = (24 k) Qr(&s, &a1) [+n3l' +1267] /T

FACE-BASED FUNCTIONS’ CURL - With reference to (37) or (38) we first compute the gradients

VH, = Ry Ve + Ryl Ve 9 (nse HijL) = sva VH 4 (1= &) (15 V6 — V¢s) Hip
VH, = Rils] Vs + BU0] VsV (nyr2 Hi ) = 12 VHG + (1= &) (0, VEs — V) B,
where
nl4] = S{(6. Eara) O () + 64 Qul6s v @c“%(@n R[] = Ea (k+ 1) (Es, €av2) O (6a)
Ea=1=8&)na; Cara=(1-&)1—na)=(1—-&)nate
Staw) = 5 [(W (D = 3043) +2) Qula) - (4 DI ;’;j;,@km,y)]
ko) = o 0= Do)~ Vo Qu ()|

Note that H ;& and VH;& are obtained by exchanging v with § in the expressions that hold for Hgfk and VHgfk.
The edge vectors components of the curl of the functions (37) is then computed by using the following formulas for
v=1,2,3,4; 6 = v+ 1 computed modulo 4, and with V&, x V&, = £,/ T

5 5 5
v « ik v l H, X Qs 2 (412855 + Ns2bys) | Hojr }
s | = 5 g 5
ok H J H

Qs =& 1542V E + &5 1y12 VEs + [y 12 stz (1 — 285) + &5 (Ny42 + 1542)] Vs
V X Qy5(r) = =2 (y12€s5 + 512 845) /T

We recommend quadrature formulas with samples inside the element to avoid numerical problems due to the expressions
of S¢, Sb provided above. Formulas to compute S¢ and S} for x and/or y equal to zero are however given below.

Se(z,y) = 1; Sz, y) = V3 (1—2y); S, y) = 0; Si(z,y) = V3;
S%(z,y) = V5 [3(y*> — 2?) +2(2z — y — 32)] Sy(z,y) = V52(z —y)
For k > 1 use the following limits: For k > 1 use the following limits:
Si(x,0) = V2k+1[z+k*(1-z)]a"? Sh(z,0) = V2k+1 (ka*t)
SH0,y) = VERAT [y— k(L - )] (~)F g SU0,y) = VIRFT (-1 (kyt)
that yield S{(0,0) =0 for k > 2 that yield S2(0,0) = 0 for k > 2

Conformity on the triangular faces y and ¢ descends from the can be replaced by

fact that, on these faces, HJy, takes the same form as (27)

Q) = H® @

Hig|. = 0. &0) (35) S
00k], o — KIS &ot2 Qo = m2 Hiy 2,

70 _
HOOk)g},:O = Ok (55, é +2)- (36) where, as indicated by the subscripts used
Similarly, the conformity of the face-based functions with .. 3 ; ;
. . . . . Q5 = Vé —&6VEL=(1-¢,)V 5VE,
those in [3], [5] is demonstrated by comparing their expression 5= &2 Vi = &5V 0 = ( f' ) V&5 +&5V¢;
with those reported in [5, Table III] and [3, Table II]. Q) =82 Vi —46VG0 =10-46) VE+46VE (39)
In applications, the functions

(38)

are the zero-order -curl-conforming functions of the

Sz(y)}sk = H(;/j'j( 2,5 52[0{3( = nyoi 2, (37) two-dimensional simplexes defined by the triangular faces
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¢s =0 and &, = 0, respectively, with

Vx® = 20,5/
VxR, = —24s5/J.

At last, we clarify the order of the multiplicative poly-
nomials (33) so as to prove the completeness of our bases
as in the Appendix. Qk(§5,gy5) is a polynomial of degree
3k of the (,, 75, &s) space whose highest degree term in ¢s
is proportional to (&s77, 75)*. Its higher degree term in 7, is
proportional to [7, (1 — 75)(1 — &)1¥, therefore proportional
to f]',‘ on face s = 0. The highest degree term in 7; is
proportional to [775(1 — 7, )(1 —&)1%; that is, it is proportional
to & on the & = 0 face. Similarly, one can show that the
highest degree term of all the polynomials (33) obtained using
the hierarchical indexing rule reported earlier is proportional
to (1, 15¢5)? and that we never obtain terms proportional to
ny, N5, or & with a > p.

Considering the expression (12), this is equivalent to saying
that, for the maximum value assumed by the indexes i, j, and
k, the component in V& of the functions (32) is of order
(p+ 1) in ny, 1, and &. The V& component is of order p
in 1 and (p + 1) in #; similarly, the V& component is of
order p in 7, and (p + 1) in #;. The same happens for the
vector functions associated with the mixed edges considered
in the previous subsections.

(40)

D. Degrees of Freedom

Not all the higher order face-based vector functions intro-
duced so far are independent of each other. To form a p-th
order base, we must discard the dependent functions and count
the total number of degrees of freedom (DoFs). There are
in all 8(p + 1) edge-based functions, since the pyramid has
eight edges and all the edge-based functions are independent.
Then, regarding the face-based functions, we observe that each
lowest order vector function associated with the three edges
that bound the triangular face £, = 0 generates a set of
p(p + 1)/2 face-based functions

5 5

Q= Hjy, 2,5 (41)
@t = Hy! 2,0 42)
ﬂgj;cl’y = Hoyj;w 2,1, (43)

but one of these sets must be discarded, because, on a face,
we have only two independent tangent vectors, as per the
dependency relationship in Table I. So, for p > 1, on the
¢, = 0 face, we have a total of p(p + 1) face-based
functions. Similarly, since the quadrilateral face is bounded
by four mixed-edges, we have four different subsets of vector
functions based on face & = 0. Two of these are dependent
and must be discarded as per the dependency relationship in
Table 1. For example, the sets generated by the function 235
and 45 can be discarded. The remaining two sets

ﬂ(l)i'k = Hol_,‘sk Qs (44)
Q5 = Hi Qs (45)
have in total 2p(p + 1) face-based functions, for p > 1. (Of

course, one can use the face-based vector set 2 instead of
QY and/or the set % instead of % )
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Basis order p

Fig. 2. Total number of DoFs for curl-conforming vector bases of order p
on single, differently shaped canonical cells.

Finally, we have 3p?(p + 1) bubble functions which are
all independent. To summarize, the number of DoFs for
curl-conforming bases of order p on a pyramid is determined
as follows:

1) one component x (p+ 1) DoFs x 8 edges = 8(p+ 1)
edge DoF;

2) two components x p(p + 1)/2 DoFs x four triangular
faces = 4p(p + 1) face DoF;

3) two components x p(p + 1) DoFs x one quadrilateral
face = 2p(p + 1) face DoF;

4) three components x p>(p + 1) DoFs x one element =
3p%(p + 1) DoOF interior to a pyramid

for a grand total of DoF per pyramid equal to
DoF# = (p+ 1)(8+6p +3p?) =35 +5p  (46)

as obtained in [17] for p = p + 1. The number of DoFs of
the pyramid is always lower than that of the brick, while it
remains higher than that of the triangular prism for p > 2
(see Fig. 2). Note that the pyramid and the brick have the
same number of interior DoFs [6].

VI. NUMERICAL RESULTS

The principal concern of hierarchical bases tends to be the
matrix conditioning arising from their use (see, for exam-
ple, [6], paragraph 5.3.4, from page 242 onward). To establish
that the rate of growth in CN for our new pyramidal bases is
not substantially worse than that of the hierarchical bases for
the other differently shaped cells (bricks, triangular-prisms,
and tetrahedrons), we show in the following a couple of
illustrative results obtained with rectilinear elements. We do
this for the sake of brevity as our bases can also be used
on curved pyramids appearing in hybrid meshes. To better
assess (and then predict) the CN behavior, one should consider
and study many hybrid meshes that use differently shaped
elements.

Fig. 3 reports results for the individual element mass-matrix
CNs for the hierarchical vector bases of different orders
obtained by considering rectilinear cells with equal edges and
of unitary length, computed with 3-D-integrals over the child
cells. (Note that the CNs shown in Fig. 3 do not depend on the
cell’s edge length in the child space, since the unitary basis
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Fig. 3. Individual element mass-matrix CNs grow exponentially with the

order of the hierarchical base in use. The figure shows results obtained by
considering differently shaped rectilinear cells whose edges have the same
unitary length. For p > 1, the CN associated with the pyramidal cell grows
approximately as 50 x 10'37 and, as shown, it is greater than that of the other
equilateral elements of the same order reported in [6, Chap. 5].

10°
5. 4] ,
—é 10
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=]
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S0t :
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AAR=V5 =~ 2.24
0AR=V13 = 3.61
100 ‘ ‘ ‘
0 1 2 3 4
Basis order p
Fig. 4. Individual element mass-matrix CNs for the rectilinear pyramids

shown in Fig. 5, with AR = 1 (equilateral), AR = ﬁ, and AR = +/13.

vectors and the Jacobian of the transformation from parent
to child space are constant for the cells considered in Fig. 3.)
The CNs of the pyramid shown in Fig. 3 are obtained by using
for the triangular faces the basis functions associated with the
triangle edges.

Fig. 4 compares the individual element mass-matrix CNs
of the equilateral pyramid of Fig. 3 with those for pyramids
obtained by moving one vertex of the base of the equilateral
pyramid along its diagonal, doubling and tripling the length
of this diagonal as depicted in Fig. 5. These pyramids have
equal height and equal length for one of the diagonals of
their base, but flat quadrilateral base of different shapes. The
ratio between the longest and the shortest side of each cell,
commonly known as aspect ratio (AR), is given in the captions
of Figs. 4 and 5. Note that unlike the equilateral pyramid,
the distorted pyramids considered in Fig. 4 do not have a
constant Jacobian. In view of the (expected) results of Fig. 4,
we recommend using cells with AR near unity and less than
3 when using bases of order higher than the first.

Table VII considers the first six resonant frequencies of a
pyramidal cavity with the edges of equal length obtained by
finding the eigenvalues of the discretized vector Helmholtz
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Fig. 5. Pyramids of different aspect ratios: AR = 1 (equilateral) in the
left, AR = \/3 in the center, and AR = «/ﬁ in the right. The Jacobian J of
the transformation from the parent-to-child space is constant for an equilateral
pyramid, while for distorted pyramids, it can vary within the cell. For example,
we have J = K for the pyramid shown in the left, while 7 = K (1+#;+#2)
for the pyramid shown in the center, and J = K (1 + 25 + 2#,) for the
pyramid shown in the right.

TABLE VII
EQUILATERAL PYRAMID
Meshing with 1 pyramid

WN p=3 p=2 p=1| p=0
5.780285 (1) 5.776 5.81 6.03 6.32
7.596937 (2) 7.596 7.70 7.75 7.63
9.264641 (2) 9.319 9.93 10.10

9.26 (1)

9.492400 (1) 9.565 9.71 9.23
Max. Error 0.8% 7% 9% 10%

DoF 212 96 34 8

# of zero

eigenvalues 76 36 14 4

CN 2.3x10% | 4.4 x10% | 750 7

Meshing with 4 tetrahedrons

WN p=3 p=2 p=1| p=0
5.780285 (1) 5.778 5.82 5.64 6.32
7.596937 (2) 7.599 7.61 7.44 7.30
9.264641 (2) 9.329 9.30 9.48 8.00
9.492400 (1) 9.391 9.67 8.53 11.31
Max. Error 1.1% 2% 9% 19%

DoF 244 123 50 13

CN 2.1 x 10* | 3.3 x 103 320 10
Results for a pyramid with edges of equal length. The first
wavenumbers (WN) and their multiplicity (indicated in brack-
ets) computed with bases of order p = 3, 2, 1, and 0 are reported
in red. The reference WN in the left column are obtained
by meshing the pyramid with four identical tetrahedral cells
of order p = 6, a problem with 1,015 DoF that leads to a
mass-matrix CN=8.4 x 10°. The results at top are obtained by
meshing the pyramid with a single pyramidal element, those
at the bottom are obtained by meshing the pyramid with four
identical tetrahedral elements. For each order p, the Table also
reports the maximum relative percentage error (Max. Error)
found on the reported wavenumbers, the number of Degrees of
Freedom (DoF), and the mass-matrix condition number (CN).

equation. Results obtained using a single pyramidal cell are
compared with those obtained using four identical tetrahedral
cells. These results not only demonstrate that our pyramid
bases avoid spurious modes but are also capable of providing
better results with fewer unknowns than that required by a
tetrahedral cell-based model. To reduce the number of DoFs
of the tetrahedral cell-based model, we also tried with a mesh
formed by only two identical tetrahedral elements instead of
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four (these results are not reported here), and we have seen
that this heavily impacts on the symmetry of the cavity modes
and leads to errors much higher than those reported in the
lower part of Table VII.

VII. CONCLUSION

This article presents a general procedure to obtain higher
order hierarchical curl-conforming vector basis functions for
pyramidal elements. The functions ensure the continuity of the
proper vector components across adjacent elements of equal
order but different shapes. Properties of the vector basis func-
tions are discussed in detail. The reported numerical examples
show that higher order functions provide more accurate results
than those obtainable with lower order elements.

APPENDIX
COMPLETENESS OF THE HIGH-ORDER VECTOR BASES

By using homogeneous multiplicative polynomials #¢{ 775 &,

it follows from the last row of Table I that the following linear
combinations of the curl-conforming bases yield complete
vector polynomials of degree p = (a + f + y) in three
independent directions

Qo5 — Rys — L3 — R34 p V& p
Qis — Ris — Ry — Q. (n{np & =| V& (i &l (4T)
Qo + Qo3 + R34 + Ry Vs

In addition to that, we require that the set formed by the curl
of the basis functions be complete to the order p; that is, all
the vector polynomials of order p + 1 with a polynomial curl
must be a linear combination of our basis functions. Beware
that our base does not model all vectors of order p + 1, but
only the physically acceptable ones, with nonzero polynomial
curl. We therefore consider the homogeneous polynomials

ws — e ybel (1 - &) (48)

where we added the factor (1 — &s) to cancel the singularity
in & = 1 which would occur by calculating the gradient of
;7?;75 &l for a or B # 0. For example, note that the linear
combinations of the zeroth-order basis functions yield the
high-order vectors

Q35 + Q45 mVé —mVé
Qs — Qs | =| VE+mVE PO (49)
Q35 — L5 V& +mVis

but none produce first-order, curl-free vectors such as & V¢,
&HVE, and &V E. It does not matter if the zero-order base is
unable to produce “crystal-clear” terms like ¥ @0VE =
y00VE: what really matters is that it must be able to
produce V x Y100V, as well as (see last row of Table I)

1 Q35 + Q45 00| V&

-V =V x¥Y" 50
2" |:925 — Q245 % Vs ©0)
1 Q35 + 45 o10| —Vé

-V > T l=VxyYhh . 51
2 |:935 — Qs x Vs Gb

In essence, in addition to (47), it is necessary that the curl
of some linear combinations of the vector basis functions
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produces the curl of the terms reported in (52) and (53) unless
a vector with zero curl

V& |wetipy) | V& (@py)
[st}‘y o _[V&]mw y 62
Vé gy _ | Vé Wy @py)

|:V§5]I = [st}m ' 53)

for (o + f + y) varying between zero and p, and for a, £,
and y at most equal to p. Of course, once again, with these
additions alone, we do not complete the base up to the order
(p + 1), because we discard linear combinations capable of
producing

“P(p-H’O’O)Vél , \P(O,p+1,O)V§2’ LIJ(O,O,P+1)V§5_ (54)

The last term W ©-0r*DVE of (54) is discarded, because it
is a curl-free term, while the first two terms are discarded,
because their curl equals that of a vector function of order
p + 2, as shown in (55, 56) (a p-order base does not need to
model the curl of functions of order p + 2)

V x [$OHO0vE] = _# V x [$0200vE] (55
V x [$Ort0ves] = _ﬁ V x [POrR20vE] (56)

Now, it is clear that the vectors (54) are discarded; let us prove
completeness in the curl by using inhomogeneous polynomials.
In this connection, we first observe that, with the exception
of polynomials (54), any polynomial vector of order (p +
1) = (a + f + y) can be expressed as the sum of a curl-free
vector plus a vector which can be represented in terms of
curl-conforming functions of order p

(1 +a)¥ Ve
— V[\{J(LO.O) \P(aﬁy)]
_ﬁ\{l(a+1»/f—1,l')vé:2 —(p— 2)\p(a+1,/fﬂ')vé:5

—y eIV 57)
(1+B)¥1vE
— V[LIJ(OJ,O) \{I(aﬁ}’)]
_ a\}/(d*l,ﬂﬂ,wvél —(p— 2)‘11(""5“’”V§5
=y PG (58)
Q-a—f+7)P Vs
— V[\{/(O»O,l) \I/(aﬁ’“/)]
_a\y(a—hﬁv)v& _ ﬁ‘P(“’ﬁ_]"V)V@
—y ¥ IvEs (59)
with
p=a+pf+y—-1=0
o, f,y = 0. (60)
Notice that V[P®OL0 @@ ypO.LO @k and

VIY©OODw@)] are the gradients of inhomogeneous
polynomials and, because they are gradients, are curl-free.
Taking the curl of both the sides of (57)—(59), one finds that
the curl of any vector of order (p + 1) (yielding a vector of
order p) can always be expressed as a linear combination of
the curl of curl-conforming bases of order p. Hence, the curl
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of curl-conforming bases of order p is complete to order p
within the space of vectors derivable from the curl of vectors
of order p + 1. These bases appear in the inhomogeneous
polynomial form in (57)—(59), but they are, of course, linear
combinations of the polynomial bases defined in Section IV.
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