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Abstract—Lithium-ion batteries are the most common chem-
istry thanks to their many desirable properties, such as high
energy density and long lifetimes; however, they still exhibit
several non-ideal properties common to other battery chemistries,
such as rated capacity effect, capacity dependence on load
variation, and recovery effects. In the last two decades, many
works in the EDA community have focused on methods to
characterize and model these non-idealities. In particular, for
the rated capacity effect and the recovery effect, accurate models
have been derived that allow tracking battery behaviour with a
reasonable degree of fidelity. However, one effect that has not
been thoroughly explored is how battery capacity is affected by
the spectral properties of the load current and its frequency
distribution. Some preliminary works analyzed this relation
based only on the information provided by datasheets and lacked
an experimental validation of the resulting models. We conduct
experimental measurements to analyze this dependence between
usable battery capacity and the frequency spectrum of load
current in this work. Our measurements illustrate that this
relation is much more sophisticated than the one extracted from
datasheets information: it is not monotonic and exhibits a local
maximum point that changes over time as the battery ages.

Index Terms—Batteries, Battery Model, Battery Discharge
Measurement, State of Charge, Battery Non-idealities

I. INTRODUCTION

Lithium-ion batteries have become the most popular energy
storage choice for products of virtually any scale, from small
portable electronic devices to large-scale electrical energy
systems [1]. Their popularity is due to desirable properties
such as high power and energy density, long lifetimes, and
good tolerance to broader temperature ranges, resulting in
better figures of merit concerning other chemistries. Although
the lithium-ion battery has many merits, it still has several
non-ideal properties as a chemical-electrical unit [2]. The rated
capacity effect, recovery effect, and capacity dependence on
load variations are three primary non-idealities during the
charging and discharging phases [3] should be considered
in the design of power management. Battery models that
incorporate these effects are essential to obtain meaningful
results from the simulation of electrical energy systems of
any scale. Power simulation is essential in the initial design
phase for systems power assessment and optimization. The
corresponding model’s accuracy is the foundation of whether
the simulation can yield accurate power assessment.

The first two of these non-idealities, the rated capacity
effect (i.e., the dependence of the usable capacity of a battery

versus the current discharge rate) and the recovery effect
(i.e., the recovery of usable capacity in the periods of rest),
have been widely studied and included in state-of-the-art
models with a reasonable degree of accuracy concerning the
corresponding physical phenomenon [4] [5]. Such of these
models also account for a different type of dependency on load
current, namely the dependence of capacity on load current
variations [6]. There is indeed a significant impact on battery
capacity between a constant current discharge (preferable) and
a general load waveform with the same average current value.
A variable load current, besides different ranges of current
magnitudes, however, also imply different distribution in the
frequency domain: slow vs. fast current variations might also
impact battery efficiency. Therefore, the variation of the load
current is not only limited to the time domain but also includes
the variation of the current in the frequency domain. For
instance, the battery in the Electric Vehicle (EV) undergoes
erratic variations during repeated acceleration and deceleration
in the urban road traffic environment provides less capacity
than when EV is in the highway road environment.

In literature, many works proposed to split the load into
high-frequency and low-frequency components, then feed
them into high-power storage device (super-capacitor) and
high-energy storage device (battery), individually, to compose
the hybrid energy storage systems [7]. However, only a few
works investigated the battery available capacity and load fre-
quency dependence. The work [8] indicates the load frequency
affects the battery deliverable capacity and includes this effect
in a discrete-time battery model. The authors of [9] proposed a
methodology to characterize the relationship between battery
available capacity and the load frequency. The work [6]
proposed a circuit equivalent battery model that accounts for
battery capacity dependence on the load current variation in
time and frequency domains. However, these works are only
dependent on the data provided on the datasheet, and none
of them have been validated by measurement experiments.
The authors of [10] conducted the frequency domain Elec-
trochemical Impedance Spectroscopy (EIS) measurements to
fit the battery circuit equivalent model, while they only focus
on the battery voltage and ignore the capacity dependence. To
the best of our knowledge, no previous work has quantified
this battery capacity dependence on load current frequency
by measurements. In this work, we quantify this non-ideal
discharge characteristic by actual measurement experiments.



II. BACKGROUND AND MOTIVATION

A. Battery Non-ideal Discharge Characteristics

The process of providing power from a battery as a power
source is an electrochemical process. Regardless of battery
type and chemistry, a battery is far from an ideal power source
due to its chemical characteristics; the power it can deliver
depends heavily on the charging and discharging current
profiles. This section overviews the two most relevant non-
ideal discharge properties of lithium-ion batteries: the rated
capacity effect and the dependence on load variation. We omit
the introduction of the recovery effect because this effect is
considered almost negligible in lithium-ion batteries [3] [11].

1) Battery Capacity Dependence on Load Magnitude:
Rated capacity effect expresses the available battery capacity at
different discharge current magnitudes; for a constant current
discharge of a battery, the available battery capacity decreases
as the discharge current increases.

The lithium-ion battery manufacture datasheet normally
uses a set of voltage vs. capacity curves to represent the
rated capacity as shown in Figure 1. Figure 1 refers to the
Panasonic’s lithium-ion battery NCR18650B. The available
capacity is obtained when the cell voltage reaches the cut-
off voltage (2.5V for this cell). Notice that this lithium-ion
battery’s available capacity dependence on discharge current is
quite low, showing only a small improvement of 0.2C current
(i.e., 3200mA × 0.2 = 640mA) compared to other discharge
currents. It is also well known that the rated capacity effect
of lithium-ion batteries is much smaller than that of primary
batteries [3]. Therefore, lithium-ion battery is replacing the
primary battery in many applications, as it is more stable and
reliable than the primary battery.

Fig. 1. Lithium-ion battery voltage vs. discharge current curves.

2) Battery Capacity Dependence on Load Variation: As an
example of the variation over time, consider a periodic square
wave Isw alternating with a given constant duty cycle D be-
tween two current values I1 (D) and I2 (1−D) and a constant
current Icons with the average value Iavg = D∗I1+(1−D)∗I2
of the square wave current. The experiment discharging using
Isw shows a different result compared with using Icons. The
magnitude of the battery operation time difference shows a

positive correlation between I1 and I2, which is the larger
difference between I1 and I2, the more evident the difference
will be, the reason is that the higher I1 activates, the more
rated capacity effect occurs [3].

Besides the rated capacity effect, discharge load variation
also influences the battery operation time from the frequency
domain perspective. As stated in [8], the discharge current
frequency affects the amount of charge the battery can deliver,
the battery does not react instantaneously to load changes, but
it shows considerable inertia, caused by the significant time
constants that characterize electrochemical phenomena. As a
further example based on the above periodic square wave Isw
example, the two current values I1 (D) and I2 (1 − D) are
fixed in this case, while a set of Isw have different periods
(frequencies). The results of this example are shown in [6],
Figure 2 indicates that a battery has a longer operation time for
constant current load profile, and the load profile with higher
frequency reduces the battery operation time.
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Fig. 2. Dependence of battery available capacity on load frequency [6].

B. Characterization and Modeling of Battery Non-Idealities

Existing works in the literature have tried to characterize
the aforementioned non-ideal properties and build the battery
models that can account for these non-ideal properties. The
model of [8] accounts for the various non-idealities, including
the load frequency variation effect; however, the work was not
focused on how to identify the model parameters, so it does
not provide hints on how to derive the model itself.

Fig. 3. The circuit equivalent battery model accounts for load variations.

The work [12] proposes a circuit equivalent battery model
to overcome the low accuracy issue of the previous discrete-
time model; it also can account for the transient battery volt-
age change, but without considering the non-ideal effects on
battery capacity. [13] formalizes the battery modelling design
space into a multi-level modelling approach by adding various
non-ideal properties. Recently, [6] combines all the ideas



of previous works to develop one circuit equivalent battery
model that can account for these two non-ideal effects as
indicated in Figure 3. The two voltage generators Vlost(Ibatt)
and Vlost(fload) on the left-hand side of the model represent
the rated capacity effect C(Ibatt) and the effect of load current
variation C(fload), which affect the battery available capacity
(SOC node).

When using the battery model shown in Figure 3 in the
simulation, Vlost(Ibatt) is updated through, at each simulation
time step ∆t, Equation 1:

∆SOC(Ibatt) =
Ibatt × ∆t

C(Ibatt)
− Ibatt × ∆t

Cnom
(1)

where C(Ibatt) is the dependence of battery available capacity
on the battery discharge current. The dependence can be
derived from the datasheet as described in [9] and Cnom is
the nominal capacity. On the other hand, the dependence of
battery available capacity on the discharge variation in the
frequency domain is not an instantaneous quantity; therefore,
the model applies the Short Time Fourier Transform (STFT)
to compute load frequency components each time interval
window. Vlost(fload) is obtained by computing Equation 2:

∆SOC(fload) =

NFFT∑
i=1

(
Ibatt(i) × ∆t

C(fload)
− Ibatt(i) × ∆t

Cnom
) (2)

NFFT is length of timing window adopted in STFT;
Ibatt(i), i = 1, . . . , NFFT is a string of current values within a
timing window; C(fload) is the relation between capacity and
load frequency. The method proposed in [9] shows that using
the information in Figure 1 can derive the relation between
discharge energy and current and the relation between dis-
charge time and current. Then the relation between discharge
power and current is computed based on the previous two
relations. Using the power and current relation and the energy
and current relation can draw Ragone plot [14]. The diagonals
in the Ragone plane indicate the discharge time; the inverse of
each discharge time represents a frequency. Thus the relation
between energy and frequency is extracted; after converting
energy to capacity, the C(fload) is computed.

However, the estimation of the above circuit equivalent
model’s parameters is based on the available data provided in
the battery datasheet. While this approach is reasonable for the
rated capacity effect, for the dependence on load frequency,
the extraction of the parameters is indirect [9] as described
above. No direct measurements are carried out to validate
this dependence extracted from the datasheet. Furthermore,
extracting the dependence from the datasheet ignores the
battery’s aging issue because the discharge characteristics
given in the datasheet, such as the curves shown in Figure 1,
are generally measured by the fresh battery. For these reasons,
the motivation of this work is to investigate whether the
dependence of load current on the available battery capacity
is consistent with the dependency extracted from the datasheet
and the influence of the battery aging through a large number
of experimental measurements.

III. EXPERIMENTAL MEASUREMENTS AND ANALYSIS

A. Experimental Measurements Setup

The equipment adopted in our experiment can be divided
into two main parts according to their functionality: the
sampling and control parts. The former includes a battery
gauge and a digital multimeter to track the battery’s various
electrical parameters. At the same time, the latter comprises
a programmable electronic load and a programmable linear
power supply that regulates the discharge and charge of the
battery. Our experimental setup is shown in Figure 4.

Fig. 4. Experimental setup: (A) HP 33401A Digital multimeter; (B) Panasonic
NCR18650B Lithium-ion battery; (C) Texas Instruments Bq27z561 battery
gauge; (D) RIGOL DL3021 programmable DC electronic load; (E) RIGOL
DP711 programmable linear DC power supply; (F) BqStudio software user
interface for the Texas Instruments Bq27z561 battery gauge.

We chose the widely used Panasonic NCR18650B Lithium-
ion battery [15] in all our experiments, whose main electrical
parameters are summarized in Table I.

TABLE I
ELECTRICAL SPECIFICATIONS OF THE EXPERIMENTAL BATTERIES.

Rated Capacity 3200mAh
Nominal Voltage 3.6V
Cut-off voltage 2.5V

B. Experimental Measurements Parameters

This section reviews which parameters were used as vari-
ables in the exploratory analysis in our measurement experi-
ments and their ranges.

1) Discharge Load Current Frequency: This parameter is
the main parameter to be analyzed in this work. The frequency
of the load current has been set as the frequency of a square
wave generated by the programmable DC electronic load. We
applied seven frequencies: 0.1Hz, 0.2Hz, 0.5Hz, 1Hz, 2Hz,
5Hz, and 10Hz. In the experiment, the chosen lithium-ion
battery iterates the charge and discharge cycle by changing
frequency in sequence from the lowest to the highest. In
order to achieve high-resolution results, we set the sampling
frequency of the measured data as 1Hz for all the experiments.



2) Discharge Load Current Magnitude: Concerning the
current magnitude, we set the square wave to discharge current
as a fixed 50% duty cycle and 1000mA average current for
all the experiments. The high and low values of the square
waveform are determined by observing that we cannot set
the low value too small since the battery would perceive it
as a relaxation interval rather than a discharge. Moreover,
a too-small low swing value will imply a relatively sizeable
high value, resulting in a more significant rated-capacity effect
to weaken the observation of capacity dependence on load
frequency measurements. Based on these considerations, we
used [500mA, 1500mA] as extremes of the voltage swing.

3) Battery State of Charge (SOC): In this work, all the
experiments rely on monitoring the battery SOC, which is
done using the Bq27z561 battery gauge by Texas Instruments
(TI), equipped with an EValuation Module (EVM) with an
independent power source. The evaluation board of the gauge
provides interfaces for connecting the battery and load device.
The data captured by the gauge is transmitted to the PC via
a Micro USB interface. All data are visualized by a software
called BqStudio, which provided by TI.

The essential parameters in the monitoring of SOC are the
initial and final SOC levels. To avoid voltage variations in the
proximity of the theoretical extremes (100% and 0% SOC),
we assume the initial SOC to be 90% and 30% as the final
value. The latter is particularly critical, as when battery SOC
approaches lower SOC levels, the discharge characteristics
become unstable, and the battery voltage drops sharply. To
ensure that the measurement results of each experiment are
in a stable state of battery discharge, we thus consider the
discharge procedure as terminated when SOC reaches 30%.

4) Battery State of Health (SOH): A new battery’s capacity
and rate characteristics do not stay unchanged as it ages.
Changes can be summarized as a loss of chemical capacity
and impedance increase. Due to aging effects, the usable
capacity decreases along with time. For this reason, we set
battery SOH as a quantity monitored in our experiments. It is
calculated automatically by the battery gauge as Qmax / Qnom.
The Qmax is the available battery capacity of a used battery,
and Qnom is the new battery nominal capacity in standard
conditions, which assume (1) that a CC-CV charging protocol
charges the battery at 25◦C environmental temperature, and
(2) the charging current in the CC phase is set as 1A. In
practice, the battery SOH reaches 80% is considered the end
of life; however, our experiments set the SOH is 85% as our
explorative lower bound to avoid forcing the battery in extreme
conditions and causing some unstable data be measured.

C. Experimental Workflow

A single experiment comprises three phases described here-
after; the experiments execute these three phases with different
load current frequencies described in the previous section.

1) Discharge Phase: Discharge parameters have been dis-
cussed in Section III-B. During the discharge procedure, the
battery gauge monitors SOC, discharge current, and battery

voltage; these are sent to the PC through a Micro USB inter-
face and visualized on the PC by BqStudio. In the meantime,
BqStudio records all these data into a log file.

2) Charge Phase: The battery is charged by CC/CV mode
with 1A 4.2V configuration using DP711 DC power supply.
The charge process will be terminated when the battery
SOC reaches 90%. As in the discharge phase, the charging
process is monitored by the battery gauge (SOC) and digital
multi-meter (current and voltage) to guarantee the battery is
under CC/CV charging protocol, and the charging phase is
terminated when the gauge detects battery SOC reaches 90%.

3) Relaxation Phase: After each charge or discharge phase,
the battery requires a relaxation period to reach a relatively
stable voltage level to get ready for a new discharge procedure.
Based on suggestions from the equipment manufacturers, the
relaxation time is chosen as 2 hours for both charge and
discharge phases.

The flow of a given experiment proceeds according to the
following schedule:

1) Charge phase until the battery reaches 90% SOC;
2) Relaxation phase.
3) Discharge phase by a given frequency until a 30% SOC
4) Relaxation phase
After each charge and discharge cycle, we track the battery

SOH, and the schedule is iterated until the battery SOH
decreases to 85% as described above.

D. Experimental Measurements Results
1) Discharge Time vs. Discharge Current Frequency:

The first data we extract concerns the relation between the
discharge time of the battery (90 to 30% SOC) versus the
frequency of the load frequency. Results are summarized
in Figure 5 in the box-plot format in order to account for
the variation among the six different instances of Panasonic
NCR18650B cells used in the experiments. The data shown
in Figure 5 is referred to results of SOH=94% cycle; more
measurements related to battery SOH are presented in the
following subsection. The box in Figure 5 corresponding to
each frequency indicates the maximum, minimum, and mean
discharge time of these six different battery cells.
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Fig. 5. Battery discharge time to 30% SOC vs load frequency.

The figure 5 shows that the frequency affects the discharge
time, although it does not reveal a well-defined trend. The



most important conclusion is that the discharge time tends to
be generally longer for higher frequencies than lower ones.
Intuitively this should be because the battery acts as a sort
of low-pass filter, and apparently, higher frequencies start to
be filtered out since it is well-known that a battery handles
better constant currents than variables one, load current with
frequencies higher than a few Hertz are assimilated as a
constant load profile. Numerically speaking, we observed a
difference of about 4.5% discharge time in the average values,
while the maximum difference can reach around 10%.

Concerning lower frequencies, the discharge time tends to
increase up to a local maximum (in SOH=94% case, 0.5Hz),
to start decreasing again until the higher frequencies are
present again. This non-monotonic behaviour in the lower fre-
quency ranges might be due to the structure of the equivalent
impedance of the battery. The impedance of the lithium-ion
battery measured by EIS shown in the work [10] reveals a
similar variation trend, and the impedance also follows a non-
monotonic behaviour.

2) Battery SOH vs Discharge Time-Frequency Dependence:
When repeated the experimental schedule on one single battery
cell many times, the experiments result in a loss of battery
capacity and a consequent decrease of the SOH over time.
We observed an interesting relationship between battery SOH
and the discharge time-frequency dependence described pre-
viously, illustrated in Figure 6.

Fig. 6. Battery discharge time vs. load frequency under different SOHs.

The first evident characteristic is clearly visible from the
plot. The dependency on frequency becomes more and more
evident as the battery ages. While for a fresh one (100%
SOH), the difference between best and worst discharge times
appears negligible, as the aging progresses, it becomes more
sizable. For a battery with 85% SOH, the difference in average
discharge time among the six different battery cells between
the min/max frequencies is now around 9.4%, notice that this
quantity is 4.5% at SOH = 94%, as indicated above.

Another attractive characteristic is that the pattern in the
low-frequency range differs depending on the SOH (from
0.1Hz to 1Hz shown in Figure 6), while it tends to be similar

in the high-frequency range (from 2Hz to 10Hz shown in
Figure 6). This phenomenon can be explained by analyzing the
relationship between load frequency and battery impedance.
Figure 7, taken from [16], shows the results of a C/10
rate discharge cycling test. It shows tremendous impedance
change due to aging at the low-frequency part (which is most
important for DC discharge), while impedance for frequencies
higher than 1 Hz is less sensitive to the battery SOH. Figure 6
illustrates that there is no significant change in the curves’
shape of the cases with frequency larger than 1 Hz from cycle
1 to cycle 100.

Fig. 7. Impedance spectra measured from 10mHz to 1kHz after each 10
cycles of a 100-cycle test using Lithium-ion battery [16]

IV. DEPENDENCE ON LOAD FREQUENCY COMPARISON OF
MEASUREMENTS WITH DATASHEET EXTRACTION

In the process of conducting power simulation, the ability of
the battery model to respond correctly to the load frequency
determines the accuracy of the power estimation during the
simulation [17]. The critical step in building the battery model
that can accurately account for the load frequency dependence
as shown in Figure 3 is computing the C(fload) as described
in Equation 2. In this section, we show the comparison of
C(fload) extracted through the battery datasheet with the
C(fload) obtained by our experimental measurement results
in section IV, and illustrate the importance of battery aging
on the C(fload) computation.

According to the methodology of extracting the relation-
ship between battery available capacity and load frequency
proposed in the work [9], we derived the C(fload)Datasheet

based the Figure 1 as shown in Equation 3:
C(fload)Datasheet = −6.914 × f0.2324

load + 4.139 (3)

Deriving C(fload)Measure is more straightforward than
extraction from datasheet data. By performing a curve fitting
with the data shown in Figure 6, it yields C(fload)Measure

for different SOH cases. Notice the measurements results
correspond to the SOC operating range from 90% to 30%,
which means only consuming 60% of the nominal capacity.
To compare with the case of using the datasheet data, we
thus ideally scaled up this 60% capacity to 100% nominal
capacity. Since the load current profile is known, the discharge



time data in Figure 6 is easily converted to the capacity

(Time×Current), then Capacity×100%

60%
scaled up to obtain

the battery available capacity. This is not a rigorous scaling
up, but we do this to show the difference between the two
methods to obtain C(fload). Our future work will consider
measurements of the discharge from 100% to 0%.

Due to the space limitation, we only show below two
Equations 4, 5 derived from the two extremes cases of the
measurement results, i.e., SOH=100% and SOH=85%. As
shown in Figure 6, the dependence of battery discharge time on
the load frequency is not monotonically increasing. The simple
power function fitting method used in datasheet extraction
is no longer available; thus, we chose the rational number
function fitting method to obtain the following two equations.

C(f)SOH=100%
Measure =

3.16 × f3 − 3.71 × f2 + 0.03 × f + 3.07

f3 − 1.11 × f2 − 0.08 × f + 1.02
(4)

C(f)SOH=85%
Measure =

3.08 × f3 − 0.56 × f2 + 2.67 × f + 1.78

f3 − 0.03 × f2 − 0.68 × f + 0.68
(5)

where f represents fload as Equation 3 due to the line space.
Figure 8 shows a visual comparison of the three dependence

obtained above in the same coordinate plane; it indicates the
dependence extracted from the datasheet and measurements
have no overlap, and the capacity changing trends are entirely
different. The curve represents the dependence derived from
the datasheet ends about 5 × 10−4Hz due to the limited data
provided in the datasheet, e.g., Figure 1 solely provide four
different discharge currents, and the maximum one is 2C,
which limits the maximum frequency can extract [9]. On the
other hand, the minimum frequency used in the measurement
experiment is only 0.1Hz, which leaves no overlap between
the derived dependence from the datasheet and measurements.
In future work, the measurement experiment needs to build
a complete set of frequencies to explore the results of the
frequency overlap interval with the datasheet.
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There is another critical finding from Figure 8. Using the
dependence (C(fload)) derived from datasheet to do power
simulation in previous work [6], when the load frequency is
higher than the maximum frequency that datasheet can extract

through method in [9], the available battery capacity is set
as the capacity corresponds to the maximum frequency that
datasheet can extract. However, the measurements indicate
that it is an apparent underestimation; Figure 8 shows the
capacity related to the frequency range [10−1Hz − 101Hz]
is higher than the 5 × 10−4Hz (the maximum frequency that
the datasheet can extract). Figure 8 indicates a more complete
dependence characterization requires the experimental mea-
surements with a broader frequency range.

V. CONCLUSION

This work analyzes the battery capacity dependence on load
profile frequency through actual experimental measurements.
The measured experimental results calibrate the dependence
between battery capacitance and load frequency indicated in
the previous works extracted from the datasheet. The most
noteworthy finding in this work is that this dependence is not
monotonically decreasing with increasing load frequency, as
previous works have shown, for the available battery capacity.
Instead, it increases and then decreases, having a locally
optimal frequency for the battery. Furthermore, our work
further reveals that this dependence is not fixed throughout
the whole battery life and that it changes as the battery
capacity ages, showing that the optimum frequency becomes
progressively larger. The future works will conduct a complete
set of frequencies in the measurements and incorporate the
battery capacity dependence on load current frequency into
the exiting circuit equivalent battery model to capture this
effect during the simulation; SOH information should also be
considered to develop a lifelong model.
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