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Abstract. Recent studies related to the dynamic response of railway bridges focused on
gradually increasing the model complexity of the train-bridge interaction, however, did not
always discuss any experimental validation. In the present work, the authors analyse the role
of the ballast in the dynamic train-track-bridge interaction (TTBI). The analytical response
of Euler-Bernoulli (EB) beams is coupled with a distributed springs layer modelling the
ballast. The two equations are solved with trainloads as elementary moving load excitation,
avoiding too complex models. This non-classically damped problem has been solved with
a Runge-Kutta finite-difference method with temporal-spatial discretization. Furthermore,
the authors experimentally validated the mathematical TTBI solution, comparing it with the
displacement response of a case study. Specifically, at first, experimental modal bending
stiffness parameters have been estimated to provide a representative equivalent EB beam
model. Thereafter, the coupling effects of the ballast have been considered with a sensitivity
analysis of the modelling parameters. Finally, the optimization to the actual experimental
response of the model provided an estimate of the vertical ballast stiffness and its damping.
The relevant difference in the damping of the experimental and mathematical model evidences
the fundamental role of the ballast in adsorbing vibrations induced by the train passages.

Keywords: Railway Ballasts · Railway Bridge · Finite-Difference · Operational Modal Anal-
ysis.
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1 Introduction

Ballasted track is the most widespread railway typology, consisting in the superstructure part
(rails) and substructure one (ballast). Ballast is composed of natural or crushed coarse-sized,
angular, crushed hard stone and rock uniformly graded. Retaining of the tracks and sleepers,
stress propagation from tracks to subgrade and bearing functions, water drainage, etc. are only
some of the most important functions accomplished by the ballast. The presence of the ballast
produces changes in the boundary conditions and damping of the structure of medium spans
railway bridges. Thus, many recent studies investigated the dynamic response of railway
bridges under moving trains investigation. Many of them focused only on the train-bridge
interaction modelling [1], concerning only about the type of trainload modeling (moving
load, moving mass and moving spring-damper), or track modeling. Some simplified modeling
techniques have been initially proposed based on beam or shell models of the bridge and track
[2]. Nowadays, the actual tendency is to increase model complexity attempting to capture even
complex phenomena. However, this involves high computational efforts, modeling errors and
significant uncertainties. Therefore, further investigations on Train-Track-Bridge Interaction
(TTBI) are essential in order to reduce model complexity which agree with experimental
data validation [3]. Furthermore, to the authors knowledge, very few researches investigated
the role of ballast in the bridge dynamic response. In the current study, the role of ballast
is analysed and a simplified finite-difference formulation is adopted as modelling technique
for the TTBI. The bridge and the track are modeled as Euler-Bernoulli beams coupled with
a distributed springs layer to simulate the ballast, subjected to moving loads and solved by a
Runge-Kutta finite difference method with spatial and temporal discretization.

2 TTBI coupled model formulation

2.1 Track model

The Euler-Bernoulli beam has been employed as the track model, denoting 𝑤𝑟 (𝑥, 𝑡) as the
deflection, 𝜌𝑠𝐴𝑟 as constant mass per unit length, 𝜌𝑠 as the steel specific mass, 𝐴𝑟 as the rails
cross-section area, 𝐸𝑠 𝐼𝑟 constant bending stiffness, 𝐸𝑠 as the steel Young’s modulus and 𝐼𝑟
as the rails. The equation of motion can be written as: [2]

𝜌𝑠𝐴𝑟 ¥𝑤𝑟 (𝑥, 𝑡) + 𝐸𝑠 𝐼𝑟𝑤𝑟 ,𝑥𝑥𝑥𝑥 (𝑥, 𝑡) = 𝑞𝑟 (𝑥, 𝑡) + 𝑓𝑟 (𝑥, 𝑡) (1)

in which ¥𝑤 and 𝑤𝑟 ,𝑥𝑥𝑥𝑥 respectively denotes the second time derivative and the fourth spatial
coordinate 𝑥 derivative of 𝑤. The distributed load 𝑞𝑟 (𝑥, 𝑡) arises from the springs bedding
restraint to the track displacement:

𝑞𝑟 (𝑥, 𝑡) = 𝑞𝑏 (𝑥, 𝑡) = 𝑘 𝑓 [𝑤𝑟 (𝑥, 𝑡) − 𝑤𝑏 (𝑥, 𝑡)] + 𝑐 𝑓 [ ¤𝑤𝑟 (𝑥, 𝑡) − ¤𝑤𝑏 (𝑥, 𝑡)] (2)

denoting 𝑘 𝑓 and 𝑐 𝑓 as the stiffnesss and damping of the viscoelastic Winkler springs bed-
ding, whereas 𝑤𝑏 is the bridge substructure deflection. 𝑓𝑟 (𝑥, 𝑡) represents the effect of the
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interaction forces between the rails and the vehicles. The train load has been modeled as
moving concentrated uniformly spaced forces, in which each car is modeled by a single
force, in a such way that a train of 𝑁𝑣 cars presents 𝑁𝑣 moving forces, labelled as 𝑃𝑘 with
𝑘 = 1, 2, . . . , 𝑁𝑣 . Considering that the locomotive has a different weight 𝑃𝑙 with respect to
the other cars 𝑃𝑐, then 𝑃𝑘 can be expressed as 𝑃 =

{
𝑃𝑙

2 ,

(
𝑃𝑙

2 + 𝑃𝑐

2

)
, 𝑃𝑐, . . . , 𝑃𝑐, . . . , 𝑃𝑐,

𝑃𝑐

2

}
.

Assuming the first force enters the bridge at the initial time, the time of the 𝑘-th load entering
the bridge can be expressed as 𝑡𝑘 = (𝑘 − 1)𝐿𝑣/𝑐, 𝐿𝑡 is the train full length.

𝑓𝑟 (𝑥, 𝑡) =
𝑁𝑣∑︁
𝑘=1

𝑃𝑘𝛿 [𝑥 − 𝑐(𝑡 − 𝑡𝑘)] (3)

Denoting 𝐿 as the bridge length, the boundary conditions are expressed as follows for a
pinned-pinned track:

𝑤𝑟 (0, 𝑡) = 0 ; 𝑤𝑟 ,𝑥𝑥 (0, 𝑡) = 0 ; 𝑤𝑟 (𝐿, 𝑡) = 0 ; 𝑤𝑟 ,𝑥𝑥 (𝐿, 𝑡) = 0 (4)

2.2 Bridge model

The bridge has been also modeled by Euler–Bernoulli beam, denoting (𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏) as
mass per unit length, 𝜌𝑐 as concrete specific mass of concrete, 𝐴𝑐 as the cross-section area of
the beam, 𝜌𝑏 as the ballast specific mass, 𝐴𝑏 as the ballast cross-section area, 𝐸𝑐 𝐼𝑐 constant
bending stiffness, with 𝐸𝑐 as concrete Young’s modulus and 𝐼𝑐 as the beam cross-section
inertia. The following partial differential equation describe the vertical bridge deflection
𝑤𝑏 (𝑥, 𝑡) [4]:

(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏) ¥𝑤𝑏 (𝑥, 𝑡) + 𝐸𝑐 𝐼𝑐𝑤𝑟 ,𝑥𝑥𝑥𝑥 (𝑥, 𝑡) = 𝑞𝑏 (𝑥, 𝑡) (5)

where 𝑞𝑏 (𝑥, 𝑡) is the force that is transferred to the bridge via the springs bedding, defined as

𝑞𝑏 (𝑥, 𝑡) = 𝑘 𝑓 [𝑤𝑏 (𝑥, 𝑡) − 𝑤𝑟 (𝑥, 𝑡)] + 𝑐 𝑓 [ ¤𝑤𝑏 (𝑥, 𝑡) − ¤𝑤𝑟 (𝑥, 𝑡)] (6)

Since the bridge has a pinned-pinned scheme, the boundary conditions are the same of (4).

2.3 Spatial domain and time domain discretization

The TTBI model outlined in Figure 1 can be rewritten in matrix form considering the
(1),(2),(5),(6) and, adopting the finite difference method, the beam domain is subdivided
into 𝑛 intervals of Δ𝑥 length, thus obtaining the spatial discretization by approximating the
fourth derivative. Denoting 𝑰 {𝑛×𝑛} and 0{𝑛×𝑛} as the identity and null matrices, 𝑫 {𝑛×𝑛}

4 as
the approximate fourth matrix derivative which satisfies the specific boundary conditions (4),
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Fig. 1. Model of the TTBI.

𝒘𝑏 (𝑡) {𝑛×1} and 𝒘𝑟 (𝑡) {𝑛×1 as the vertical deflection field of the bridge and track 𝒇 {𝑛×1
𝑟 as the

discretized moving force vector described in 4, one obtains[
(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)Δ𝑥𝑰 0

0 𝜌𝑠𝐴𝑟Δ𝑥𝑰

] {
¥𝒘𝑏 (𝑡)
¥𝒘𝑟 (𝑡)

}
+
[
𝐸𝑐 𝐼𝑐𝑫4 − 𝑘 𝑓 Δ𝑥𝑰 𝑘 𝑓 Δ𝑥𝑰

𝑘 𝑓 Δ𝑥𝑰 𝐸𝑠 𝐼𝑟𝑫4 − 𝑘 𝑓 Δ𝑥𝑰

] {
𝒘𝑏 (𝑡)
𝒘𝑟 (𝑡)

}
+

+
[
−𝑐 𝑓 Δ𝑥𝑰 𝑐 𝑓 Δ𝑥𝑰
𝑐 𝑓 Δ𝑥𝑰 −𝑐 𝑓 Δ𝑥𝑰

] {
¤𝒘𝑏 (𝑡)
¤𝒘𝑟 (𝑡)

}
+
{

0
𝒇 𝑟

}
= 0

(7)

which, in compact form, is formally identical to the classical conventional dynamic problem

𝑴 ¥𝒙(𝑡) + 𝑪 ¤𝒙(𝑡) + 𝑲𝒙(𝑡) = 𝒇 (𝑡) (8)

in which 𝑴 {2𝑛×2𝑛},𝑪 {2𝑛×2𝑛} and 𝑲 {2𝑛×2𝑛} denotes the mass, damping and stiffness matrices,
𝒇 (𝑡) is the generalized forcing term, and finally the generalized displacement field contains
both bridge and track vertical deflections 𝒙 {2𝑛×1} = {𝒘𝑏 (𝑡)𝑇 , 𝒘𝑟 (𝑡)𝑇 }𝑇 . The following state-
space model allowed performing the time domain discretization of (8):

¤𝒙(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩𝒖(𝑡) (9)

in which 𝒙(𝑡), 𝑨(𝑡) and 𝑩 and 𝒖(𝑡) are defined in [5] as function of the generalized mass,
damping and stiffness matrices, and the forcing term. Thereafter, Tustin Approximation
method from Matlab System Identification Toolbox provide the time discretized form, denot-
ing 𝑘 as the time step, which has been solved using the Dormand-Prince method based on an
explicit Runge-Kutta temporal discretization [6].

¤𝒙𝑘 = 𝑨𝑘𝒙𝑘 + 𝑩𝒖𝑘 (10)

3 Ballasted railway bridge case study and experimental campaign

Situated in the municipality of Trevi (Italy), the viaduct shown in Figure 2 presents 46 spans of
about 20 m each, with 8 pre-tensioned longitudinal beams 1.40 m height and four transversal
beams with 0.40x1.40 m rectangular cross-section. Accommodating two running tracks, the
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(a) (b) (c)

Fig. 2. Cross-section details with beams numbering and first two experimental mode shapes.

Table 1. Optimum parameters of an equivalent EB beam model and comparison in terms of
natural frequency and Modal Assurance Criterion (MAC).

𝑓exp [Hz] 𝑓theo [Hz] MAC [%] 𝑓exp− 𝑓theo
𝑓exp

[%] 𝐸𝐼b,opt [kNmm2]
8.61 8.62 92 -0.12 12600

concrete slab is 20 cm thick with lateral side walkways cantilever of 1.40 m, leading to about
12.40 m the total deck width. The piers are mainly characterized by 11.00x1.50 m pseudo-
rectangular reinforced concrete walls, with pier caps presenting an enlargement of 30 cm
around the pier shape and an average height of 50 cm. Operational dynamic identification of
the bridge has been performed with 7 equally spaced Force Balance Accelerometers (FBA)
with 3.30 m steps and with the two extremal ones placed in the nearby of the supports. Two
measurement chains have been performed connected by a master recording unit, providing
20 minutes recordings sampled at a rate of 200 Hz. Operational modal analysis (OMA) with
covariance-driven Stochastic Subspace Identification (SSI) method have been performed,
clearly identifying three stable modes in the range 0-40 Hz [7]. The outcomes showed that
the bridge exhibits both bending and torsional modes which are not coupled, as depicted in
Fig.2. Therefore, the first bending mode can be reasonably adopted to estimate the bending
stiffness 𝐸𝐼𝑏 of an equivalent pinned-pinned beam model by solving a nonlinear least-squares
problem [8]:

𝜽 = arg min
𝜽

𝐽 (𝜽) = arg min
𝜽

∑︁
𝑖

𝑤 𝜖 ,𝑖

(
𝜖𝑧,𝑖 (𝜽)

)2 (11)

𝜖_𝑖 (𝜽) =
_𝑖 (𝜽) − _̃𝑖

_̃𝑖
|𝑖 ∈ {1 − 𝑛} (12)

with 𝑤 𝜖 ,𝑖 as a weighting factor, assumed 𝑤 𝜖 ,𝑖 = 1 for simplicity, 𝜖𝑧,𝑖 as the residuals between
the experimental and numerical modal data 𝑧, considering the undamped eigenvalue 𝑧 = _

with _𝑖 = (2𝜋 𝑓𝑖)2, where 𝑓 is the natural frequency, whereas the tilde denotes experimental
values. The final optimum outcome results in 𝐸𝐼𝑏 ≈ 12600 kNmm2, as illustrated in Tab.1.
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Fig. 3. Displacement response of the bridge under the moving train N.4.

Two micro-epsilon optoNCDT 1420 laser sensors of 1000 Hz sampling rate have been
adopted for vertical displacements of the 3rd and 6th beam soffit monitoring during four train
passages. Since the train weight is known only in Train N.4, only that measurement have
been reported in Fig.3 and thus the sensitivity analysis have been conducted based on those
data. By inspecting the experimental data, after train passages, steady-state oscillations are
not present, probably due to the high damping of the ballasted track. The displacement trend
could be decomposed into a constant stationary response due to the general beam deflection
and an oscillatory one related to the passage of the axes. The different response of the 3rd and
6th beam evidences a torsional response, which has been purged reconducting to an average
response due to the EB modelling considered in the present work. The first and last peak
responses are more evident due to the higher locomotive weight with respect to the other
cars.

4 Univariate and multivariate covariance-based sensitivity analysis

Before estimating the optimal model parameters for the proposed finite difference approx-
imation which most agree with experimental data, the rank correlation coefficient [9] was
inspected to evaluate the similarity degree between experimental 𝒙𝑚 and simulated 𝒙𝑠 dis-
placement response:

corr(𝒙𝑠 , 𝒙𝑚) =
𝒙𝑠 · 𝒙𝑚

|𝒙𝑠 | · |𝒙𝑚 |
(13)

with (·) as the inner product and | | as the norm operator. The sensitivity involved the
parameters in Tab.2 such as ballast, the bending stiffness of the beam and the train velocity,
which are characterized by a certain range of variation (see Tab.2). This allow to explore the
ballast contribution and assess the effect of the modelling choices. Since the ballast stiffness
value is still nowadays discussed, the authors identify a reasonable interval between 60 MPa,
assuming an estimate of the Winkler coefficient for compacted gravel, and 600 Mpa, obtained
by an order of magnitude greater the lower bound. Even for the non-proportional damping
coefficient (𝑐 𝑓 ) there is no a general consensus about the range of variation, however some
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Table 2. List of the parameters chosen for the sensitivity analysis and range of variations.
Parameters Symbol Lower bound Upper bound
Vertical stiffness of the ballast [MPa] 𝑘 𝑓 60 600
Damping coefficient of the ballast [MPa s] 𝑐 𝑓 0.1 100
Bending stiffness of the bridge [kNmm2] 𝐸𝑐 𝐼𝑐 (1 − 50%)𝐸𝐼𝑏,opt (1 + 50%)𝐸𝐼𝑏,opt
Velocity of the train [km/h] c 50 200

Fig. 4. Qualitative results of monovariate sensitivity analyses.

trial tests attempted to compare the non-proportional damped response with an equivalent
damping ratio b𝑒𝑞 , proportional to the mass and stiffness matrix:

𝑐 𝑓 ,lower ≈ 0.1Mpa/𝑠 → b𝑒𝑞 ≈ 10% ; 𝑐 𝑓 ,upper ≈ 20Mpa/𝑠 → b𝑒𝑞 ≈ 200% (14)

Notwithstanding, the damping upper bound might seem an overestimation, however, in bal-
lasted tracks, non-proportional damping may sometimes lead to super-critical damping condi-
tions. The bending stiffness range is obtained by lowering or increasing the optimum bending
stiffness found from deterministic model updating using the first experimental natural fre-
quency. Considering railways standards velocity limits, the train velocity range vary between
30 and 200 km/h. A monovariate sensitivity analysis have been performed and the effects on
the displacement response qualitative depicted Fig.4. Focusing on the vertical stiffness, when
𝑘 𝑓 is low the train acts as a concentrated load, instead, on the other hand, it produces a greater
load distribution which affects both amplitude and the delay of the response. The effects pro-
duced when the damping 𝑐 𝑓 is low (b𝑒𝑞 ≈ 20%) are related to a growth in the amplitude
response, whereas when it is high it produces a higher reduction of the displacement response
after the first oscillation. Thus, when a sequence of different train loads occurs, the response
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Table 3. Results of the multivariate sensitivity analysis.
Parameters Peak displacement Rank correlation coefficient
Sensitivity indicators 𝑆1 [%] 𝑆𝑇 [%] 𝑆1 [%] 𝑆𝑇 [%]
Vertical stiffness of the ballast 38.56 41.34 39.72 39.61
Damping coefficient of the ballast 20.31 22.34 33.65 34.67
Bending stiffness of the bridge 40.26 45.12 38.23 39.34
Velocity of the train 0.89 1.23 / /
Sum 100.02 110.03 111.6 113.62

corresponds to a quasi-static loading preventing the beam oscillations. The bending stiffness
𝐸𝐼 only affects the amplitude of the displacement response and does not impact significantly
the response delay. Since the train velocity 𝑐 mainly affects the amplitude response due to
inertial effects and the duration of the time series, it has been removed in the sensitivity
analysis of the rank correlation coefficient.

A successive multivariate sensitivity analysis has permitted to decompose the variance of
the output of the model (peak displacement and objective function) into fractions which can
be attributed to the chosen parameters [10]. Foremost, considering the inputs sampling range
in Tab.2, inputs were generated according to the Saltelli’s sampling scheme. Specifically,
given 𝑁 = 100 number of samples and 𝐷 = 4 number of input parameters, (𝑁 · (2𝐷 + 2)
models were generated. After all the models were analysed, the first-order 𝑆1 and total-order
𝑆𝑇 sensitivity indices were calculated. These two quantities estimates the effect of varying a
single parameter only and the contribution to the output variance of the selected parameter
including all variance caused by its interactions with the other parameters, respectively. Two
separate analysis have been performed related to the peak displacement evaluation and the
rank correlation coefficient, as shown in Tab.3. In conclusion, 𝑘 𝑓 and 𝐸𝐼 manifest the most
significant influences with sensitivity indices about 40%. Even the ballast damping coeffi-
cient exhibits quite important sensitivity indicators about 20%. The train velocity exhibits
negligible effects, as remarked by [4]. The correspondence of the results between 𝑆1 and
total-order 𝑆𝑇 proves that the selected parameters are substantially uncorrelated, thus they
can be adopted for global optimization avoiding an overdetermined problem.

5 Model updating optimization procedure

To calibrate the stiffness and damping parameters of the ballasted track, the following op-
timization problem was solved adopting the genetic algorithm (GA) [11,12] from Matlab
global optimization toolbox:

�̂� = arg min
𝑿

corr(𝒅𝑠,𝑠 , 𝒅𝑠,𝑚) (15)
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Fig. 5. Comparison between the experimental and simulated displacement response obtained
with the optimized parameters.

obj(p) =
∑𝑁

𝑖=1 |
[
𝑤𝑏,𝑒𝑖 − 𝑤𝑏,𝑠𝑖 (p)

]
Δ𝑡𝑖 |∑𝑁

𝑖=1 |𝑤𝑏,𝑒𝑖Δ𝑡𝑖 |
(16)

where 𝑁 is the number of data points, p is the design vector containing the parameters to be
optimized, 𝑤𝑏,𝑒𝑖 is the experimental deflection of the bridge, 𝑤𝑠𝑖 (p) is the simulated beam
deflection and Δ𝑡𝑖 is the time integration step. The objective function (OF) formulation is
a normalized integral of the difference between experimental and simulated response. The
parameters’ lower and upper bounds are shown in Tab.2. To improve the convergence, as
explained in Sec.3, 𝐸𝐼𝑏 was set to 12600 kNmm2. The train speed is not included in the
updating, however it was estimated from the video recording of the train passage. Since the
train weight was known only in the train N.4 (Fig.3) the optimization has been limited to that
record, finding the following optimal solution: 𝒑𝑜𝑝𝑡 = {𝑘 𝑓 , 𝑐 𝑓 } = {490.49 Mpa, 14.50 Mpa ·
𝑠}. In Fig.5, the final simulated solution from the finite difference model shows a good
agreement with experimental response. 𝑘 𝑓 reaches an optimum almost 80 times the expected
value for compacted gravel, whereas 𝑐 𝑓 is close to 14 Mpa·s, thus an equivalent damping
ratio close to 100%. To the authors’ knowledge, no one attempted to estimate 𝑘 𝑓 and 𝑐 𝑓

with model updating of the experimental displacement response. However, [3] achieved good
results by using an EB beam without the ballast, optimizing the bending stiffness but not
providing an estimate of 𝑘 𝑓 and 𝑐 𝑓 using the experimental data.

6 Conclusions

The current study presents the mathematical framework for finite difference model of the
Train-Track-Bridge interaction (TTBI). The model is based on coupling effects of Euler-
Bernoulli beams representing the track and the bridge and a distributed layer of springs and
dashpots modeling the ballast. In literature, many studies focused on very complex models to
consider ballast interaction, however very few experimental validations have been carried our.
The authors focused on a prestressed concrete ballasted railway bridge case study, monitoring



10 M.M. Rosso et al.

the displacement response under moving trains. The standard dynamic identification under
environmental vibrations have been carried out to estimate the bending stiffness of the
bridge. Thereafter, a variance-based sensitivity analysis of the peak displacement response
and the rank correlation coefficient proves that both the ballast mechanical properties and
the bridge bending stiffness affect the displacement response. Finally, a model updating
procedure have been carried out to optimize the ballast parameters based on experimental
displacement response data adopting the proposed finite difference model. The ballast optimal
vertical stiffness approaches to 400Mpa, whereas optimal non-proportional damping reaches
about 14 Mpa·s. Future developments may include some more sophisticated modeling of the
trainload, e.g. moving mass-spring-damper, in order to assess if further model complexity is
actually beneficial for assessing the mechanical characteristics of the ballasted track.
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