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ABSTRACT
The employment of nondestructive techniques in aerospace

industries is rising thanks to advances in technologies and anal-
ysis. This part of the aerospace testing industry is essential to
design and validate the new structures’ methodology and safety.
Therefore, robust and reliable nondestructive methods have been
extensively studied for decades in order to reduce safety prob-
lems and maintenance cost.
One of the most important and employed nondestructive methods
to compute large-scale aerospace structures’ critical buckling
load is the Vibration Correlation Technique (VCT). This method-
ology allows to obtain the buckling load and equivalent bound-
ary conditions by interpolating the natural frequencies of the
structures for progressively increasing loadings without consid-
ering instabilities. VCT has been successfully investigated and
employed for many structures, but it is still under development
for composite shell structures.
The present work provides a numerical model for carrying out
virtual VCT to predict the buckling load, to characterize the nat-
ural frequencies variation with progressive higher loadings, and
to provide an efficient means for verifying the experimental VCT
results.
The proposed nonlinear methodology is based on the well-
established Carrera Unified Formulation (CUF). CUF repre-
sents a hierarchical formulation in which the structural model’s
order is considered the analysis’s input. According to CUF,
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any theory is degenerated into generalized kinematics and is
compactly handled. By adopting this formulation, the nonlin-
ear governing equations and the relative FE arrays of the two-
dimensional (2D) theories are written in terms of Fundamental
Nuclei (FNs). FNs represent the basic building blocks of the pro-
posed formulation. In order to investigate far nonlinear regimes,
the full Green-Lagrange strain tensor is considered. Further-
more, the geometrical nonlinear equations are written in a total
Lagrangian framework and solved with an opportune Newton-
Raphson method.
For an assessment of the robustness of the virtual VCT, several
flat plate and shell structures are studied and compared with the
solutions found in the available VCT literature. The results prove
that the proposed approach provides results with an excellent
correlation with the experimental ones, allowing to investigate
the buckling load and the natural frequencies variation in the
nonlinear regime with high reliability.

INTRODUCTION
In the industrial application, one of the most used nonde-

structive methods for buckling tests is the Vibration Correlation
Technique (VCT). VCT is able to compute the buckling load
of structures by monitoring the natural frequencies variation for
progressively increasing applied loads. Furthermore, in the in-
dustrial application, the VCT is also adopted to evaluate the ac-
tual in situ boundary conditions of structures to enhance the ac-
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curacy of the numerical buckling prediction. Therefore, the VCT
can be divided in two groups: 1) those for determining of the ac-
tual boundary conditions and 2) those for the direct buckling load
prediction. Readers can find a detailed description of this exper-
imental method in [1, 2, 3].

In view of its importance and potential, several experimen-
tal tests and studies were carried out for decades. For instance,
Lurie [4] conducted experimental tests on columns and plates in
order to determine the critical load by frequency measurements.
Nonlinear studies on imperfect curved panels were provided by
Massonet [5]. A modified vibration correlation method was pre-
sented by Souza and Assaid [6]. Recently, Abramovich et al. [7]
adopted the VCT to evaluate the buckling load of metallic and
laminated structures. Jansen et al. [8] presented the capability of
analysis tools for supporting and improving the accuracy of the
VCT results obtained through semi-empirical methods. The ana-
lytical and theoretical verification of the VCT results of imperfect
metallic cylindrical shell structures was carried out by Franzoni
et al. [9]. Readers are referred to [10, 11, 12] for further detailed
investigations.

The goal of this research is to create a numerical tool for
performing virtual VCT in order to determine the buckling load,
to evaluate the natural frequencies variation with progressively
higher loadings, and to provide a verification of the experimental
VCT results. One of the advantages of the present formulation
with respect to the others, often based on linear approaches, is
to consider the geometrical nonlinearities that allow to guarantee
a remarkable accuracy of the results. The nonlinear methodol-
ogy presented in this article is conducted in the Carrera Unified
Formulation (CUF) domain [13, 14]. The main advantage of
the CUF is to be able to consider the structural model order as
an input of the analysis. In this way, the refined generic mod-
els do not need specific formulations. According to CUF, any
theory has degenerated into generalized kinematics and is com-
pactly handled. The nonlinear governing equations and the rela-
tive finite element (FE) arrays of the two-dimensional (2D) the-
ories are written in terms of Fundamental Nuclei (FNs). FNs
represent the basic building blocks of the presented formula-
tion. CUF has already been used successfully in many fields
[12, 15, 16, 17, 18, 19, 20], and in the present research it is
adopted to study nonlinear vibrations.

LINEARIZED FREE VIBRATIONS OF STRUCTURES
The presented method is carried out as follows: 1) First,

nonlinear equilibrium curves of the considered structures are ob-
tained by performing the static geometrical nonlinear problem
adopting the Newton-Raphson method [21, 22, 23] with a path-
following approach based on the arc-length constraint; 2) then,
in each state of interest of the equilibrium path the tangent stiff-
ness matrix, KKKT , is computed; 3) Finally, natural frequencies and
relative mode shapes are calculated through a linear eigenvalue

problem, which is obtained by simplifying the equations of mo-
tion by considering harmonic displacements around non-trivial
equilibrium states. Therefore, the form of the equations of mo-
tion for free vibrations is a linear eigenvalue problem:

(KKKT −ω
2MMM)qqq = 0 (1)

where MMM represents the mass matrix, ω indicates the natural fre-
quencies and qqq stands for the eigenvectors. Instead, the buckling
load is calculated using the following eigenvalue problem:

(KKK +λKKKσ )qqq = 0 (2)

where the KKK is the linear stiffness matrix, λ denotes the buck-
ling load factor and KKKσ represents the geometric stiffness ma-
trix. Interested readers are referred to [24, 25] for the complete
formulation.

The KKK, KKKσ , KKKT and MMM are formulated in the framework
of the well-established CUF. According to CUF, the three-
dimensional (3D) displacement field uuu(α,β ,z) for a shell struc-
ture, represented using an orthogonal curvilinear reference sys-
tem (α ,β ,z), is:

uuu(α,β ,z) = Fτ(z)uuuτ(α,β ) τ = 1, ...,N (3)

in which uuuτ(α,β ) represents the generalized in-plane displace-
ment vector, Fτ is the expansion functions of the thickness coor-
dinate z and N stands for the order of expansion in the z direc-
tion. In this research, Lagrange polynomials (LE) are adopted
for the expansion functions Fτ . The acronym LDN, used in the
following analyses, denotes the LE of order N assumed in the z
direction. The reader can refer to the book [14] for a complete
description of the mathematical derivation of the 2D FE formu-
lation in the framework of CUF.

In this work, using the total Lagrangian formulation, the full
Green-Lagrange nonlinear strain vector is considered.

εεε = εεε l + εεεnl = (bbbl +bbbnl)uuu (4)

in which bbbl and bbbnl represent the linear and nonlinear differential
operators. Readers can find these matrices in [26].

The generalized displacement vector is derived through the
finite element method employing the shape functions Ni(α,β ).

uuuτ(α,β ) = Ni(α,β )qqqτi i = 1,2, ...,nel (5)

in which qqqτi represent the unknown nodal variables, nel denotes
the number of nodes per element and the i stands for summa-
tion. By considering the Eq. 3 and Eq. 5, the strain vector is
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formulated in algebraic form as:

εεε = (BBBτi
l +BBBτi

nl)qqqτi (6)

where BBBτi
l and BBBτi

nl indicate the linear and nonlinear algebraic ma-
trices.

The governing equations for free vibration analysis are ob-
tained via the principle of virtual work.

δLint =−δLine (7)

where δLint and δLine stand for the virtual variation of the non-
linear strain energy and inertia loads. Readers can refer to [12]
for further details.

The KKKT is computed by linearizing the virtual variation of
the nonlinear strain energy.

δ (δLint) = δqqqT
s j(KKK

i jτs
0 +KKKi jτs

T 1 )qqqτi +δqqqT
s jKKK

i jτs
σ qqqτi

= δqqqT
s jKKK

i jτs
T qqqτi

(8)

where KKKi jτs
T represents the FN of the tangent stiffness matrix,

KKKi jτs
0 stands for the linear contribution of KKKT , KKKi jτs

T 1 = 2KKKi jτs
lnl +

KKKi jτs
nll + 2KKKi jτs

nlnl indicates the nonlinear component, and KKKi jτs
σ de-

notes the the so-called geometric stiffness matrix. The super-
scripts i, j,τ,s are the four indexes exploited to assemble the ma-
trices.

NUMERICAL RESULTS
For the representative purpose, a flat aluminium plate sub-

jected to axial compressive load is considered This bench-
mark case have the following geometrical and material data: a
(width)= 355 mm, b (height)= 355 mm, t (thickness)= 2 mm and
Young modulus (E)= 70 GPa, Poisson’s ratio (ν)= 0.33, density
(ρ)= 2780 kg/m3. Figure 1 depicts the geometry and bound-
ary conditions of this structure. In particular, clamped-clamped-
simply supported- simply supported constraints are employed.
For the following discussions, the convergent model is obtained
by adopting at least 10×10Q9 for the in-plane mesh approxima-
tion and only one LD2 in the thickness direction.

The equilibrium curve of the aluminium flat plate subjected
to compressive load is illustrated in Fig. 2. A small load defect
d= 0.01 N was applied at the center of the aluminium plate to
enforce the unstable solution branches. The linear variation of
the first four natural frequencies for progressively higher load-
ings is reported in Fig. 3. For completeness, the characteristics
first four vibration mode shapes are provided in Fig. 4. Instead,
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FIGURE 1: GEOMETRY AND BOUNDARY CONDITIONS
OF THE ALUMINIUM FLAT PLATE.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  2  4  6  8  10  12  14

-P
, 

N

-uy x 10
5
, m

Linear
Nonlinear 

FIGURE 2: LINEAR AND NONLINEAR LOAD-
DEFLECTION CURVE. ALUMINIUM FLAT PLATE SUB-
JECTED TO COMPRESSIVE LOAD.

Fig. 5 illustrates the comparison between the linear, nonlinear
variation of the natural frequencies and experimental results [27]
for progressively increasing loadings. The results suggest that
the linear approach allows one to evaluate the benchmark case’s
frequency variation at lower levels of the compressive load. On
the other hand, for higher loadings, the deviation of the linear re-
sults from the nonlinear and experimental ones becomes evident.
The nonlinear and experimental results show a minimum value
near the critical buckling load, and after the buckling, frequencies
start to increase. The change in slope of the natural frequencies
represents a criterion to evaluate the buckling. The presented
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FIGURE 3: LINEAR VARIATION OF THE FIRST FOUR
NATURAL FREQUENCIES OF VIBRATION FOR THE ALU-
MINIUM FLAT PLATE UNDER COMPRESSIVE LOAD.
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FIGURE 4: CHARACTERISTICS FIRST FOUR VIBRATION
MODE SHAPES FOR THE ALUMINIUM FLAT PLATE. P= 0
N.

nonlinear virtual VCT method is able to obtain results with an
excellent correlation with the experimental solutions. Discrep-
ancies between numerical and experimental results are probably
due to variations between the real boundary conditions and the
numerical ones and initial geometric imperfections.

CONCLUSIONS
In this work, a novel virtual Vibration Correlation Technique

(VCT) approach to predict the buckling load and to character-
ize the natural frequencies variation for progressively increas-
ing compressive loadings is presented. The method has been
successfully assessed through the study of benchmark problems
available in the VCT literature. The analysis were conducted in
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FIGURE 5: COMPARISON BETWEEN LINEAR, NONLIN-
EAR AND EXPERIMENTAL VARIATION OF THE NATU-
RAL FREQUENCIES OF THE ALUMINIUM FLAT PLATE
FOR PROGRESSIVELY INCREASING LOADINGS.

the domain of the two-dimensional (2D) Carrera Unified Formu-
lation (CUF), which allows us to perform the numerous analyses
with high accuracy. Isotropic flat plate and shell structures have
been investigated. For the sake of brevity, the shell structures will
be shown in the presentation during the conference. The results
suggest that the presented nonlinear methodology provide accu-
rate solutions compared with the experimental ones and a good
confidence for future studies in this topic.
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