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Nonlinear current and dynamical quantum phase transitions in the flux-quenched
Su-Schrieffer-Heeger model
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We investigate the dynamical effects of a magnetic flux quench in the Su-Schrieffer-Heeger model in a one-
dimensional ring geometry. We show that even when the system is initially in the half-filled insulating state, the
flux quench induces a time-dependent current that eventually reaches a finite stationary value. Such persistent
current, which exists also in the thermodynamic limit, cannot be captured by the linear response theory and is
the hallmark of nonlinear dynamical effects occurring in the presence of dimerization. Moreover, we show that
for a range of values of dimerization strength and initial flux, the system exhibits dynamical quantum phase
transitions, even though the quench is performed within the same topological class of the model.
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I. INTRODUCTION

Many important features of a quantum mechanical sys-
tem can be gained from the linear response theory (LRT),
where the out-of-equilibrium response of the system to a weak
perturbation is encoded in a correlation function evaluated
at its equilibrium state [1,2]. In particular, LRT is used to
establish whether a fermionic system is a conductor or an
insulator. Operatively, this can be done through the follow-
ing gedankenexperiment: We first imagine to switch off all
sources of extrinsic scattering phenomena, e.g., with a bath
or with disorder. Then, we apply a weak uniform electric
pulse E (t ) = Eδ(t ) and observe the long-time behavior of
the current in the thermodynamic limit. If a finite persistent
current eventually flows, the system is a conductor; otherwise,
it is an insulator. Explicitly, the LRT current is expressed
as J (t ) = (2π )−1E

∫
dω σ (ω)e−iωt , and its stationary value

J (+∞) = DE is determined by the Drude weight D, i.e.,
the coefficient appearing in the low-frequency singular term
of the conductivity [3] σ (ω) = σreg(ω) + iD/(ω + i0+) and
characterizing the possibility of a system to sustain ballistic
transport. The evaluation of the Drude weight [4] has allowed
the identification of interaction-induced insulating states in
exactly solvable fermionic models, either by a direct inves-
tigation, such as in the Hubbard model [5–7], or indirectly
through spin models that can be mapped into fermionic ones
through the Jordan-Wigner transformation [8–13]. Moreover,
the linear response of systems that are in a stationary out-of-
equilibrium state has been investigated [14].

Remarkably, the high control and tunability of cold-atom
systems in optical lattices [15,16], together with the ability
to realize artificial gauge fields [17,18], intriguingly suggest
that the above gedankenexperiment could actually be realized
in a quantum quench protocol [19–22]. Consider an isolated
fermionic system on a one-dimensional (1D) ring, initially
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prepared in the ground state of a given Hamiltonian Ĥi. Then,
suppose that the unitary dynamics is governed by a different
final Hamiltonian Ĥf , obtained from the previous one by a
sudden change in a magnetic flux piercing the ring. Such
sudden variation precisely generates the uniform electric pulse
mentioned above.

These experimental advances have also spurred interest
in the dynamics beyond LRT, i.e., when the stationary-
state properties of the system are no longer sufficient to
describe its dynamical response. In particular, the dynam-
ics resulting from a flux quench has been analyzed in the
case of a single-band model of spinless fermions with a ho-
mogeneous nearest-neighbor hopping and interaction [23].
Although quantitative discrepancies from the LRT predic-
tion have been numerically found in the gapless phase, the
overall qualitative picture relating the existence of a per-
sistent current to a nonvanishing Drude weight seems quite
robust.

In this paper, we instead highlight qualitative differences
from LRT predictions emerging after a flux quench in a
model of spinless fermions hopping in a dimerized ring lat-
tice. Specifically, we shall focus on the Su-Schrieffer-Heeger
(SSH) model [24,25], recently realized in optical lattices
[26–28]. As is well known, such model is gapped even without
interactions and, at half filling, describes a two-band (topo-
logical) insulator [29,30]. By quenching the initial flux to
zero and by analyzing the resulting dynamics, we find two
main results. First, while LRT predicts a vanishing Drude
weight and a vanishing current [3], the flux quench does
lead to a persistent current flowing along the ring, which is
thus a signature of nonlinear effects. Second, if the initial
flux exceeds a critical value (dependent on the dimerization
strength), dynamical quantum phase transitions (DQPTs) [31]
occur. Notably, while a quench performed across the two
different topological phases of the SSH model is known to
give rise to DQPTs [32], the DQPTs we find occur even
if the quench is performed within the same topological
phase.
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We emphasize that the effects predicted here are intrin-
sically ascribed to the dimerization and arise even without
interaction, in sharp contrast to the customary single-band
tight-binding model with homogeneous hopping, where inter-
action is needed to observe any nontrivial dynamical effect of
the flux quench [23]. Here, dimerization provides an intrinsi-
cally spinorial nature to the Hamiltonian and to its eigenstates,
implying that the current operator is not a constant of mo-
tion even without interaction. Furthermore, in the single-band
model the eigenstates of the Hamiltonian are uniquely deter-
mined by their (quasi)momenta and do not depend on the flux,
while in the dimerized case the eigenstates exhibit a nontrivial
dependence on the flux. Finally, it is the spinorial nature,
which is thus absent in the single-band tight-binding model,
that leads to the DQPTs.

Our paper is organized as follows. In Sec. II, we present the
model and describe the flux-quench dynamics of a two-band
model. In Sec. III, we derive the expression of the persistent
current and show that while in the limit of vanishing dimeriza-
tion the LRT captures the metallic behavior, in the presence
of dimerization the persistent current flows even though the
LRT predicts a vanishing Drude weight and an insulating
behavior. In Sec. IV, we then analyze the DQPTs induced by
the dimerization. Finally, in Sec. V, we discuss our results and
draw our conclusions.

II. MODEL AND STATE EVOLUTION

A. The SSH model

As mentioned in Sec. I, in this article we focus on a
well-known example of a band insulator, namely, the Su-
Schrieffer-Heeger (SSH) model [24,25], in a 1D ring pierced
by a magnetic flux. Below, we briefly recall a few aspects of
this model that are needed for our analysis. The SSH Hamil-
tonian in real space is

Ĥ [φ] = v

M∑
j=1

(eiφ ĉ†
jAĉ jB + reiφ ĉ†

jBĉ j+1A + H.c.) (1)

where M denotes the number of cells, containing two sites A
and B each, v is a real positive hopping amplitude, r � 0 is
the dimerization parameter, and ĉ†

jα creates a spinless fermion
in the site α = A, B of the jth cell. Denoting by � the total
magnetic flux threading the ring, we adopt the gauge where
the phase related to its vector potential [33,34], denoted by
φ in Eq. (1), is uniform along the ring links, so that 2Mφ =
2π (�/�0), where �0 = h/e is the elementary flux quantum.
We are interested in the thermodynamic limit M → +∞ with
a finite flux per unit cell �/M.

In Eq. (1), we assume periodic boundary conditions
(PBCs), so that the k wave vectors are quantized (also
in the presence of flux) as ka = 2π n/M, where n ∈
{−�M/2�, . . . , �(M − 1)/2�} and a denotes the size of the
unit cell. The SSH Hamiltonian is thus rewritten in momen-
tum space as

Ĥ [φ] = v

π∑
ka=−π

(ĉ†
kA, ĉ†

kB) d(k, φ) · σ

(
ĉkA
ĉkB

)
, (2)

where

d(k, φ)= [cos φ+r cos(ka + φ),−sin φ+r sin(ka + φ), 0],

(3)

and σ = (σx, σy, σz ) are Pauli matrices acting on the sublattice
degree of freedom. The spectrum of single-particle eigen-
values consists of two symmetric energy bands ε±(k, φ) =
±vε(k, φ), where

ε(k, φ) =
√

1 + r2 + 2r cos(ka + 2φ). (4)

The density matrices of the single-particle eigenstates, in the
{|kA〉, |kB〉} basis, are given by

ρ±(k, φ) = 1
2 [σ0 ± u(k, φ) · σ], (5)

where σ0 is the 2 × 2 identity matrix, and u(k, φ) =
d(k, φ)/|d(k, φ)| is a unit vector.

The SSH model is also known as a prototype model
of a topological insulator [29], which exhibits two topo-
logically distinct phases for r < 1 and r > 1, with r =
1 identifying the nondimerized gapless case. Notably, in
the presence of a magnetic flux (φ �= 0), the energy spec-
trum (4) depends on the wave vector k and on the flux
phase φ only through the combination ka + 2φ, whereas
the Hamiltonian (2) and its eigenstates (5) depend on both
of these quantities separately. This is due to the dimeriza-
tion. Indeed, in the limit r → 1 of vanishing dimerization,
in the Hamiltonian (2) one has d(k, φ) · σ = 2 cos(ka/2 +
φ)[σx cos(ka/2) + σy sin(ka/2)], and the dependence on the
flux phase reduces to a mere multiplicative factor. In this case,
the single-particle eigenstates become independent of φ.

B. State evolution upon a flux quench

Let us suppose that the system is initially prepared in
the insulating ground state of the half-filled SSH model
with an initial flux phase value φi, corresponding to a com-
pletely filled lower band ε−(k, φi ). The kth component of
the single-particle density matrix at t = 0 can thus be writ-
ten in the {|kA〉, |kB〉} basis as ρi(k) = [σ0 − ui(k) · σ]/2,
where ui(k) = u(k, φi ). Then, the magnetic flux is suddenly
switched off and the initial state evolves according to the
final Hamiltonian Ĥf characterized in Eq. (2) by d f (k) =
d(k, φ = 0), which in turn identifies the unit vector u f (k) =
u(k, φ = 0).

Since the k modes do not couple in the quench process,
the Liouville–von Neumann equation can be easily integrated
and the kth component of the one-body density matrix is
uniquely identified, in the {|kA〉, |kB〉} basis, by the time-
evolving Bloch vector u(k, t ) through

ρ(k, t ) = 1
2 [σ0 − u(k, t ) · σ]. (6)

Specifically, the Bloch vector precesses around the final direc-
tion u f (k) and can be expressed as the sum of three orthogonal
contributions [35],

u(k, t ) = d‖(k) + d⊥(k) cos

[
2ε(k, 0)vt

h̄

]

+ d×(k) sin

[
2ε(k, 0)vt

h̄

]
, (7)
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whose explicit expressions can be deduced from the general
state evolution in a two-band model (see Appendix A 1) and
read

d‖(k) = d‖(k, φi )u f (k), (8)

d⊥(k) = d⊥(k, φi )Rz[u f (k)], (9)

d×(k) = d⊥(k, φi )(−ez ). (10)

Here,

Rz =
⎛
⎝ 0 1 0

−1 0 0
0 0 1

⎞
⎠ (11)

is a matrix describing a rotation by −π/2 around the z axis
identified by the unit vector ez and orthogonal to the di-d f

plane, while

d‖(k, φi ) = (1 + r2) cos φi + 2r cos(ka + φi )

ε(k, φi )ε(k, 0)
, (12)

d⊥(k, φi ) = (1 − r2) sin φi

ε(k, φi )ε(k, 0)
. (13)

As a last remark, we notice that in the limit r → 1 of
vanishing dimerization, the dynamics in Eq. (7) becomes
trivial since d⊥(k, φi ) = 0 and d‖(k, φ) = sign[cos(ka/2 +
φi ) cos(ka/2)]. Indeed, without dimerization, the initial state
is an eigenstate of Ĥf and its density matrix does not evolve
with time.

III. CURRENT

Let us now investigate the dynamical behavior of the
particle current generated by the quench. We first note that
because the system is bipartite, there actually exist two types
of currents, namely, intercell and intracell current operators.
Their explicit expression straightforwardly stems from the
continuity equation related to the postquench Hamiltonian Ĥf

(see Appendix A 2) and reads

Ĵ inter
j = rv

h̄
[iĉ†

jBĉ j+1A − iĉ†
j+1Aĉ jB], (14)

Ĵ intra
j = v

h̄
[iĉ†

jAĉ jB − iĉ†
jBĉ jA]. (15)

Note that since Ĥf has a vanishing flux, these operators do
not explicitly depend on the flux. Due to the translational
invariance of both the initial state and the final Hamilto-
nian, the expectation values of Eqs.(14) and (15) are actually
independent of the specific cell label j. It is thus worth intro-
ducing the space-averaged operators Ĵ l ≡ M−1 ∑M

j=1 Ĵ l
j (with

l = inter/intra), obtaining

Ĵ l = 1

M

π∑
ka=−π

(ĉ†
kA, ĉ†

kB)J l
k

(
ĉkA
ĉkB

)
, (16)

FIG. 1. The intercell current J inter (blue curve) and the intracell
current J intra (yellow curve) resulting from a sudden flux quench in
the SSH model are plotted as a function of time. At long time, they
both tend to the same stationary contribution Jdc (green curve). The
time evolution is computed in the thermodynamic limit for r = 0.6
and φi = π/2.

where

J inter
k = rv

h̄
[− sin(ka)σx + cos(ka)σy], (17)

J intra
k = −v

h̄
σy. (18)

Their expectation values Jl (t ) ≡ 〈Ĵ l〉(t ) =
M−1 ∑

k tr[J l
k ρ(k, t )] for t > 0 can be written as

Jl (t ) = Jdc + Jl
ac(t ), l = inter/intra, (19)

where the first term Jdc describes a steady-state contribution
and is thus the same for inter/intra contributions, while the
second term describes the time-dependent fluctuations around
it and is different in the two contributions. Explicitly, the ac
terms read

J inter
ac (t ) = rv

h̄

1

M

π∑
ka=−π

d⊥(k, φi )
r + cos(ka)

ε(k, 0)

× cos

[
2ε(k, 0)vt

h̄

]
(20)

and

J intra
ac (t ) = −v

h̄

1

M

π∑
ka=−π

d⊥(k, φi )
1 + r cos(ka)

ε(k, 0)

× cos

[
2ε(k, 0)vt

h̄

]
, (21)

whereas the dc current is

Jdc = rv

h̄

1

M

π∑
ka=−π

d‖(k, φi )
sin(ka)

ε(k, 0)
, (22)

with d‖(ka, φi ) and d⊥(ka, φi ) given by Eqs.(12) and (13).
Figure 1 displays the time evolution of J intra (t ) and J inter (t )
in the thermodynamic limit M−1 ∑

k → (2π )−1
∫

d (ka). As
one can see, the two currents are, in general, different and
exhibit long-living fluctuations, described by the ac terms in
Eq. (19). However, these fluctuations eventually vanish and
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both currents converge to the same steady-state contribution
Jdc, highlighted by the green line.

A few comments are in order about such persistent current
Jdc. First, Jdc is essentially different from the current flowing
at equilibrium in a mesoscopic ring threaded by a flux, since
it is also nonvanishing in the thermodynamic limit, where it
acquires the form

Jdc = v

2π h̄

∫ π

−π

d (ka)
r sin(ka)

ε(k, 0)

× (1 + r2) cos φi + 2r cos(ka + φi )

ε(k, φi )ε(k, 0)
. (23)

Second, Jdc cannot be captured by the LRT, which would
predict a vanishing persistent current due to a vanishing Drude
weight (see Appendix A 3). This can also be seen by inspect-
ing Eq. (23) in the limit of weak initial flux φi  1, which
corresponds to the limit of weak applied electric pulse. Indeed,
one obtains

Jdc ≈ −v r2

π h̄
(1 − r2)2

[∫ π

−π

d (ka)
sin2(ka)

ε7(k, 0)

]
φ3

i , (24)

which highlights the nonlinear (cubic) response of the insulat-
ing SSH ring.

It is now worth comparing the above results with the one
of the nondimerized limit r → 1, where one obtains, for the
postquench currents (t > 0),

J inter (t ) = J intra (t ) = − 2v

π h̄
sin φi. (25)

Differently from the result obtained for the dimerized case
(see Fig. 1), the current (25) is time independent after the
quench [36] and, for a weak field φi  1, it exhibits a linear
dependence on φi. One thus recovers the well-known finite
Drude weight [37] D = −(e2/h̄)vF /π , where vF is the Fermi
velocity, of a noninteracting half-filled metallic band, as pre-
dicted by LRT [38].

The role of dimerization is emphasized in Fig. 2, where the
persistent current (23) is depicted as a function of the initial
flux, for various values of dimerization r. While at small flux
values φi  1 the current Jdc of the dimerized case r �= 1
is suppressed as compared to the metallic case r = 1 (green
curve), for finite flux values the two cases exhibit comparable
currents.

The origin of the persistent current term Jdc can be
understood in terms of the out-of-equilibrium occupancies
n f ,± of the postquench bands ε±(k, 0) induced by the flux
quench. These can be computed, for each k, by projecting the
initial state on the postquench eigenmodes, obtaining time-
independent expressions:

n f ,±(k, φi ) = tr{ρi(k)[σ0 ± u f (k) · σ]/2}

= 1

2
[1 ∓ ui(k) · u f (k)]

= 1

2
∓ (1 + r2) cos φi + 2r cos(ka + φi )

2ε(k, φi )ε(k, 0)
, (26)

FIG. 2. The persistent current Jdc induced in the SSH model by
quenching the flux to zero as a function of the initial flux φi. The
blue, yellow, and green curves are obtained for different dimerization
strengths, namely, r = (0.6, 0.8, 1), respectively. For each value of
r �= 1, the current does not exhibit a linear term in φi for φi  1. The
inset magnifies the behavior at small fluxes to highlight the difference
between the linear and nonlinear responses.

which are plotted as a function of ka/π in Fig. 3. By com-
paring Eq. (26) with Eq. (23), the persistent current can be
rewritten as

Jdc = 1

2πa

∫ π

−π

d (ka) �n f (k, φi )
1

h̄
∂kε−(ka), (27)

FIG. 3. Occupancies of the postquench bands for different values
of the initial flux φi and a fixed dimerization strength r = 0.6. Dashed
lines correspond to the upper band, while solid lines correspond to
the lower one. The blue, yellow, and green colors correspond to φi =
(0.1, 0.2, 0.4)π , respectively. The distributions are not symmetric
in k ↔ −k for any value of the initial flux. As φi is increased, the
upper band becomes more occupied and the lower band gets more
depleted. Inset: bands ε±(k, φ) of a SSH model pierced by a magnetic
flux. Solid and dashed lines describe the lower and the upper bands,
respectively. The bands are depicted for v = 1, a fixed dimerization
strength r = 0.6, and for two different values of the flux, namely,
φ = 0.2π (yellow lines) and φ = 0 (black lines).
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where 1
h̄ ∂kε±(k) = ± va

h̄
r sin(ka)
ε(ka) are the postquench group ve-

locities, and

�n f (k, φi ) = n f ,−(k, φi ) − n f ,+(k, φi ) = ui(k) · u f (k) (28)

denotes the occupancy difference. Since in Eq. (27) the group
velocities are odd functions in k, the origin of the nonvan-
ishing persistent current Jdc boils down to the lack of even
parity in k of the postquench occupancy distributions (26) and
of their difference �n f . Such lack of symmetry, clearly seen
in Fig. 3, arises from the fact that the flux quench impacts
the phase of the tunneling amplitudes, whereas quenches in
the magnitude of the tunneling amplitudes lead to out-of-
equilibrium occupancy distributions that preserve their even
parity in k and cannot induce a net current [39].

We conclude this section with two comments. First, when
moving away from half filling, the system becomes metallic
even in the presence of dimerization. In this case, one can
show that the system develops a finite Drude weight and that
the linear response theory well captures the quench-induced
current for small initial fluxes. Nonetheless, there exist some
qualitative differences with respect to the nondimerized metal-
lic case. Indeed, because of dimerization, the current also
has a finite ac contribution and, for small filling, it does not
increase monotonically in φi ∈ [0, π/2], developing a local
minimum for φi = π/2 instead of a maximum. The second
comment is concerned with the flux switching protocol. Here,
in analogy to what was done in Ref. [23], we have considered
the switching off of the initial flux, so that the latter only
appears in the initial state. In the reversed protocol, where the
flux is switched on, one obtains a current with opposite sign,
as expected, provided that one consistently includes the flux
phases related to the vector potential both in the postquench
Hamiltonian and in the current operators (14) and (15).

IV. DYNAMICAL QUANTUM PHASE TRANSITIONS

Let us now analyze the properties of the Loschmidt ampli-
tude G(t ) = 〈ψ0|e−iĤ f t/h̄|ψ0〉, where |ψ0〉 is the many-body
initial state, while Ĥf is the final Hamiltonian that gov-
erns the time evolution of the system after the quench.
With applications in studies on quantum chaos and dephas-
ing [40–42], the Loschmidt amplitude has a tight relation
to the statistics of the work performed through the quench
[31,43,44]. Equivalently, it can also be regarded as the
generating function of the energy probability distribution en-
coded in the postquench diagonal ensemble, since G(t ) =∫

dEP(E )e−iEt/h̄, and the postquench diagonal ensemble is
described by P(E ) = ∑

n |〈n|ψ0〉|2δ(E − En), where En and
|n〉 are the many-body eigenvalues and eigenstates of the final
Hamiltonian, respectively. Moreover, it has been suggested
[31] that the Loschmidt amplitude can be interpreted as a
dynamical partition function whose zeros, in analogy with
the equilibrium case, are identified with DQPTs. The initial
belief of a connection between DQPTs and quenches across
different equilibrium phase transitions has been proved to
be not rigorous [45–50], and the impact of DQPTs on local
observables has been found only in specific cases [31,51–
55]. Nevertheless, the existence of zeros of G(t ) can be in-

FIG. 4. Time evolution of the real part of the dynamical free-
energy density g(t ), for different values of the initial flux φi at
a fixed dimerization strength r = 0.6. The blue curve corresponds
to an initial flux φi = 0.1π lying outside the range identified by
Eq. (31) and is smooth. The yellow and green curves correspond to
flux values that fulfill Eq. (31) [φi = (0.2, 0.4)π , respectively] and
exhibit DQPT singularities.

terpreted as a clear signature of quench-induced population
inversion [31,56].

For the present flux quench, the Loschmidt amplitude ex-
plicitly reads [32]

G(t ) =
∏

−π�ka�π

[
cos

(
ε(k, 0)vt

h̄

)

+ i[ui(k) · u f (k)] sin

(
ε(k, 0)vt

h̄

)]
, (29)

where the dynamical free-energy density g(t ) =
−M−1 ln[G(t )] in the thermodynamic limit is straightfor-
wardly given by

g(t ) = − 1

2π

∫ π

−π

d (ka) ln

[
cos

(
ε(k, 0)vt

h̄

)

+ i[ui(k) · u f (k)] sin

(
ε(k, 0)vt

h̄

)]
. (30)

The argument of the logarithm in Eq. (30) may vanish at some
critical times if and only if ui(k) · u f (k) = 0. Using Eqs. (28)
and (26) in the regime r �= 1, this condition can be satisfied by
some ka ∈ [−π, π ] if and only if

| cos φi| � 2r

1 + r2
. (31)

In conclusion, for each value of the dimerization strength r �=
1, there exists a range of initial flux values, given by Eq. (31),
such that singularities in the dynamical free-energy density
appear, as shown in Fig. 4. Recalling Eq. (28), we observe that
DQPTs appear if and only if the postquench band occupancies
cross at some k, i.e., if there exists a subregion of the Brillouin
zone where the postquench upper band is more populated then
the lower one (band population inversion). This is the case for
the yellow and green curves in Figs. 3 and 4. Notably, while
a quench across the critical point r = 1 is sufficient to induce
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a DQPT [32], it is not a necessary condition and accidental
DQPTs can also appear [45,49]. This is the case here, where
the DQPTs show up even if the quench is performed within
the same topological phase.

Before concluding this section, a remark is in order about
the specific case r = 1, which deserves some care. At first,
by looking at the limit r → 1 of Eq. (31), one could naively
expect that DQPTs exist for any value of the initial flux. How-
ever, this is not the case since the scalar product ui(k) · u f (k)
reduces to a pure sign and the argument of the logarithm in
Eq. (30) can never vanish. Indeed, for r = 1, the initial state is
an (excited) eigenstate of the final Hamiltonian, its dynamics
is trivial, and G(t ) reduces to a pure oscillating phase [44].
Hence the Loschmidt amplitude can never vanish and the
dynamical free-energy density is analytic for t > 0. Moreover,
for r = 1, a description in terms of a two-band structure is
redundant and a proper band population inversion cannot be
defined without ambiguities.

V. DISCUSSION AND CONCLUSIONS

Our results have been obtained in the case of a sudden flux
quench. Here we would like to briefly discuss the effects of a
finite switch-off time τsw. By implementing a time-dependent
flux phase φ(t ) = φi[1 − Erf(

√
8t/τsw)] and by numerically

integrating the Liouville–von Neumann equation for the den-
sity matrix, one can show that the persistent current Jdc

depends on the ratio τsw/τg, where τg = h̄/(2v|1 − r|) is the
timescale associated to the energy gap of the SSH model.
In particular, while for τsw  τg the persistent current Jdc is
robust, when τsw � τg it reduces with respect to the sudden
quench value (e.g., to roughly 1/5 for the parameters of Fig. 1)
and it vanishes in the limit τsw � τg of an adiabatic switch-off.
In such limit, a vanishing stationary current is consistent with
the recent generalization of LRT to a higher-order response,
which predicts that in a band insulator the response to an adi-
abatic electric field vanishes to all orders in the field strength
[57–59].

It is worth pointing out the essential difference between the
quench-induced dynamics in an insulating and in a metallic
state. For a metallic state, where the response to a weak elec-
tric pulse is linear, the persistent current that eventually flows
is independent of the quench protocol and is thus fully en-
coded in the Drude weight. In striking contrast, when a weak
field is applied to an insulating state (such as the half-filled
SSH model), the response is nonlinear and does depend on
the quench protocol. Thus, while the vanishing higher-order
generalized Drude weights [57,58] only capture the behavior
of the system in the adiabatic switching limit, for a suffi-
ciently fast switching a persistent current does flow even in an
insulator.

In conclusion, in this paper we have analyzed the response
of a half-filled SSH ring to a sudden flux quench or, equiva-
lently, to a sudden pulse of electric field. We have shown that
the intrinsically spinorial nature of the problem, due to the
dimerization of the hopping amplitudes, induces a nontrivial
current dynamics even without interactions. In particular, a
time-dependent current flows along the ring and eventually
reaches a stationary value, despite the insulating nature of the
initial state (see Fig. 1). Such persistent current Jdc, which

depends cubically on a weak initial flux φi in the presence of
dimerization [see Eq. (24) and Fig. 2], is a clear hallmark of
a nonlinear dynamics and is ascribed to the peculiar nonequi-
librium occupancy induced by the quench (see Fig. 3). For
suitable dimerization and flux values, a postquench population
inversion occurs, which in turn implies the occurrence of
DQPTs (see Fig. 4). Notably, the DQPTs are present even
without closing the gap, i.e., when the quench is performed
within the same topological phase.
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APPENDIX

1. State evolution in a quenched two-band system

In this Appendix, we recall the general state evolution after
a sudden quench in a two-band model [35]. Let us suppose
that the initial state is the half-filled ground state of a two-
band Hamiltonian, whose one-body form can be written in
momentum space as

Hi(k) = v
[
d0

i (k)σ0 + di(k) · σ
]
, (A1)

where v denotes the reference energy scale. The kth compo-
nent of the initial state can thus be written as ρ(k, 0) = [σ0 −
ui(k) · σ]/2, where ui(k) = di(k)/|di(k)|. The state evolves
according to the postquench Hamiltonian

Hf (k) = v
[
d0

f (k)σ0 + d f (k) · σ
]
, (A2)

and, by solving the Liouville–von Neumann equation for the
one-body density matrix, one can write the kth component of
the time-evolved state as ρ(k, t ) = [σ0 − u(k, t ) · σ]/2, where
the time-dependent unit vector can be written as the sum of
three orthogonal contributions:

u(k, t ) = d‖(k) + d⊥(k) cos[2|d f (k)|vt/h̄]

+ d×(k) sin[2|d f (k)|vt/h̄], (A3)

where

d‖(k) = [ui(k) · u f (k)]u f (k),

d⊥(k) = [ui(k) − d‖(k)],

d×(k) = −[ui(k) × u f (k)].

Then, by inserting the explicit expression for di(k) and d f (k)
corresponding to a flux quench in the SSH model [see Eq. (3)],
the expressions in Eqs. (8)–(10) are recovered.

2. Current

In this Appendix, we briefly outline how to derive the
current operators discussed in Sec. III. Given the site density
operators n̂ j,α = ĉ†

jα ĉ jα , with α = A, B, and the SSH Hamil-
tonian with φ = 0 [see Eq. (1)], it is straightforward to derive
the following Heisenberg equations of motion:

∂t n̂ jA = Ĵ inter
j−1 − Ĵ intra

j , ∂t n̂ jB = Ĵ intra
j − Ĵ inter

j ,
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where, by definition,

Ĵ inter
j = rv

h̄
[iĉ†

jBĉ j+1A − iĉ†
j+1Aĉ jB]

is the intercell current reported in Eq. (14), while

Ĵ intra
j = v

h̄
[iĉ†

jAĉ jB − iĉ†
jBĉ jA]

is the intracell current reported in Eq. (15).

3. Drude weight

The Drude weight D characterizing the LRT of the SSH
model can be computed following Kohn’s approach [4]. In
particular, in a 1D ring, one has

D = −L
d2E0(�)

d2�

∣∣∣∣
�=0

,

where E0(�) denotes the dependence of the many-body
ground-state energy on the magnetic flux � threading the ring,
while L denotes the ring length. For a tight-binding model,
we can associate the magnetic flux � to a phase φ in the
hopping amplitudes according to Nφ = 2π�/�0, where N is
the number of links in the ring and �0 = h/e is the magnetic
flux quantum. Hence, in a bipartite lattice with two sites per
cell, we get

� = L
2

a

h̄

e
φ, (A4)

where a is the lattice constant. Exploiting the linear relation
between φ and �, we can write Kohn’s formula as

D = −
(

a

2

)2( e

h̄

)2

L−1 d2E0(φ)

d2φ

∣∣∣∣
φ=0

. (A5)

Moreover, for translationally invariant one-body Hamiltoni-
ans, we can write

D = −
(

a

2

)2( e

h̄

)2

L−1

[
d2

d2φ

∑
(k,b)∈I

εb(k, φ)

]
φ=0

,

where I denotes the set of bands b and wave vectors k that are
occupied in the many-body ground state without flux, while
εb(k, φ) denotes the band dispersion relations for a finite flux.

Since the single-particle energies depend on the phase
φ only through the combination ka + 2φ [see Eq. (4)], the
many-body ground-state energy of a half-filled SSH model
with dimerization (r �= 1) does not depend on the flux in the
thermodynamic limit. Indeed, due to the periodic nature of the
lower band over the interval ka ∈ [−π, π ], one has

L−1Er �=1
0 (φ) = 1

2π

1

a

∫ π

−π

d (ka)ε−(k, φ)

= 1

2π

1

a

∫ π

−π

d (ka)ε−(k, 0) = L−1Er �=1
0 (0),

and we conclude that the Drude weight (A5) is identically zero
in this case, consistent with Eq. (24).

Without dimerization (r = 1), the situation is different
since we get

L−1Er=1
0 (φ) = − v

π

2

a

∫ π
2

− π
2

d

(
ka

2

)
cos

(
ka

2
+ φ

)

= −2v

π

2

a
cos(φ),

and, from Eq. (A5), one obtains

D = −e2

h̄

2v

h̄π

a

2
= −e2

h̄

vF

π
,

where vF is the Fermi velocity. The finite Drude weight com-
puted in this way coincides with the one obtained in the main
text [see Eq. (25)] through its dynamical definition.
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