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Trajectory planning for UAVs based on Interfered
Fluid Dynamical System and Bézier curves

Davide Celestini1, Stefano Primatesta1 and Elisa Capello2 .

Abstract—In this paper, a 3D trajectory planner for Unmanned
Aerial Vehicles (UAVs) based on Interfered Fluid Dynamical
System (IFDS) and Bézier curves is introduced. The proposed
strategy joints the potentialities of IFDS with the use of Bézier
curves to obtain optimized trajectories with continuous curva-
ture. While IFDS computes an initial trajectory to safely avoid
fixed and dynamic obstacles, Bézier curve optimization generates
a trajectory satisfying kinematic constraints. This combination
is computationally efficient for online applications with limited
hardware and a smoothed path is obtained, for safe and flyable
trajectories. Simulations are performed for a fixed-wing UAV in
a complex and dynamic environment.

Index Terms—Constrained Motion Planning, Aerial Systems,
Mechanics and Control, Collision Avoidance

I. INTRODUCTION

IN recent years, Unmanned Aerial Vehicles (UAVs) have
been widely used to perform several applications even in

complex and critical scenarios. Nevertheless, the development
of autonomous guidance systems for UAVs operating in these
scenarios represents a challenging problem. To this aim, tra-
jectory planning represents one of the most important elements
to achieve high levels of autonomy with UAVs. Such planner
must be capable of computing safe and feasible trajectories
avoiding fixed and dynamic obstacles, as well as satisfying
kinematic constraints.

Often, trajectory planning works jointly with path planning.
In this context, a path planner provides a global path to be
followed by a trajectory planner. Sampling-based techniques,
e.g. Probabilistic Road-Map (PRM) and Rapidly-Exploring
Random Tree (RRT), and searching-based methods, e.g. Di-
jkstra’s algorithm and A*, are widely exploited for the iden-
tification of this collision-free global path [1], [2]. However,
such reference path may not be flyable by the UAV because
of kinematic constraints and unexpected dynamic obstacles.
Hence, the role of the trajectory planner is to compute a flyable
trajectory following the global path, avoiding the obstacles and
satisfying the kinematic constraints of the UAV at the same
time. To this aim, algorithms based on mathematical models,
Potential Fields methods, linear and non-linear Model Pre-
dictive Control (MPC) and optimization techniques constitute
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the state of the art [1], [2]. Among these methods, polynomial
curves represent a popular choice due to the efficiency and
simplicity in controlling their shape modifying their control
points [3], [4], [5]. Bézier curves, in particular, are greatly
adopted due to the intuitive correlation between their control
point locations and the overall shape of the curve [3], [4].
Several approaches based on Bézier curves are proposed in
the literature to generate smooth trajectories for UAVs and
ground robots in 2D environments [6], [7], [8], [9]. In [10]
and [11], low-order 3D Bézier curves are joined together to
create a smooth trajectory following a given waypoint-based
path in a complex scenario. Anyway, UAV’s constraints are not
fully included in the problem. In [12], higher-order 3D Bézier
curves are exploited to compute a smooth feasible trajectory,
but obstacles are not taken into account.

An interesting method is proposed in [13], where quartic
Bézier curves and quadratic speed profiles are used to guide
a ground vehicle along a predefined route, optimizing local
trajectories previously estimated through an Artificial Potential
Fields (APF). APF grants efficiency and obstacle avoidance
capabilities to the method, but requires ad-hoc modifications
to deal with non-spherical objects [14], [15]. Similarly, the
promising approach of Interfered Fluid Dynamical Systems
(IFDS) is a fluid-based methodology with high computational
efficiency. IFDS, however, is able to safely handle both static
and dynamic obstacles with different shapes even in 3D
environments [16], [17], [18], [19].

In this work, therefore, we propose a trajectory planning
strategy combining IFDS and Bézier curves to follow a
waypoint-based path. First, IFDS is used to compute an initial
estimate of the local trajectory. Then, quartic Bézier curves
are exploited to obtain an optimal local trajectory satisfying
kinematic constraints. Unlike [13], we extend the optimization
with Bézier curves to 3D environments. This approach skill-
fully combines the advantages of the two methods and guides
the UAV along a given global path with a safe and smooth
trajectory, as well as avoiding dynamic obstacles.

The paper is organized as follows. Sec. II includes the
problem statement and defines the UAV nonlinear model. In
Sec. III the proposed trajectory planning strategy, the IFDS and
the Bézier curves are detailed. Simulation results are presented
in Sec. IV. Conclusions are drawn in Sec. V.

II. PROBLEM STATEMENT

In this paper, we aim at solving a trajectory planning
problem for UAVs following a waypoint-based reference path.
Given a list of waypoints computed by any path planner,
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the trajectory planner (TP) computes an optimal and safe
reference profile for the UAV flight control system in order
to follow each waypoint sequentially. Moreover, the TP faces
an environment characterized by static and dynamic obstacles,
which requires a periodic update of the references. Hence, the
adopted methodology must satisfy the following conditions:
(i) be executed online; (ii) plan a local trajectory with a
continuous curvature w.r.t. the current UAV state; (iii) evaluate
the trajectory along a time horizon; and, (iv), have obstacle
avoidance capabilities to handle fixed and dynamic obstacles.

The TP problem is particularly critical for the case of fixed-
wing UAVs, whose motion is typically characterized by high
speed and strict kinematic constraints. Inspired by [20], the
nonlinear model of a fixed-wing UAV is defined as follow

ẋ(t) = V (t) cos (ψ(t)) cos (γ(t))

ẏ(t) = V (t) sin (ψ(t)) cos (γ(t))

ż(t) = V (t) sin (γ(t))

ψ̇(t) = V (t)KH(t)

γ̇(t) = V (t)KV (t)

V̇ (t) = a(t)

, (1)

where P = [x, y, z]T is the UAV position in an inertial
reference system, V and a are flight speed and acceleration,
ψ and γ are heading and flight path angles. KH = 1

RH
and

KV = 1
RV

are curvatures in the horizontal and vertical plane,
reciprocals of the corresponding curvature radii.

The main kinematic constraints affecting the nonlinear
model in (1) are summarized as

RHmin
(V ) =

V 2

g
√
n2max − 1

, (2)

Vmin ≤ V (t) ≤ Vmax, (3)
amin ≤ a(t) ≤ amax, (4)
γmin ≤ γ(t) ≤ γmax, (5)

where (2) is caused by the aircraft maximum load factor nmax,
while (3), (4) and (5) are related to aerodynamic features and
thrust limits of the UAV. Note that constraint (2) dynamically
varies, since V is varying during flight. These limitations
represent a great challenge in the trajectory planning problem.

III. TRAJECTORY PLANNING BASED ON IFDS AND
BÉZIER CURVES

In order to solve the trajectory planning problem of Sec. II,
we propose the efficient multi-step approach defined in Alg.
1. Given a waypoint-list path, the algorithm is executed until
the UAV reaches the last waypoint.

At first, the TP gets the updated information regarding the
environment, the UAV state X0 = (P0, ψ0, γ0), its velocity V0
and acceleration a0. It also computes the local goal point Pg =

[xg, yg, zg]
T , a point moving along the waypoint-based path

with a desired cruise speed Vc. Its speed is set to Vmax when
its distance w.r.t. P0 is smaller than dmin = 6RHmin(V0)
to grant a minimum time span for the trajectory planning and
enlarge dmin as V0 increases. Then, the efficient IFDS method
is exploited to compute a forward simulation in which the UAV

Algorithm 1: Main Trajectory Planning algorithm
Input: Waypoint-list path

1 repeat every ∆Tupd
2 Update environment data, X0, V0, a0 and Pg;
3 Compute IFDS forward simulation over ∆Tsim;
4 Compute optimized Bézier curve;
5 Compute velocity profile;
6 Execute trajectory only for ∆Tupd;
7 until last Waypoint is reached;

moves towards Pg avoiding static and dynamic obstacles. The
time span for this simulation is ∆Tsim, adaptively computed
as 2

RHmin
(V0)

V0
in order to be proportional to the UAV speed

V0. Afterwards, Bezier curves are used to compute the optimal
feasible path connecting the initial state X0 with the final
state of the forward simulation, called X4 = (P4, ψ4, γ4).
Finally, the trajectory is obtained through the computation of
the velocity profile. The resulting trajectory is followed over a
fixed ∆Tupd ≪ ∆Tsim. Hence, this iteration is repeated until
the last waypoint is reached. In the following paragraphs, each
step of Alg. 1 is detailed.

A. Interfered Fluid Dynamical System

The Interfered Fluid Dynamical System (IFDS) solves the
obstacle avoidance problem computing the streamlines of a
fluid field flowing around stones. Without any threats in the
environment, the planned path is a straight line towards the
goal point. Otherwise, the streamlines of the interfered fluid
field smoothly and safely guide the UAV towards the goal
point flowing around all obstacles [16], as shown in Fig. 1.
The IFDS method has been adopted by several studies in the
literature, both considering static and dynamic obstacles. An
exhaustive analysis of static IFDS can be found in [16], [17],
[18], while in-depth details related to the dynamic version of
the method are reported in [19], [21].

At first, the method calculates the initial velocity vector field
u(P) ∈ R3 pointing towards the current position of the local
goal point Pg as

u(P) = −Vc
P−Pg

∥P−Pg∥
, (6)

with Vc being the desired cruise speed of the UAV.

Fig. 1. On the left the streamlines characterizing the initial velocity field. On
the right, the streamlines characterizing the interfered velocity field computed
by the IFDS.
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Then, assuming K obstacles in the environment exist, the
overall permutation matrix M(P) can be computed as

M(P) =

K∑
k=1

ωk(P)Mk(P). (7)

where ωk ∈ R,Mk ∈ R3×3 are the normalized weighting
coefficient and permutation matrix of each obstacle, which are
computed as

ωk(P) =
ω′
k(P)∑K

i=1 ω
′
i(P)

, (8)

ω′
k(P) =

{
1 K = 1∏K

i=1,i̸=k
Γi(P)−1

(Γi(P)−1)+(Γk(P)−1) K > 1
, (9)

Mk(P) =

(
1− 1

|Γk(P)|
1
ρk

)
I3+

− 2nk(P)nk(P)T

|Γk(P)|
1
ρk nk(P)Tnk(P)

, (10)

Γk(P) =

(
x− xk
ak

)2pk

+

(
y − yk
bk

)2qk

+

(
z − zk
ck

)2rk

,

(11)

where Γk(P) ∈ R is the modeling function of the kth obstacle
located in [xk, yk, zk]

T , with dimensions (ak, bk, ck) and form
factors (pk, qk, rk). ρk > 0 is the constant repulsive coeffi-
cient, I3 is the third-order identity matrix, nk(P) = ∇Γk(P)
is perpendicular to the obstacle surface and directed outward.
For further details about static IFDS, see [17].

Further considerations are required to evaluate dynamic
obstacles. For a clear and simple description, we assume
spherical dynamic obstacles. At the beginning of the for-
ward simulation, for each moving obstacle, current position
[xk, yk, zk]

T
0 and velocity vk ∈ R3 are used to compute a

“prediction sphere” which contains the predicted motion over
the time span ∆Tsim, as shown in Fig. 2. This sphere is
centred in [xk, yk, zk]

T
= [xk, yk, zk]

T
0 + vk0

∆Tsim

2 and has
radius R = R0 + ∥vk0

∥∆Tsim

2 . In this way, the prediction
sphere can be considered as a fixed object during the current
forward simulation. Nevertheless, the overall transport velocity
v(P) ∈ R3, which is the perturbation velocity field induced by
the movement of the dynamic obstacles, must be considered
and computed as

v(P) = ṽk̃(P) (12)

k̃ = arg max
k∈{1···K}

ṽk(P) (13)

ṽk(P) = ω̃k(P)e
−1
λk

(Γk(P)−1)
vk (14)

ω̃k(P) =
ωk(P)

maxi∈{1···K} ωi(P)
, (15)

where k̃ is the index of the obstacle causing the maximum
weighted transport velocity ṽk(P) ∈ R3, ω̃k(P) ∈ R is the
normalized dynamic weighting factor, λk > 0 determines how
much the current velocity of the kth obstacle vk ∈ R3 affects
the field. For further details, refer to [19].

Finally, the interfered velocity vector field is computed as

ū(P) =M(P) (u(P)− v(P)) + v(P). (16)

Fig. 2. Dashed spheres: on the left the initial location of the dynamic target;
on the right the final estimated location after ∆Tsim. Lined sphere: prediction
sphere for the moving obstacle for the current forward simulation.

Since ū(P) = ∥ū(P)∥ can exceed the velocity constraints of
the UAV, the magnitude of (16) must be saturated at the limits
Vmin, Vmax. This field smoothly and safely guides the UAV
towards the target, as proved in [16], [17], [18], [19].

Hence, the outputs of the forward simulation performed
following the velocity field of (16) are: (i) the state achieved
at ∆Tsim, X4 = (P4, ψ4, γ4); and, (ii) the modulus of the
interfered velocity at 2∆Tupd, V2∆Tupd

= ∥ū(P)∥2∆Tupd
.

B. Quartic Bézier curves optimization

Bézier curves are parametric curves, whose shape is modi-
fied through the selection of control points [3], [4]. The general
definition of a n-degree Bézier curve C(τ) ∈ R3 is

C(τ) =

n∑
i=0

Bn
i (τ)Pi, τ ∈ [0, 1], (17)

where Bn
i (τ) =

(
n
i

)
τ i (1− τ)

n−i denotes the ith Bernstein
polynomial and Pi ∈ R3 the ith control point. These curves
are characterized by some features which are extremely useful
for trajectory planning purposes: (i) the curve passes through
its endpoints, hence C(τ = 0) = P0, C(τ = 1) = Pn;
(ii) the curve is tangent to the lines connecting P0 → P1

and Pn−1 → Pn in its endpoints P0 and Pn, respectively;
(iii) the curve is invariant under affine transformations. For an
exhaustive analysis of all the properties characterizing Bézier
curves, refer to [4].

In this work, quartic Bézier curves are proposed to com-
pute an optimal, safe and flyable path connecting an initial
state X0 = (x0, y0, z0, ψ0, γ0,KH0

,KV0
) to a final state

X4 = (x4, y4, z4, ψ4, γ4) obtained as in Sec. III-A. Initial path
curvatures KH0

and KV0
have been added to the initial state for

curvature continuity purposes. The Bézier curve optimization
problem is inspired by [13] and expanded to 3D applications.
The curve is firstly built in a 2D (horizontal) form and, then,
extended to the third dimension, as shown in Fig. 3. The
heading angle ψ(τ) and horizontal curvature KH(τ) of the
2D Bezier curve (plane Ox−y) are computed as

ψ(τ) = arctan

(
y′(τ)

x′(τ)

)
, (18)

KH(τ) =
ψ′(τ)

VτH (τ)
=
x′(τ)y′′(τ)− x′′(τ)y′(τ)

(x′2(τ) + y′2(τ))
3/2

, (19)

where x′(τ), y′(τ), x′′(τ), y′′(τ) are the first and second-
order τ -derivatives of C(τ) in the x, y directions, VτH (τ) =
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Fig. 3. Example of 3D Bézier curve with P0 = 0, ψ0 = 0 (red) and its
projection in the horizontal plane (blue).

√
x′2(τ) + y′2(τ) is the bi-dimensional “parametric speed”,

ψ′(τ) is the τ -derivative of ψ(τ). Then, we consider the third
dimension analogously exploiting the longitudinal “plane”
Oxy−z , which contains both the red and blue curves of Fig. 3.
Hence, considering curvilinear abscissa xy(τ) =

∫ τ

0
VτH (τ)dτ

and ordinate z, analogous definitions of flight path angle γ(τ)
and vertical curvature KV (τ) can be derived

γ(τ) = arctan

(
z′(τ)

VτH (τ)

)
, (20)

KV (τ) =
γ′(τ)

Vτ (τ)
=

VτH (τ)z′′(τ)− V ′
τH (τ)z′(τ)

(x′2(τ) + y′2(τ) + z′2(τ))
3/2

, (21)

where z′(τ), z′′(τ) are the first and second-order τ -
derivatives of C(τ) in the z direction; V ′

τH (τ) and γ′(τ)
are the τ -derivatives of VτH (τ) and γ(τ). Vτ (τ) =√
x′2(τ) + y′2(τ) + z′2(τ) is the 3D “parametric speed”. For

3D applications, Vτ (τ) should also be used for the compu-
tation of KH(τ), but the conservative formulation of (19) is
still valid since it always overestimates the horizontal curvature
(Vτ (τ) ≥ VτH (τ)).

In order to simplify mathematical derivation, the state
X = (x, y, z, ψ, γ,KH ,KV ) is transformed into X̄ =
(x̄, ȳ, z̄, ψ − ψ0, γ,KH ,KV ) through the following coordinate
affine transformation

x̄ȳ
z̄

 =

RΨ︷ ︸︸ ︷ cos (ψ0) sin (ψ0) 0
− sin (ψ0) cos (ψ0) 0

0 0 1

x− x0
y − y0
z − z0

 . (22)

Hence, the initial state X0 is transformed into X̄0 =
(0, 0, 0, 0, γ0,KH0

,KV0
). This transformation allows to recre-

ate the frame reported in Fig. 3, so that motion in horizontal
plane, Ox−y , and vertical plane, Oxy−z , can be easily identi-
fied. The first control point of the curve is P̄0 = 0 to secure
C0 continuity with the previous path. Then, as in [13], second
and third control point locations in Ox−y are computed in
order to achieve heading and horizontal curvature continuity.
Hence

P̄H
1 =

[
sH0 , 0

]T
,

P̄H
2 =

[
x̄2,

4
3KH0

s2H0

]T
,

(23)

with sH0
= ∥P̄H

1 − P̄0∥ = ∥P̄1− P̄0∥ cos (γ0) = s0 cos (γ0).
The vertical coordinates of these points must be computed
imposing γ(τ = 0) = γ0 and KV (τ = 0) = KV0 . Hence

P̄1 =
[
P̄H T

1 , sH0
tan (γ0)

]T
,

P̄2 =
[
P̄H T

2 , 43KV0

s2H0

(cos (γ0))
3 + x̄2 tan (γ0)

]T
.

(24)

Finally, the last two control points are computed in order to
achieve the desired state X̄4 = (x̄4, ȳ4, z̄4, ψ4 − ψ0, γ4)

P̄4 = RΨ

[
x4 − x0, y4 − y0, z4 − z0

]T
,

P̄3 = P̄4 − s4

cos (γ4) cos (ψ4 − ψ0)
cos (γ4) sin (ψ4 − ψ0)

sin (γ4)

 , (25)

with s4 = ∥P̄4 − P̄3∥. In such way, despite its tridimen-
sionality, only three independent parameters (s0, x̄2, s4) are
required to determine a smooth curve, i.e. characterized by
continuous curvature w.r.t. the previous path. Furthermore, it
becomes clear that quartic Bézier curves represent the lowest-
order Bézier curves to achieve curvature continuity and acquire
the desired state X̄4.

The selection of (s0, x̄2, s4) is performed solving an opti-
mization problem aiming at minimizing the overall curvature
K2(τ) = K2

H(τ) + K2
V (τ) and length of Bezier curve, while

maximizing the distance from the closest moving obstacle
under kinematic and safety constraints. Note that the number
of optimization variables does not depend on the number of
obstacles. The problem is solved using Sequential Quadratic
Programming (SQP) and is defined as

minimize
s0, x̄2, s4

c1

∫ 1

0

K2(τ)dτ + c2

∫ 1

0

Vτ (τ)dτ+ (26a)

+ c3 max
i∈Kdyn

(∫ 1

0

1

Γi (C(τ))
dτ

)
(26b)

subject to |KH(τ)|max ≤ 1

RHmin

, (26c)

γmin ≤ γ(τ) ≤ γmax, (26d)
Γk (C(τ)) ≥ 1, k = 1 · · ·K, (26e)
s0, x̄2, s4 > 0, (26f)

where c1, c2, c3 are the weighting factors, Kdyn ⊆ {1 · · ·K} is
the subset of indexes identifying moving obstacles, RHmin

is
conservatively computed using max (V0, V2∆Tupd

) and (26e)
evaluates the “prediction sphere” of moving obstacles to make
the optimization problem time-independent. Once (s0, x̄2, s4)
are obtained, the control points in the original reference system
are computed inverting the coordinate transformation of (22).

C. Speed profile computation

The computed Bézier curve C(τ) is still not time dependent.
Therefore, speed and acceleration profiles must be calculated
to obtain C(τ(l(t))), where l(t) =

∫ t

0
V (t)dt is the arc length

of the curve covered at the time t. The speed and acceleration
profiles are defined exploiting the output of the IFDS forward
simulation. This choice allows to avoid further computation
and to obtain a speed profile which does not depend on the
polynomial form of the Bézier curve.
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The IFDS method, in fact, takes into account the dynamicity
of the obstacles and the speed along the streamlines of (16)
varies accordingly. To reproduce this speed trend, the velocity
reached during the IFDS forward simulation at the time t =
2∆Tupd is used to compute a linear acceleration profile and
a quadratic velocity profile to satisfy a(t = 0) = a0, V (t =
0) = V0, V (t = 2∆Tupd) = V2∆Tupd

. Hence

a(t) = a0 +Bt (27)

V (t) = V0 + a0t+
B

2
t2 (28)

B = 2
V2∆Tupd

− V0 − a0(2∆Tupd)

(2∆Tupd)2
, (29)

where t = 0 is the time at the beginning of each TP iteration
and a0, V0 are the initial acceleration and speed of the UAV.
The time interval 2∆Tupd is selected after the tuning of the
proposed strategy to achieve a good compromise between
smoothness of the speed profile and accuracy in following the
speed initially defined by the IFDS. It must be pointed out that
acceleration profile of (27) must be saturated at amin, amax. In
this way, the UAV tries to recreate the speed trend computed in
the IFDS forward simulation compatibly with its constraints.

IV. SIMULATION RESULTS

The proposed method is implemented and tested in a simula-
tion environment using Matlab. The developed TP is executed
iteratively with ∆Tupd = 0.5 s to follow a waypoint-based
path in a complex scenario, characterized by the presence of
both static and dynamic obstacles. The global path is computed
offline and does not avoid dynamic obstacles. In this way, the
TP is fully exploited to perform dynamic threats avoidance
under UAV’s constraints.

The test environment is populated with the obstacles listed
in Tab. I. DO1 and DO2 are dynamic obstacles moving
with constant velocity vk, initially located in xk, yk, zk. The
repulsive coefficient is selected as ρk = 1 for static obstacles,
while dynamic ones are characterized by ρk = 5, λk = 100.

The UAV starts from P = [16, 16, 0.2]T km, with ψ0 =
−135 deg, γ0 = 0 deg, V0 = 400 km

h , a0 = 0 m
s2 . Its

motion is limited by the constraints nmax = 6, |γ(t)| ≤
60 deg, 200 km

h ≤ V (t) ≤ 1000 km
h , |a(t)| ≤ 5 m

s2 . The last
waypoint of the global path is located in Pend = [1, 1, 1]T km
and the desired cruise speed along the path is Vc = 450 km

h .
Finally, the weighting factors are selected as c1 = 0.1 ·
0.2, c2 = 1 · 0.4, c3 = 5 · 0.4, where the first term of each
factor balances the order of magnitude, while the second term
sets the relative weights.

A. Trajectory planning with static and moving obstacles

Simulation results are shown in Fig. 4, where red spheres
and orange triangles are respectively the positions of dynamic
obstacles and UAV, sampled every 25 s.

First of all, the proposed algorithm follows the waypoint-
based path (green line and stars) with a smooth motion. The
resulting trajectory does not cross exactly each waypoint.
However, this behavior is required to follow the global path
smoothly, while avoiding obstacles and satisfying constraints.

TABLE I
OBSTACLES FEATURES

ID xk, yk, zk ak, bk, ck pk, qk, rk
vk

[km] [km] [km/h]

SO1 10, 12, 0 2, 2, 2 1, 1, 1 [0, 0, 0]T

SO2 12, 9, 0 1.5, 2, 1.5 2, 2, 2 [0, 0, 0]T

SO3 9, 7, 0 2, 2, 3 1, 1, 0.5 [0, 0, 0]T

SO4 3.5, 6, 0 2.5, 2.5, 4 1, 1, 0.5 [0, 0, 0]T

SO5 6, 3, 0 2, 2, 5 1, 1, 0.5 [0, 0, 0]T

DO1 16, 8, 0.8 0.5, 0.5, 0.5 1, 1, 1 [−360, 720, 36]T

DO2 3, 14, 1.5 0.5, 0.5, 0.5 1, 1, 1 [132,−227, 0]T

Y [km]
Z 

[k
m

]

X [km]

Fig. 4. Simulation results of the proposed trajectory planner.
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Fig. 5. In blue speed, horizontal curvature and flight path angle over time.
In red the constraints of each quantity.

Furthermore, it is possible to notice that the reference global
path slightly intersects the static obstacle SO3, which means
the local goal point Pg temporarily penetrates inside the
obstacle. Nevertheless, the planned trajectory correctly avoids
the object, since obstacle impenetrability feature of IFDS



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2022

0 25 50 75 100 125 150

Time [s]

0

2

4

6

8

10

12

14

D
is

ta
n
c
e
 f
ro

m
 o

b
s
ta

c
le

 [
k
m

]

UAV-DO1

UAV-DO2

UAV-SO1

UAV-SO2

UAV-SO3

UAV-SO4

UAV-SO5

Fig. 6. Distance between the UAV and the obstacles during the simulation.

remains valid even if the goal point is placed inside the volume
of an obstacle. As for moving obstacles, the TP leads the UAV
to pass behind DO1, which is moving faster, and in front of
DO2, which is much slower. This behaviour emerges analyzing
Fig. 5, too. Initially, both V and γ are increased to reach Vc and
align with the global path. Afterwards, the UAV slows down
to make a tight curve and a quick descent to pass behind DO1
(around T = 20 s), and, then, accelerate overcoming the first
three static obstacles. At T = 65 s, UAV decelerates again
while approaching DO2, but, then, accelerates at T = 80 s to
pass in front of it. In the end, once the UAV has surpassed the
two final conic obstacles at T = 120 s, it slows down again
to return to Vc.

Finally, the distance between the UAV and the obstacles
is reported in Fig. 6. Focusing on the dynamic objects, the
minimum distance w.r.t. DO1 is greater than the one w.r.t.
DO2 since DO2 is moving in a crowded area of the scenario,
hence, the UAV has less space to perform the avoidance.

In this simulation the algorithm has been iterated more than
290 times on a computer with Intel Core i7-8750H (2.20 GHz)
and 16 GB RAM. Maximum and mean computation time
for a single iteration (0.255 s and 0.163 s) are smaller than
trajectory execution time ∆Tupd = 0.5 s, hence the algorithm
is suitable for online computation.

V. CONCLUSIONS

In this work, we propose a trajectory planning algorithm
to face the path following problem for fixed-wing UAVs.
The algorithm efficiently combines IFDS and quartic Bézier
curves optimization to generate smooth and safe trajectories.
First, the IFDS efficiently computes an initial estimate of
local trajectory and the speed profile necessary to safely avoid
dynamic obstacles. Even if IFDS suffers from local minima,
this is not a problem in our application, since it is used to
follow a given global path. Then, the proposed 3D Bézier
curves optimization method returns an optimal and feasible
local trajectory using a fixed number of optimization variables
and requiring little computation time.

As result, the proposed method is able to compute a local
trajectory, periodically updated to deal with dynamic sce-
narios. Simulation results corroborate the proposed trajectory
planning strategy in a complex scenario in which the UAV
safely reaches a target position avoiding obstacles and satis-
fying kinematic constraints, even considering the correlation
between curvature and flight speed.

Future works will include a better management of the
velocity profile to reduce excessive speed variations when
avoiding dynamic obstacles.
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