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AAS 21-685

SLIDING-MODE OBSERVER-BASED NAVIGATION ALGORITHMS
AND ARTIFICIAL POTENTIAL FIELDS FOR SPACE PROXIMITY

OPERATIONS

Davide Celestini1, Martina Ciavola1 and Elisa Capello2 *†

This paper proposes Sliding-Mode Observer (SMO) and Artificial Potential Field
(APF) as Navigation and Guidance algorithms for space applications. Both robust
linear first-order and Super-Twisting SMOs are designed for performing sensor fil-
tering measurements. Optical cameras and accelerometers are considered as sen-
sors. A comparison with an Extended Kalman Filter (EFK) is proposed, in order
to show the effectiveness of SMOs as alternative navigation algorithms. Harmonic
3D functions for the APF algorithm are proposed to manage issues related to the
presence of local minima. Moreover, the repulsive field is changed for includ-
ing moving targets and obstacles. Finally, the effectiveness of these algorithms is
shown through numerical simulations, achieving results suitable for autonomous
Rendezvous and Proximity Operations.

INTRODUCTION

During the design and the implementation of on-board space software, uncertainties, disturbances
or measurement signals corrupted by noise usually arise and filtering approaches based on Kalman
filter are implemented on-board. These filtering approaches can be easily found in literature since
they are considered very effective, computationally efficient and they guarantee a simple on-line
implementation.1, 2 In this paper, Sliding-Mode based Observers (SMO) are designed for estimating
positions and linear velocities during a Space Proximity Operation, in order to perform sensor data
fusion. Moreover, a first-order and a second order Super-Twisting (STW) SMOs are considered to
automatically select the best estimation techniques in accordance to the available sensors.

SMO can be considered as an alternative to the problem of observation of perturbed systems and
different applications have already been studied, not only in space environment.3–5 In Reference 6
a SMO has been implemented to achieve sensorless drive and estimate position and velocity of a
permanent magnet synchronous motor. As detailed in this work, the use of a SMO-based strategy
appears to be more robust than classical methods, when parametric variations and uncertainties are
included. Another application has been studied in the observation of a freeway traffic system in
Reference 7. In this study, the estimation of traffic state variables, like density or speed, has been
studied with the second order Super-Twisting (STW) SMO method also compared with Extended
Kalman Filter (EKF). The results show robustness, stability and convergence to the solution in finite
time. In space applications, a comparison between high-order SMO and EKF has been proposed in
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Reference 8 via Montecarlo simulations in the homing missile guidance system. The combination
of high-order SMO and Proportional Navigation (PN) algorithm show robustness against noise and
performance comparable to the optimal EKF law. Furthermore, different methods for spacecraft
attitude and rate estimation using variable structure systems theory are presented in Reference 9.
In this work, both a linearized decoupled SMO and a low-pass filtering of SMO are described,
showing the estimation even in presence of large quantities of uncertainty in the inertia matrix and
disturbance in the input torques.

The estimation algorithms are usually combined with guidance or control algorithms to perform
autonomous rendezvous maneuver and proximity operations of two spacecraft in presence of ob-
stacles. In the aerospace field, the rendezvous maneuver consists in a series of operations between
two spacecraft, a passive Target and an active Chaser.10 An analytical method and a computational-
efficient algorithm is proposed in this paper to reach the Target in a safe way and to rapidly adjust
the trajectory when the Chaser is close to an obstacle. Artificial Potential Field (APF) algorithms
offer interesting features, such as online collision-free paths computation capabilities. The intu-
itive founding idea of the algorithm is to build an artificial potential field as sum of different fields
with global maximum and minimum points to represent respectively obstacles and goal points. In
such way, a robot moving inside the field would be naturally attracted towards the goal point by
the attractive field, and away from obstacles by the repulsive one. The effectiveness of this method
has already been shown in other works, including robotic and space applications.11–14 However,
one of the algorithm main issues is the (potential) presence of local minima, which could cause an
unplanned stop of the Chaser motion. In literature, some solutions are proposed to overcome this
issue.15, 16

In our work, the main key features are: (i) a method for performing data fusion with different
SMOs, (ii) their combination and management in the navigation algorithms, to select the best strat-
egy in accordance to the available sensors, and (iii) a guidance algorithm based on APF harmonic
3D function. A mathematical proof of the local minimum avoidance is provided thanks to the defi-
nition of harmonic functions. Some changes in the APF repulsive and attractive fields are proposed
to deal with moving targets and obstacles, starting from Reference 17 and 14.

The paper is organized as follows. The second section introduces the system dynamics. In the
third section Sliding-Mode based Observer algorithms are presented. In the fourth section the APF
technique is introduced, with a focus on the contribution of this paper, while the fifth section presents
the Sliding-Mode Controller selected to track the APF streamlines. Simulation results are presented
in the sixth section. Finally, conclusions are drawn in the last section.

SPACECRAFT DYNAMICS

The mathematical model used to describe relative orbital dynamics of the Chaser spacecraft (S/C)
w.r.t. a Target moving on a circular orbit during Proximity Operations consists of the set of linear
differential equations shown in Reference 10 and known as Hill’s equations.

ẍ− 2ωż =
1

mc
Fx

ÿ + 2ω2y =
1

mc
Fy

z̈− 3ω2z + 2ωẋ =
1

mc
Fz

(1)
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Figure 1: Target LVLH frame.13

where r = [x, y, z]T ∈ R3 represents the Chaser relative position vector in the Target Local Ver-
tical/Local Horizontal (LVLH) frame, ω is the orbital angular velocity of the reference LVLH
frame (centered in the Target), v = [ẋ, ẏ, ż]T = [vx, vy, vz]

T ∈ R3 is the Chaser velocity vec-
tor and mc is the Chaser mass. Vbar, Hbar, Rbar are the axes of the LVLH frame, as in Figure 1.
F = [Fx, Fy, Fz]

T ∈ R3 represents the forces acting on the Chaser.

This linear set of equations can be easily rewritten in the classic state-space representation as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2)

with x ∈ Rn, u ∈ Rm and y ∈ Rp the state, the input and the controlled output vectors, while
A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n represent the state, control and output matrices. The
linearized model can be easily obtained from Eq. (1).

SLIDING MODE OBSERVERS FOR NAVIGATION

As briefly explained before, SMO observers are a valid alternative as filtration strategies with
respect to Kalman filtering, for two main reasons: (i) they guarantee finite-time convergence and
(ii) no knowledge about noise statistics is strictly required. Linear SMOs are simple observers in
which the solution converges in finite time due to the discontinuity introduced by the switching
error injection term. These observers can be easily implemented but they cannot always guarantee
robustness to external disturbances. Moreover, an important drawback is the chattering behaviour,
affected by the update frequency of the algorithms and the parameter tuning. For this reason, a
robust linear SMO with unknown inputs is proposed. Nevertheless, high-order SMOs have high
precision and robust behaviour with respect to parametric uncertainties, hence they can be efficiently
used for state observation. Furthermore, they can be applied for disturbance reconstruction with a
complete or only partial knowledge of the system model. Instead of linear SMO, high-order SMOs
and in particular STW-SMO, are not strongly affected by chattering so they can better estimate the
system states. In this paper two strategies are analyzed: a Linear Robust SMO and a second-order
STW-SMO. Both the observers are detailed in Reference 18 and an analysis of the two algorithms
is shown in the following sections.

Linear Robust SMO

The first algorithm presented is shown in Reference 18 and analyzes the problem of robust state
estimation for systems with bounded matched uncertainties starting from the definition of first-order
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linear observers. Considering the nominal linear system in Eq. (2), it is assumed that C matrix has
full row rank. The first-order observer can be expressed as

˙̂x(t) = Ax̂(t) +Bu(t) +Gnν

ŷ(t) = Cx̂(t)
(3)

where (x̂, ŷ) are the estimates of (x, y) and ν is a discontinuous injection term. Defining the state
and the output estimation errors respectively as e(t) := x̂(t) − x(t) and ey := ŷ(t) − y(t), and
considering ρ as a positive scalar, the term ν is defined as

νi = ρ sign (ey,i), i = 1, 2, . . . , p (4)

and it is designed to be discontinuous with respect to the sliding surface S, to force the trajectories of
e(t) onto S in finite time. The gain matrixGn has the structureGn = [L;−Ip], whereL ∈ R(n−p)×p

is designed by the user, in accordance to the requirements. Thus, the error system is given by

ė(t) = Ae(t) +Gnν (5)

More details of linear observer can be found in Reference 18.

A robust version of this first-order linear SMO is implemented for the space application, in which
bounded uncertainties or disturbances are considered through the known matrix B. Consider the
system

ẋ(t) = Ax(t) +Bu(t) +Bf(t, y, u)

y(t) = Cx(t)
(6)

where f : R+×Rp×Rm 7→ Rm represents combined uncertainties or nonlinearities. The function
is unknown but bounded, so ‖f(t, y, u)‖ ≤ ρ(t, y, u), where ρ(·) are the known bounds. Consider
an observer of the following form

˙̂x(t) = Ax̂(t) +Bu(t)−GCe(t)− P−1CTF T ν, (7)

where e(t) represents the error and can be defined as e(t) = x̂(t)−x(t). The gain matrix G and the
symmetric positive definite matrix P ∈ Rn×n satisfy the Linear Matrix Inequality (LMI) expressed
as

PA0 +AT0 P ≤ 0 (8)

where A0 := A−GC, and also satisfy the structural constraint

PB = (FC)T (9)

with F ∈ Rm×p. The discontinuous scaled unit vector term can now be written as

ν = ρ(t, y, u) sign (FCe(t)). (10)

According to the definition of B starting from Eq. (1), we assume that all the states are measurable,
both positions and velocities, in order to solve the described LMI. Therefore C is the identity matrix
and p = n.
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Super-Twisting SMO

As previously underlined and as for the first-order SMO, the Super-Twisting SMO is a second-
order observer, with finite-time convergence. As stated in Reference 18, considering the eventually
non-linear dynamic system described as

ẋ1(t) = x2(t)

ẋ2(t) = f(t, x1, x2, u) + ξ(t, x1, x2, u)
(11)

where ξ(t, x1, x2, u) is an external disturbance, the Super-Twisting observer has the form

˙̂x1(t) = x̂2(t) + z1

˙̂x2(t) = f(t, x1, x̂2, u) + z2
(12)

where (x̂1, x̂2) are the estimates of the states (x1, x2). z1, z2 are the output error injections written
as

z1 = λ |x1 − x̂1|
1
2 sign (x1 − x̂1)

z2 = α sign (x1 − x̂1)
(13)

with λ, α ∈ R+. Introducing the expressions x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2, the error equations
can be explicated as

˙̃x1 = x̃2 − λ|x̃|
1
2 sign (x̃1)

˙̃x2 = F (t, x1, x2, x̂2)− α sign (x̃1)
(14)

where

F (t, x1, x2, x̂2) = f(t, x1, x2, u)− f(t, x1, x̂2, u)+ (15)

+ ξ(t, x1, x2, u)

Bounded states are required to ensure the solution convergence to the sliding surface. Thus, the
existence of the constant f+ is ensured,

|F (t, x1, x2, x̂2)| ≤ f+ (16)

and it holds for any possible t, x1, x2 and |x̂2| ≤ 2 sup |x2|. The parameters α, λ of the observer

can be selected as α = a1f
+ and λ = a2(f

+)
1
2 , in which usually a1 = 1.1 and a2 = 1.5. Hence,

the convergence of the observer states (x̂1, x̂2) from Eq. (12) and (13) to the system state variables
(x1, x2) occurs in finite time. Moreover, for the proposed observer, the design of the gains α and λ
is based on an estimate of F (t, x1, x2, x̂2, u) and this means that a partial knowledge of the system
dynamics is taken into account.

ARTIFICIAL POTENTIAL FIELDS FOR GUIDANCE

APF founding principle consists of building an attractive potential field Ua, which creates a mo-
tion towards the goal point, while modelling the presence of obstacles as sum of repulsive potential
fields Ur =

∑
Uri , with 1, . . . , Nobs (Nobs is the number of obstacles). The motion is then forced

along the opposite direction of the gradient ∇U = ∇(Ua + Ur) in order to reach the goal avoiding
all the obstacles.
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Classical Artificial Potential Field

The classical APF, as in Reference 13, has a paraboloid and a squared hyperbolic function as the
attractive and repulsive fields, respectively.

Ua(r) =
Ka

2
ηa(r)

2, Uri(r) =
Kr

2

(
1

ηri(r)
− 1

η0

)2

(17)

where ηa(r) = ‖rgoal − r‖ is the distance of the Chaser from the goal point, with rgoal ∈ R3

the position vector of the goal and r ∈ R3 the position vector of the Chaser, obtained by Eq. (1).
Moreover, from Eq. (17), ηri(r) = min∀robsi∈COi

‖robsi − r‖ is the minimum distance between the
Chaser and the obstacles, with COi being the convex set of the ith-obstacle points and robs ∈ R3

being the obstacle position vector, η0 is the maximum influence distance of the obstacles, Ka and
Kr are the attractive and repulsive constants.

Harmonic Artificial Potential Fields

Harmonic APFs are not affected by local minima problem. In this case, both the attractive and
repulsive potential fields must be modelled as harmonic functions, which satisfy the Laplace equa-
tion ∇2U(r) = 0 ∀r ∈ D, where D is the domain of U(r). Some features of harmonic functions
are:

• minimum and maximum principle: the minimum and the maximum of a non constant har-
monic function occur on the domain boundary.

• invariance under linear transformations: linear combinations of harmonic functions are still
harmonic functions.

With these features, regardless of the obstacle number, the total potential field U(r) is free of local
minima. The difference in gradient lines of harmonic and non harmonic fields is shown in Figure 2.
This approach has been already exploited for 2D robotic applications.11, 19, 20 For 3D applications,
the Laplace equation in polar coordinates, as in Reference 19 and neglecting angular terms, is in
n-dimensions

∇2U(r) = Urr +
n− 1

r
Ur (18)

where Urr and Ur are the second and first derivative of the field U w.r.t. the position r, respectively.
Integrating Eq. (18), we have

U(r) =
c1
rn−2

+ c2 (19)

where c1 and c2 are positive constants. The hyperbolic field is, therefore, a 3D harmonic function.
Starting from Reference 14, the proposed local minima-free APF algorithm is modified and built
using harmonic attractive and repulsive fields as

Ua(r) = − 1

ηa(r)

Uri(r) =

qi
(

1
ηri (r)

− 1
η0

)
if ηri ≤ η0

0 otherwise

(20)

6



-100 -80 -60 -40 -20 0 20

X [m]

-30

-20

-10

0

10

20

30

Y
 [
m

]
(a) Classical APF

-100 -80 -60 -40 -20 0 20

X [m]

-30

-20

-10

0

10

20

30

Y
 [
m

]

(b) Harmonic APF

Figure 2: Example of gradient lines of APF comparison

where qi =
(

Ri
Ri+Di

)2
is the gain of the repulsive field, η0 is the maximum influence distance of the

obstacles. Ri = Rs,i + Rc, with Rs,i is the safety radius of the obstacles, i = 1, . . . , Nobs , and Rc
is the radius of the volumetric sphere containing the Chaser. Di is the distance between the obstacle
and the goal. The gradient of the attractive and repulsive fields is

∇r (Ua) = − nCG
ηa(r)2

, ∇r (Uri) = qi
nCOi

ηri(r)
2

(21)

where nCG =
rgoal−r
‖rgoal−r‖ and nCOi =

robsi−r
‖robsi−r‖

are the unit vectors pointing from the Chaser towards

the goal and the ith-obstacle, respectively.17 The desired velocity is

vdes =

{
− ∇r(U(r))
‖∇r(U(r))‖vmod if ‖∇r (U(r))‖ 6= 0

0 otherwise
(22)

where vmod is the desired velocity modulus which should increase with the distance from the goal
and becomes zero when the goal is reached.

Moving obstacles

In case of moving obstacles, the relative velocity between the Chaser and the obstacle is included
in the algorithm. Starting from Reference 14, 17, instead of a static radius, a dynamic radius is
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considered in the definition of the repulsive gain q.

Rdyni
(r, v) = Rs,i +Rc +

vRi(r, v)2

2εamax
(23)

where vRi(r, v) = (v − vobsi)nCOi is the component of the relative velocity of the Chaser w.r.t. the
ith-obstacle along the unit vector nCOi , ε is a safety factor, amax = Fmax√

2mc
is the maximum control

acceleration with Fmax the maximum force provided by the actuation system. The last term of Eq.

(23),
vRi

(r,v)2

2εamax
, is actually the distance required to stop the Chaser motion w.r.t. the obstacle. The

following terms are added to the repulsive gradient already formulated in Eq. (21).

∇r (Uri) =

∇r(qi)︷ ︸︸ ︷
−2

Rdyni
Di

(Rdyni
+Di)3

vRivR⊥i
nCO⊥i

ηriamax

(
1

ηri
− 1

η0

)
∇v (Uri) = 2

Rdyni
Di

(Rdyni
+Di)3

vRi

amax
nCOi︸ ︷︷ ︸

∇v(qi)

(
1

ηri
− 1

η0

) (24)

where vR⊥i
nCO⊥i

is the component of the Chaser relative velocity w.r.t. the ith-obstacle perpen-
dicular to the unit vector nCOi . The additional gradient terms reported in Eq. (24) reinforce the
repulsive effect in the−nCOi direction and add a steering effect along nCO⊥i

to circumnavigate the
object. Further information about how to obtain such terms can be found in Reference 17.

The approach previously described can be applied even with fixed obstacles to augment the safety
of the maneuver. In this case,Rdyni

is considered only in the definition of the repulsive gain qi, while
the repulsive gradient terms introduced in Eq. (24) are neglected in order not to drive the Chaser too
far away from the obstacle.

Moving targets

In Reference 17, the attractive field takes into account also the relative velocity of the Chaser
w.r.t. the goal, to make the robot follow a desired trajectory. Instead, in our work, the modulus vmod
of the desired speed in Eq. (22) is simply evaluated as

vmod(r, t) = ‖vgoal(t)‖+ ∆vplusηa(r) (25)

where ∆vplus is the magnitude of the relative velocity of the Chaser w.r.t. the desired goal when
ηa(r) = ‖rgoal − r‖ = 1 m. The attractive field attracts the Chaser towards the moving goal and
the higher the relative distance is, the faster the spacecraft is w.r.t. the target point. So, the Chaser
is able to reach the goal with zero relative velocity.

Moreover, in presence of both obstacles and moving targets, the attractive gradient modulus must
be resized before summing it with the repulsive one when the distance Di between the goal point
and the ith-obstacle is less than Rdyni

. Otherwise, the Chaser is guided by the goal point inside the
safety sphere of the obstacle. Thus, the attractive gradient w.r.t. position is resized as

∇r(Ua) =
∇r(Ua)
‖∇r(Ua)‖

‖∇r(Uri)‖. (26)

where ‖∇r(Ua)‖ 6= 0 ∀r ∈ DUa since Ua(r) is an harmonic function.
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SLIDING MODE TECHNIQUE FOR CONTROL

In order to follow the desired velocity vector provided by the harmonic APF algorithm, a stan-
dard first-order Sliding Mode Controller (SMC) is selected. Thanks to its ability to reduce high
dimensional problems into sub-tasks of lower dimensionality, the SMC allows true decoupling of
the tasks ”design of the potential field” and ” tracking the gradient”, being theoretically able to track
any smooth artificial vectors field. The control law is described as13, 14

Fthr = −Fmax sign (v̂ − vdes) , (27)

where v̂, vdes ∈ R3 represent respectively the velocity estimated by the navigation algorithm and
the desired velocity vector computed by the APF. This formulation forces a sliding motion onto
the sliding surface S = {v̂ ∈ R3 : v̂ − vdes = 0} and reproduces with good approximation the
ON/OFF behaviour of the actuation system (i.e. thrusters with maximum thrust Fmax). Constant
application of the SMC, however, would lead to an excessive propellant consumption, due to the
switching behavior characterizing the sign function once convergence is achieved. For this reason,
the control law expressed in Eq. (27) is activated following the law

Fthr =

{
−Fmax sign (v̂ − vdes) if ‖v̂ − vdes‖ ≥ ∆vact

0 otherwise
(28)

where ∆vact is a parameter setting the maximum velocity discrepancy accepted and should be
chosen following a trade-off process. High values of ∆vact, in fact, would lead to great reduction of
fuel consumption but would strongly deteriorate the SMC ability to track the APF velocity vectors
field.

SIMULATION RESULTS

In this section the results of numerical simulations are shown. First, the analyzed maneuver is
described, to clearly understand the initial conditions in terms of positions and velocities. Second,
the navigation algorithm performance are analyzed. The performance of these algorithms are tested
including only the Hill’s Equations. Finally, we analyze the APF behavior when coupled with the
standard SMC previously described to form a closed-loop and operate with moving obstacles.

Maneuver description and Chaser configuration

The navigation and guidance algorithms are tested in simulations in a rendezvous maneuver,
including the closing and final approach phases. The Target is orbiting on a 400 km-height orbit.
The closing phase, starting from about -500 m and ending at -100 m on Vbar, consists of two
consecutive radial boosts, for safety aspects.10 Lastly, the final approach consists of a straight line
towards the Target starting from about -100 m on Vbar and ending 4 m behind the Target. Obstacles
are taken into account in both phases.

For the Chaser configuration, a 1500 kg-satellite (with Rc = 2 m) equipped as reported in Table
1 and 2 is considered. The spacecraft Body frame is considered to be aligned with the LVLH
frame during the entire maneuver and two thrusters are simultaneously switched on along each axis.

Navigation algorithm performance

The performance of both observers are tested in the first minutes of simulation for the radial boost
phase. The Chaser starts at r = [−500, 0, 0]T m with zero velocity in the LVLH frame. The initial

9



Table 1: Thrusters features

Cluster Thruster type Maximum Thrust Fmax

12 thrusters (2 along Thermochemical 20 N
each axis direction)

Table 2: Sensors features

Sensor Sample rate Noise

Optical camera 10 Hz 1% of the range -
White-Gaussian

Acceleromter 100 Hz 4 mg -
White-Gaussian

conditions of the observers at t = 0 s are r̂(0) = [−510, 20,−10]T m and v̂(0) = [Vx,0, 0, 0]T m/s,
where Vx,0 = 3

2ω∆ẑ, with ∆ẑ = −10 m difference between the Chaser and Target orbits. Note that
in the simulated maneuver, the Chaser starts at the same orbit of the Target, instead, in the observer
initial conditions, we assume a different initial orbit to evaluate the estimation performance of the
observer. In this section, navigation algorithms are executed at a frequency of 10 Hz to test their
performance at low operational frequencies.

Firstly, linear robust SMO results are shown in Figure 3. The simulation parameters of the ob-
server are selected as ρ = 22,G = diag(0.005, 0.005, 0.005, 0.5, 0.5, 0.5), P = diag(5, 5, 5, 746.5,
746.5, 746.5), F = [03×3, 0.5 · I3×3], i.e. the algorithm is able to withstand an unknown input up
to more than 20 N. As stated before, the first-order SMO requires both position and velocity mea-
surements as inputs. The position is provided by the optical camera sensor, instead the velocity is
obtained by the combination (i.e. data fusion) of the camera and the accelerometer measurements.

The STW-SMO algorithm has the same initial conditions of the linear observer, however the
observation of the variables can be performed with a partial set of information, requiring just the
knowledge of position measurements. Since both the velocity and position vectors from the ac-
celerometers are obtained by integration, a measurement drift can be observed. For this reason, the
close range camera position is used to reset the error at each second.

Moreover, we set f+ = 1, α = a1f
+ and λ = a2, (f

+)
1
2 , with a1 = 1.1 and a2 = 1.5. Additive

White Gaussian Noise (AWGN) of both accelerometer and close range camera measurements are
included in the simulations. The simulation results are shown in Figure 4.

If the results of both Figure 3 and 4 are analyzed, although both observers converge in finite time,
the STW-SMO achieves the convergence faster than the linear SMO. In particular, the velocity es-
timation requires about 30 s for the first-order observer and about 5 s for the second-order one.
Moreover, smaller is the initial estimate error, faster is the achievement of the convergence. Ana-
lyzing the accuracy of both algorithms, Figure 5 shows the position residual error of both observers.
The simulation time is selected to analyze the behaviour once both the observers have reached the
convergence. A residual error of about 10−4 m is evaluated for the STW-SMO, compared with 10−1

m of the first-order SMO. However, as shown in Figure 6, the velocity residual error for the first-
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Figure 3: Simulation results of the 1st order-SMO variables estimation

order SMO is less affected by chattering behavior. For this reason, a combination of both observers
is proposed: (i) the position vector can be estimated by SWT-SMO observer and (ii) the velocity
vector from the first-order SMO.

Remark 1 From Figure 5 and 6 it is possible to notice that the first-order robust SMO is charac-
terized by a lower frequency chattering behavior. This is caused by the presence of both linear and
discontinuous feedback correction term in its formulation, Eq. (7).
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Figure 4: Simulation Results of the STW-SMO variables estimation

Remark 2 The accuracy of both observers increases when the Chaser is approaching the Target,
due to the reduction of the camera measurement noise, achieving an accuracy on the velocity esti-
mates of about 10−3 m/s in the last 100 m.

Remark 3 Even if the STW-SMO for the velocity estimation is less accurate than the first-order
SMO, if some measurements are not available, the second-order algorithm is able to estimate both
position and velocity vectors. Instead, the linear robust SMO needs the measurement of both r̂ and
v̂ variables for estimation and C = Ip×n with p = n is required in order to solve the LMI in Eq.
(8), (9) and (10). Thus, if a failure occurs, only STW-SMO is able to estimate both variables.

Finally, a comparison with an Extended Kalman Filter (EKF) is proposed. Note that the EKF is
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Figure 5: Position residual errors of Linear Robust SMO and STW-SMO

used for linear or linearized processes and measurements systems. In our case, the system in Eq. (2)
is used for the filter definition and to obtain an optimal estimation of the system states. Initial value
tuning is one of the key problems of EKF. Thus, EKF is not robust w.r.t. the external disturbances
and measurement noise, and covariance matrices are required for accurate evaluation of noise. The
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Figure 6: Velocity residual errors of Linear Robust SMO and STW-SMO
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Figure 7: Comparison between STW-SMO and EKF in position observation

comparison between the two algorithms is performed at a frequency of 10 Hz and with the same
initial conditions. As in Figure 7, though EKF is an effective and well known technique, STW-SMO
can be a valid alternative even at low operational frequencies and even considering the chattering
drawback.

Closed-loop GNC Simulation Results

In this section, the closed-loop GNC system in Figure 8 is considered in which: (i) the dy-
namics is based on Hill’s equations as in Eq. (1) and from the sensor block it is possible to get
the measured state, with a White Gaussian Noise introduced in the analysis, in terms of position
rmeas = [xmeas, ymeas, zmeas]

T and velocity vmeas = [vxmeas , vymeas , vzmeas ]
T components, (ii)

the navigation block, in which linear robust SMO and STW-SMO are combined as previously ex-
plained, is able to estimate both correct position and velocity of the Chaser, (iii) the guidance al-
gorithm is the harmonic APF discussed in previous sections, which allows to follow the desired
trajectory while performing obstacle avoidance, and (iv) the control function is executed by the the
first-order SMC (discontinuously activated with ∆vact = 0.03 m/s during the closing phase and
∆vact = 0.005 m/s in the final approach), which provides the value of thrust needed to accom-

Figure 8: Closed-loop GNC scheme
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plish the maneuver described in the ”Maneuver description and Chaser configuration” subsection.
This value represents the input variable u ∈ Rm in the state-space formulation. In order to test
the robustness of the combined SMOs, only half of the thrust magnitude information is provided
to the navigation block, artificially creating an uncertainty in the system. Moreover, to show the
effectiveness of the APF algorithm in presence of obstacles, ellipsoid obstacles (physical semi-axes
5, 2.5, 2.5 m) are included in the simulation environment. The Hill dynamics and observer initial
conditions are selected as

r(0) = [−520; 20; 10] m, v(0) =

[
3

2
ω∆z; 0; 0

]
m

s

r̂(0) = [−500; 0; 0] m, v̂(0) = [0; 0; 0]
m

s

(29)

to simulate position errors due to previous rendezvous phases, not included here. Navigation algo-
rithms are executed at 100 Hz, while Guidance and Control ones at 10 Hz. The Chaser encounters
two obstacles during the closing phase, the first one moving near the end of the first radial boost
and the second fixed in the middle of the second maneuver. The safety radius considered during
this phase is Rs = 10 m. In the final approach, instead, four fixed obstacles with safety radius of
Rs = 5 m are located at x = −50 m and y = ±7.5 m, two of them placed at z = 10 m, the others
at z = −5 m. Note that this configuration is selected since, with classical APF, local minima should
be found. Instead, the Chaser is able to perform the maneuver thanks to harmonic APF functions.
Simulations results are shown in Figure 9.

Lastly, Figure 10 shows examples of different paths the Chaser could follow to avoid the final
four obstacles, clearly showing a three-dimensional saddle point. So, different trajectories can be
followed by the Chaser, without encountering local minima and avoiding the obstacles.

CONCLUSIONS

In this paper both Navigation and Guidance algorithms have been introduced, testing their ef-
fectiveness in space missions applications. As navigation algorithms, two Sliding Mode Observers
(SMO) are proposed, for the estimation of the positions and velocities. Both the proposed SMOs
have peculiar features and the combination of these two algorithms is shown to be robust and ef-
fective for the selected maneuver. Moreover, a comparison with Extended Kalman Filter (EFK)
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Figure 10: Possible paths to avoid a group of obstacles

shows that SMO algorithms represent valid alternatives. As Guidance algorithms, harmonic 3D
Artificial Potential Field (APF) functions are designed to overcome the local minima problem, in-
cluding moving obstacles and targets. The method used for the definition of the dynamic radius of
the obstacles and of the repulsive gain includes both the Chaser and either moving or fixed convex
obstacles. The combination of the proposed Navigation and Guidance algorithms has shown oper-
ational effectiveness, achieving a level of accuracy suitable for rendezvous maneuvers. Finally, a
closed-loop maneuver with a discontinuously activated Sliding Mode Controller (SMC) shows the
effectiveness and robustness of the proposed algorithm combination, including the typical actuation
system behaviour.
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