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Abstract— The rapid increases in data-intensive applications 

demand for more powerful parallel computing systems capable of 

parallel processing a large amount of data more efficiently and 

effectively. While GPU-based systems are commonly used in such 

parallel processing, the exponentially rising data volume can easily 

saturate the capacity of the largest possible GPU processor. One 

possible solution is to exploit multi-GPU systems. In a multi-GPU 

system, the main bottleneck is the interconnect, which is currently 

based on PCIe or NVLink technologies. In this study, we propose 

to optically interconnect multiple GPUs using Flex-LIONS, an 

optical all-to-all reconfigurable interconnect. By exploiting the 

multiple free spectral ranges (FSRs) of Flex-LIONS, it is possible 

to adapt (or steer) the inter-GPU connectivity to the traffic 

demands by reconfiguring the optical connectivity of one FSR 

while maintaining fixed all-to-all connectivity of another FSR. 

Simulation results show the benefits of the proposed 

reconfigurable bandwidth-steering interconnect solution under 

various traffic patterns of different applications. Execution time 

reductions by up to 5 have been demonstrated in this study 

including two applications of convolution and maxpooling. 

 

Index Terms— Silicon photonics, Optical Switching, Optical 

Reconfiguration, Multi-GPU systems 

 

I. INTRODUCTION 

oday’s graphic processing units (GPUs) can support up to 

130 TFLOPS[1] and the GPUs are widely used as 

accelerators in computing systems for a variety of 

applications from high-performance computing (HPC) 

applications (such as HPCG, FFT, and so on), machine learning 

(ML), and graph workloads. In an ideal balanced system with 1 

Byte/FLOP, a 130 TFLOPS computing would require a 130 

TB/s or ~1Pb/s interconnection bandwidth. As such 

applications drive the rapid increases in the data volume and in 

processing complexity, even a single GPU processor with 1000 

cores cannot provide sufficient processing power. A multi-GPU 
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approach could support higher processing throughput and more 

flexibility in managing the processing resources. 

 GPUs can be scaled either by increasing the number of 

computing units through a larger single node (scaled-up) [2], or 

they can scale through a multi-node scenario (scaled-out) [3].  

In a scaled-up approach the resources increased by adding more 

computing units (CUs) within a monolithic single die GPU 

design. This design is particularly useful for applications with a 

high degree of parallelism. However, even with scalable 

applications, increasing the number of CUs beyond a certain 

number is impossible due to the slowdown in transistor scaling 

[4] and the limited maximum die size [5]. 

In scaled-out approach, instead of increasing the die size in a 

single GPU, multiple GPUs are interconnected to create a 

multi-GPU system. Scaled-out multi-GPU platforms have 

higher offerings in terms of compute power, memory capacity, 

and memory bandwidth.  

In recent years popular GPU vendors such as NVIDIA and 

AMD have come up with their multi-GPU solutions. AMD 

Radeon R9 295X2 connects two AMD Radeon R9 Series GPUs 

with Hyper transport link technology, which is a direct point-

to-point link with 3.2 GB/s bandwidth. NVIDIA DGX-1 upon 

release, had 8 Tesla P100 [6][7] GPUs and 2 Xeon processors 

each with 20 cores, interconnected through ×16 PCI-e 3.0. 

Within a year, NVIDIA provided the option of using Tesla 

V100 [8] within DGX-1 systems to make use of the 

performance improvements across two generations (7.8 

TFLOPS in V100 compared to 5.3 TFLOPS in P100, double 

precision in a single chip). In DGX-1 eight NVIDIA Tesla p100 

or Tesla v100 cores connected through NVLink and Hybrid 

cube Mesh topology. NVIDIA DGX-2 connects 16 NVIDIA 

Tesla v100 through NVLink and 12 NVSwitches. NVLink can 

provide 25 GB/s bandwidth in each direction. In both DGX-1 

and DGX-2, there is not a direct connection between all the 

GPUs and some of the communications are through additional 

hop (through another GPU or two NVSwitches).  
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One of the major challenges in the scalability of multi-GPU 

platforms is to provide a scalable and high bandwidth-density 

interconnect. Due to the nature of the execution in the 

workloads (i.e.  utilizing kernels for different tasks), there are 

spatial and temporal bursts in their communication patterns[9]. 

These traffic bursts create phases in the workloads where there 

are hotspot links in the different locations of the network. There 

have been several past studies that decreased the traffic on the 

interconnect and therefore improve the performance of the 

whole system [2], [10]. However, having a reconfigurable 

network that can adapt to these phases could significantly 

improve the performance in terms of latency, execution time, 

and energy efficiency. While today’s electronic switches and 

optical fibers are unable to reconfigure and have a fixed 

topology, there has been recent work in SiPh integrated 

reconfigurable wavelength routing and space switching that 

allows for bandwidth reconfiguration [11]–[14]. 

Another challenge in these multi-GPU platforms is the non-

uniform memory architecture (NUMA) nature of these systems. 

The NUMA effect increases the programming complexity and 

add to communication latency, especially with multi-hop 

communication between two remote nodes. This multi-hop 

communication among GPUs is a shortcoming in multi-GPU 

systems. As the size of the workloads starts to increase, 

mitigating the NUMA effect would be more challenging. 

Therefore, having an all-to-all connection can significantly 

improve the data movement latency and energy. Due to the 

limited numbers of the NVLink and PCIe ports in the GPUs, 

different generations of NVIDIA’s multi-GPU systems are 

using hierarchical networks to mimic the all-to-all connection. 

This design raises multiple challenges, with one being the use 

of multiple crossbars to generate an all-to-all connection. As 

multi-GPU systems scale, this hierarchical deign would result 

in significant latency, area, and power overheads.  

To solve the above issues, this paper, extends the work in [15] 

and propose to use a silicon photonic flexible low-latency 

interconnect optical network switch (Flex-LIONS) as a scalable 

and reconfigurable all-to-all photonic interconnect architecture 

for multi-GPU systems.  

In particular, we propose to exploit multiple free spectral ranges 

in Flex-LIONS (multi-FSR Flex-LIONS) [16], [17]. In multi-

FSR Flex-LIONS, the bandwidth between two nodes is 

increased by leveraging multiple FSRs. One FSR maintains 

minimum-diameter all-to-all connectivity between all the 

nodes, while the other FSRs can be used to increase the 

bandwidth between the hotspot links. Using multi-FSR Flex-

LIONS enables us to have a multi-GPU computing system with 

reconfigurable all-to-all interconnects.  

The remainder of this paper is organized as follows. Section II 

presents the architecture and working principle of Flex-LIONs 

and multi-FSR Flex-LIONS and reports the device and system 

results presents in [15]. Section III introduces the architecture 

of the proposed reconfigurable multi-GPU system. Section IV 

and V report on the performance evaluation methodology and 

results for the proposed system, demonstrating the benefits of 

adapting the inter-GPU interconnection according to the traffic 

Figure 1: (a) Two-FSR Flex-LIONS architecture with AWGR, MRR add-drop filters and Beneš MZS network. (b) Microscope image of the 

fabricated 8 × 8 SiPh Flex-LIONS (N = 8, b = 3) chip. (c) Photograph of the integrated Flex-LIONS module. (d) Wavelength routing table for 

All-to-All. (e) Wavelength routing table in FSR1 after reconfiguration. 
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profiles and communication phases of specific applications. 

Section VI concludes the paper summarizing the main results 

and future work.  

 

II. MULTI-FSR FLEX-LIONS 

A. Architecture 

   Flex-LIONS is a bandwidth-reconfigurable all-to-all optical 

switching fabric that contains an arrayed waveguide grating 

router (AWGR), microring resonator (MRR) add-drop filters, 

and Mach-Zehnder (MZ) switching networks as shown in 

Figure 1(a) [7][9][11][12]. For an N×N Flex-LIONS, an N×N 

arrayed waveguide grating router (AWGR) is used to provide 

all-to-all interconnection based on the wavelength-routing 

function. b microring resonator (MRR) drop filters at each input 

port of the AWGR are used to drop b wavelength division 

multiplexing (WDM) channels for bandwidth reconfiguration. 

The dropped channels are spatially switched and added to the 

desired output port by an N×N broadband Beneš Mach-Zehnder 

switch (MZS) network and b MRR add filters. In this case, the 

bandwidth between certain node pairs can be increased by a 

factor of b. 

As proposed and demonstrated in [12], multiple FSRs are 

leveraged in Flex-LIONS architecture to maintain the all-to-all 

interconnectivity before and after bandwidth reconfiguration. 

Before reconfiguration, WDM wavelengths in two FSRs (FSR0 

and FSR1) of the AWGR are both used for all-to-all 

communication due to the cyclicity of the AWGR. For 

bandwidth steering, only wavelengths in FSR1 are switched by 

MRR add-drop filters and MZS networks while wavelengths in 

FSR0 are untouched. In this case, the all-to-all interconnectivity 

is always maintained through FSR0 which prevents 

unconnected node pairs after reconfiguration. 

In the work presented in [11] and [12], a multi-FSR 8×8 

integrated SiPh Flex-LIONS module (N = 8, b = 3) is 

experimentally demonstrated for bandwidth-reconfigurable all-

to-all optical interconnects. The Flex-LIONS chip is designed 

and fabricated on a Si/SiN multi-layer platform as shown in 

Figure 1(b). The adjacent channel and non-be <−18 dB and 

<−28 dB which enables error-free all-to-all interconnects under 

the worst-case scenario. The characterized switching speed of 

the thermally-tuned MRR add-drop filters and the MZSs are 

~10 μs. As shown in Figure 1(c), the integrated Flex-LIONS 

module is packaged on a co-designed printed circuit board 

(PCB) for electrical fan-out. Two 16-channel 127-μm-pitch 

polarization-maintaining (PM) fiber arrays are used for optical 

input and output. System testing results demonstrate bandwidth 

reconfiguration from 50 Gb/s to 125 Gb/s between selected 

pairs of nodes while error-free all-to-all optical interconnects 

are maintained. The insertion loss of the AWGR channels and 

reconfigured channels are <3.5 dB and <8.4 dB, respectively. 

The worst-case crosstalk penalty is measured to be 5.3dB.  

Figure 1(d-e) show the wavelength routing table for multi-

FSR Flex-LIONS. Figure 1(d) demonstrates the allocation 

before reconfiguration (Both FSRs are maintaining the all-to-

all connection). Figure 1(e) depicts the allocation after 

reconfiguration, FSR1 is used the steer the bandwidth and FSR0 

is used for all-to-all connection. 

 

B. Experimental Results 

  Figure 2(a) shows the experimental setup used to characterize 

the fabricated chip. An 8-channel 200-GHz-spacing WDM 

signal was generated by using eight small form pluggable (SFP) 

TRXs matching the AWGR channels. To align the polarization, 

we used eight polarization controllers (PCs) before the 

multiplexer and one polarizer after the multiplexer. All the 

WDM channels were modulated by an MZ modulator at 25 

Gb/s. The driving signals were 211-1 PRBS signals generated 

by a high-speed digital to analog converter (DAC). The 

modulated signal was boosted by an erbium-doped fiber 

amplifier (EDFA) and split by a 1×8 splitter. We used single-

mode fiber patch cables of different length to decorrelate the 

eight channels. The single-mode fiber patch cables were 

followed by PCs to align the signal polarization to the slow axis 

of the PM input fiber of the packaged Flex-LIONS chip. The 

output signal of the Flex-LIONS chip was then received by an 

optically pre-amplified receiver (RX). A real-time error 

analyzer (EA) performed BER measurements as a function of 

the RX input power, which is measured by the optical power 

monitor of the variable optical attenuator (VOA). 

Figure 2 (b) and Figure 2(c) show the transmission spectrum 

and the BER curves when there is no reconfiguration, and the 

connection is all-to-all. Figure 2(b) shows the transmission 

spectrum from input port 4 to output port 8 with AWGR 

channel λ8. The power penalty from center and side input ports 

is measured under the worst-case crosstalk scenario (all the 

input signals aligned in polarization). In Figure 2(c) the BER 

curves demonstrate that in the selected input and output port 

combinations the all-to-all interconnects are error-free. The 

measured power penalty at BER=10-12 is in the range of 3.9 

dB to 5 dB compared with back-to-back (no crosstalk signal 

added). Figure 2(d) and Figure 2(e) show the transmission 

spectrum and the BER curve in the reconfiguration scenario. In 

Figure 2(d) the transmission is between input port 4 to output 

port 8 after reconfiguration. λ8 channel is from the passband of 

AWGR while the other three channels (λ1, λ3, λ5) are from the 

path through cascaded MRR add-drop filters and Beneš MZS 

network. Figure 2(e) shows the error-free operation of all the 

four channels demonstrates 4× bandwidth steering (25 Gb/s to 

100 Gb/s) between input port 4 and output port 8. 

III. OPTICALLY INTERCONNECTED MULTI-GPU SYSTEM  

Multi-GPU systems cannot scale performance linearly due to 

the high latency and low throughput associated with inter-GPU 

communication [21]. As already discussed above, in this study, 

we use an enabling silicon photonic technology such as Flex-

LIONS to interconnect n number of GPUs (see Figure 3) to 

improve latency in the multi-GPU systems. 

Current commercial multi-GPU systems are connected through 

PCIe or NVLink (cirrascale gx8 and DGX2) [18]–[20]. PCIe 

3.0 can provide 8 Gb/s in one direction per lane. Therefore, 

PCIe 3.0 x16 has a maximum of 128 Gb/s in each direction. The 
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second and third generation of NVlink provides 20GB/s and 

25GB/s in each direction.   

In this study, we exploit two FSRs of Flex-LIONS (as 

demonstrated in [16] where each wavelength in each FSR is 

modulated at 32GHz using on-off keying (OOK). This still 

allows to support an I/O bandwidth of 512 Gb/s (64 GB/s), 

which is comparable with our baseline using four NV links 2.0 

as in Nvidia DGX-1 with Tesla p100 (80 GB/s). To further 

increase the bandwidth four-level pulse-amplitude modulation 

(PAM4) can be used to achieve 64 Gb/s per FSR. Previous 

studies have achieved beyond 100 Gb/s data rate [22], [23]. Sun 

et al. [23] demonstrated a SiPh microring modulator (MRM) 

operating at 128 Gb/s PAM4 with an integrated silicon heater 

can tune the ring resonator to more than one 6.6 nm FSR of the 

resonator.  

Figure 3 (a) shows the static all-to-all interconnection called 

LIONS. In this architecture, the communication between each 

pair of GPUs is through one FSR with a bandwidth of 128Gb/s. 

The connection is static and cannot be reconfigured, like in 

current multi-GPU systems. In Figure 3(b), the inter-GPU 

communication is instead through Flex-LIONS. At each 

input/out of the AWGR there are b MRR add-drop filters and a 

multi-wavelength spatial switch. This allows us to reconfigure 

the lambda in the interconnect to adapt to different traffic 

patterns and boost the bandwidth and reduce link congestion. 

Using Flex-LIONS we can increase the bandwidth between 

each link by b×64 Gb/s.  

In multi-FSR Flex-LIONS [Figure 3 (c)], tuning the specific 

MRR filters, up to b wavelengths (out of N) will enable the 

communication from a source and destination port through an 

N×N multi-wavelength switch, which increases the bandwidth 

between the corresponding two ports by b/2×64 Gb/s. In multi-

FSR Flex-LIONS, one FSR (e.g. FSR0) can be used to maintain 

the minimum diameter between all the nodes, and FSR1 is used 

for reconfiguration to increase the bandwidth in the hotspot 

links.  

IV. METHODOLOGY 

To model our target multi-GPU system, we used MGPUSim 

[24], which models the Graphics Core Next 3 (GCN3) 

instruction set algorithm (ISA) and can support up to four 

GPUs. These GPUs are connected using PCIe 3.0. We used the 

MGPUSim model to generate the RDMA (Remote Direct 

Memory Access) traces between the GPU units. To model the 

interconnect and perform reconfiguration we used Garnet2.0 

[25] the network model in the gem5 [26] simulator. 

Figure 3(d) shows the architecture of our proposed system. The 

communication between the GPUs and the interconnect, are 

through optical wavelengths. Each GPU communicates to the 

interconnect through 8 wavelengths with two FSRs. One FSR 

per lambda operating at 32Gb/s. The aggregated bandwidth of 

each GPU is 512Gb/s. The host CPU uses PCIe link to 

communicate to the control plane of the Flex-LIONS and to 

transfer data to each GPU device. 

Figure 2: (a) Experimental setup. (b) Transmission spectrum from input port 4 to output port 8 before reconfiguration. (c) BER curves of all-

to-all interconnects (1× bandwidth for all interconnected nodes). (d) Transmission spectrum from input port 4 to output. (e) BER curves after 

reconfiguration. (f)-(g): Eye diagrams of optical back-to-back and signals going through Flex-LIONS chip before and after reconfiguration. 
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In multi-GPU systems, GPU development kits give access to 

compute engines and memory copy engines. The compute 

engines are responsible for running kernels, whereas the 

memory copy engines allow simultaneous two-way memory 

transfers. Achieving an efficient memory access pattern with 

reasonable utilization of the bandwidth to memory is a major 

programming challenge in the development of multi-GPU 

applications. In such applications, programmers are compelled 

to manually manage memory transfers. Kernels are ideally split 

evenly to multiple GPUs based on their memory access 

patterns. To mitigate the NUMA affect the kernels need to be 

portioned based on the topology of the network and also their 

memory access pattern. This would result in multiple phases 

being generated in the memory trace of these applications. 

Within a task, data access and storage are abstracted from the 

programmer. Internally, these abstractions can be implemented 

using different schemes, specifically tuned to each architecture, 

in order to provide each kernel with its required data [2], [9], 

[27], [28]. Due to the all-to-all topology of our network one of 

the advantages of our design is that the programmer no longer 

needs to know the topology of the network to be able to perform 

the most efficient data placement. 

The launch of a new kernel in each GPU can change the traffic 

pattern in the network and therefore creates a new 

communication phase. With every kernel launch, the host CPU 

can understand the size and address range of the memory which 

that kernel is going to access. Using this information, the host 

can use a low latency link, PCIe, to communicate to Flex-

LIONS controller (which is a FPGA microcontroller). The 

controller then uses digital to analog convertor to be able to 

create the current to tune the MRR add-drop filters and perform 

the reconfiguration. The overhead of launching a kernel from 

the task queue to the GPU depends on the size of the kernel. 

Zhang et.al. [29] showed that the kernel launch latency can be 

around 3µs. The Flex-LIONS can be reconfigured based on 

each kernel launch. The reconfiguration includes sending the 

new reconfiguration command from host CPU to the control 

plane (Flex-LIONS controller) of the Flex-LIONS fabric, 

generating current from the Flex-LIONS controller to 

reconfigure the electro-optically tunable microrings. Both 

kernel launch latency and reconfiguration time latency are 

negligible compared to the kernel execution which is different 

compared to the kernel size but is in the order of 100× 

microseconds.  

Given the small size of our network, we used a simple heuristic 

approach to reconfigure. In more complicated networks, such 

as a fat tree, more sophisticated algorithms can be used for 

reconfiguration [30]. Existing neural network and deep learning 

algorithms could also be deployed on the Flex-LIONS 

controller to predict the traffic matrix and hotspot and coldspot 

links [31], [32]. However, this is outside of the scope of this 

paper and will be an objective for our future studies. 

Figure 3: Proposed Architecture: a) LIONS (all-to-all connection), b) Flex-LIONS (Bandwidth reconfigurable interconnect), c) Multi-FSR Flex-

LIONS (All-to-all bandwidth reconfigurable network), d) control-plane and data-plane interface in the proposed multi-GPUs. 
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V. EVALUATION 

For evaluation, we used two workloads: convolution and 

maxpooling, from AMD’s Accelerated Parallel Processing 

(APP) Software Development Kit (SDK). Both workloads ran 

on the four-GPU platform on MGPUSim and showed distinct 

communication phases. Figure 4, depicts the traces for each 

workload. Convolution can be divided into three phases and 

maxpooling can be divided into two phases. Each of these 

phases is 100 µs, and 1000 µs apart, respectively. Figure 4(a) 

shows that in phase 1, around 60% of the total traffic is 

represented by the requests and responses that are initiated from 

GPU2 to GPU1, (GPU21, shows the traffic from GPU2 to 

GPU1), while in phase 2, around 35% of traffic is from GPU4 

toward GPU1, (GPU41).  

One interesting observation is comparing the convolution 

and maxpooling traces with each other. In Figure 4(a) most of 

the traffic is dedicated to the connection between two GPUs 

(around 80% in phase 1) and the communication rate between 

all the other GPUs is either very small or non-existent. In this 

type of application, using Flex-LIONS with full reconfiguration 

capability is more beneficial since we have a distinct hotspot 

between two computing nodes and we either do not have an all-

to-all background traffic or traffic rate is very small. Therefore, 

multi-hop communication for these background traffic will not 

hurt the performance of the system. By doing the full 

reconfiguration, we can assign a large bandwidth to the hotspot 

link and maximize performance improvement. 

  For the maxpooling workload shown in Figure 4(b) the traffic 

is instead more equally distributed among all the links. In these 

types of workloads, the difference between the peak link 

bandwidth to average link bandwidth in each phase is small, 

which means that the use of Flex-LIONS to do full 

reconfiguration can cause a significant increase of the average 

number of hops, degrading the performance. In these 

workloads, maintaining the all-to-all connectivity and 

reconfiguring trough one FSR (to improve the bandwidth on 

hotspot links), has more impact on the performance compare to 

performing a full reconfiguration using Flex-LIONS. 

   We evaluated our system based on average packet latency 

improvement that would translate into an improvement in terms 

of execution time. In our simulation we replicated the traces 

collected in MGPUSim (which is limited to four GPUs) to 

extend our simulations to an 8-GPU system. We achieved this 

by creating two groups of four GPUs and replicating part of the 

traces retrieved from MGPUSim for intra-group traffic and 

used the rest for inter-group traffic. Based on the discussion 

given in section IV, this traffic is still representative of the 

traffic patterns in multi-GPU systems. 

  We used the topology of NVIDIA p100 DGX-1 as our 

baseline topology, which is a hybrid cube mesh topology. The 

GPUs in our baseline are connected through four NVLink 2.0, 

(20GB/s for each direction and each link). We compared the 

results of using Multi-FSR Flex-LIONS with regular Flex-

LIONS and static all-to-all interconnection with no 

reconfiguration capability. For a fair comparison, the bitrate per 

lambda in Flex-LIONS is twice the bitrate per lambda in multi-

FSR Flex-LIONS (since in the latter there are two lambdas 

between each node pair). Figure 5 shows the topology of 

targeted systems. Figure 5(c) and Figure 5(d) show an example 

for reconfiguration for both Flex-LIONS and multi-FSR. Figure 

6 depicts our simulation results. In the convolution workload, 

since the ratio between the peak bandwidth and the average 

bandwidth is high and the traffic distribution is mainly between 

two nodes, using Flex-LIONS would be more beneficial. 

Figure 4: Phases based on the RDMA traces. y-axis shows the 

percentage of bandwidth usage for each link. GPU12 indicated the 

one-directional link that transfer requests from GPU2 to GPU1. a) 

Convolution, b) Maxpooling. 
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However, when using Multi-FSR Flex-LIONS, for these phases 

we cannot assign the maximum bandwidth since we need to 

maintain the all-to-all connection. 

  

  In the maxpooling application, the traffic is more distributed 

between all the nodes. In this case, when we use Flex-LIONS, 

maintaining the all-to-all connectivity is pivotal in improving 

the performance (FSR0 would guarantee the shortest path 

between the nodes while we steer FSR1 to increase the 

bandwidth). That is why Multi-FSR Flex-LIONS shows 

advantages.  

As mentioned above, Improving the average packet latency can 

directly improve the execution time. For instance, in 

convolution, by reconfiguring the network using Flex-LIONS 

the average packet latency can be improved by about 70% in 

average across all of the phases compare to the DGX-1, which 

translates directly into a reduction of the execution time at each 

phase and the total execution time can also be improved in 

average by 75%. Figure 7 shows the total execution time 

improvement of Flex-LIONS and multi-FSR Flex-LIONS 

compared to the static all-to-all interconnect. 

 
Figure 7: Normalized execution time for both applications. a) 

Convolution b) Maxpooling. 

VI. CONCLUSION 

This paper studies the application of Flex-LIONS [15], a 

SiPh reconfigurable interconnect solution, for multi-GPU 

systems. Based on our simulation studies, both Flex-LIONS 

and multi-FSR Flex-LIONS exhibit lower latency compared to 

the current multi-GPU system developed by NVIDIA, DGX-1 

working with Tesla P100 [7]. Depending on the type of traffic 

pattern, it is useful to reconfigure one or all the FSRs. In 

applications with similar links’ utilization maintaining the all-

to-all connection while reconfiguring improves the 

performance of the system. Whereas, in applications with high 

congested links and low all-to-all traffic, using full 

reconfiguration can further improve the latency and overall 

execution time of an application. In this work, the total I/O 

bandwidth of each GPU is 64GB/s in each direction (similar to 

our physical layer experiment with on-off keying modulation 

format (OOK) and eight-port Flex-LIONS with two free-

spectral ranges). There are multiple ways to increase this 

bandwidth density in AWGR-based devices like Flex-LIONS. 

For instance, we could increase the bandwidth with PAM4 

modulation [33] or spatial division multiplexing to achieve 

higher bisection bandwidth. 

Introducing the reconfigurability of the interconnect in the 

multi-GPU system will not be beneficial if the reconfiguration 

is slower than the changes in the traffic pattern (e.g., workloads 

with micro traffic patterns with small phases). However, due to 

the single instruction, multiple thread (SIMT) nature of traffic 

patterns in GPUs and due to the rapid rise of the dataset sizes,  

Figure 5: Topology of simulated systems. 

Figure 6: Simulated average packet latency for a) 

Convolution b) Maxpooling. 
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we expect all phases of the traffic to get longer not shorter. This 

is due to the programing models in the GPUs where workloads 

are executed in a highly multi-threaded fashion. 

In this study, we have used NVIDIA p100 DGX-1 as the 

baseline topology, which consists of eight GPUs interconnected 

in a Hyper-X topology. State of the art NVIDIA multi-GPU 

system consist of 16 GPUs in which, the topology has changed 

from Hyper-X to NVSwitch-based interconnect topology. Due 

to NUMA architecture of current multi-GPU systems, the 

current applications are topology dependent. A meaningful 

performance investigation at larger scale will require 

implementing a full system simulator capable to run 

applications rather than trace-based simulations. This is beyond 

the scope of this paper and will be left as part of our future 

studies. In addition, we will investigate work partitioning 

algorithms and study the characteristics of RDMA traffic 

patterns at each node to develop a reconfiguration algorithm to 

dynamically reconfigure Flex-LIONS. 
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