
06 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Modeling Previous Trial Effect in Human Manipulation through Iterative Learning Control / Cenceschi, Lorenzo; Della
Santina, Cosimo; Averta, GIUSEPPE BRUNO; Garabini, Manolo; Fu, Qiushi; Santello, Marco; Bianchi, Matteo; Bicchi,
Antonio. - In: ADVANCED INTELLIGENT SYSTEMS. - ISSN 2640-4567. - 2:9(2020), p. 1900074.
[10.1002/aisy.201900074]

Original

Modeling Previous Trial Effect in Human Manipulation through Iterative Learning Control

Publisher:

Published
DOI:10.1002/aisy.201900074

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970284 since: 2022-07-26T10:21:27Z

WILEY



Modeling Previous Trial Effect in Human Manipulation
through Iterative Learning Control

Lorenzo Cenceschi, Cosimo Della Santina,* Giuseppe Averta, Manolo Garabini,
Qiushi Fu, Marco Santello, Matteo Bianchi, and Antonio Bicchi

1. Introduction

A key characteristic that makes humans capable of complex
manipulation actions is the ability of learning compensatory
actions in response to external uncertainties, relying on

sensory-motor memory from previous rep-
etitions of the task. This learning behavior
was first observed in human upper limb
actions, and described in seminal papers,
such as refs. [1,2]. In these manuscripts,
authors report on experiments involving
subjects whose reach-to-grasp movements
are perturbed by external force fields.
Subjects are capable to learn how to effi-
ciently counteract different perturbations
to perform the same kinematic task.
This capability is ascribed to the nervous
control system as a sum of three compo-
nents: an internal model for skeletal
system movements without perturbation,
an internal model for perturbations, and
a feedback control to stabilize trajectory,
if any error occurs. Internal models were
postulated by Kawato and Wolpert in a
series of seminal papers.[3–6] These models
are internal representations of the body
and environment dynamics, to be used
by the central nervous system (CNS) for
evaluating the motor command needed to
perform an action. These representations
are full-fledged models in the original

definition. However, they can also be thought as specific patterns
of motor actions necessary to produce a certain behavior
(e.g., dynamic primitives[7,8]).

Thematter of which kind of signal is used by the CNS to be fed
into the internal model learning mechanism has been largely
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In the execution of repetitive tasks, humans can capitalize on experience to
improve their motor performance. Prominent examples of this ability can be
recognized in our capacity of grasping and manipulating in uncertain condi-
tions. With the aim of providing a mathematical description for such behavior,
experiments are considered where participants are required to lift an object
with an unexpected mass distribution. By repeating multiple times the same
lifting action, participants can learn the correct motor command for task
accomplishment. Three models are proposed that combine reactive terms and a
learned anticipatory action to explain experimental data. The models feature
intratrial and intertrial memory, and the effect of slowly and fast adaptive
sensory receptors. The architectures’ effectiveness in explaining experimental
data is compared with a general-purpose state of the art model. The proposed
algorithms conspicuously outperform the state of the art in all the considered
validation routines. Global and within-trial human behavior is predicted
with 88% of accuracy in nominal conditions. When the object’s center of
mass is moved, the accuracy is maintained up to 83%. Finally, convergence
properties of proposed algorithms are analytically discussed, and their
stability and robustness against measurement noise are evaluated in
simulation.
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investigated in the literature.[6] One popular candidate is the con-
trol signal generated by some sensor-based reactive actions.
As also discussed in refs. [3–5], the reactive motor actions (which
can be assimilated to what in control language is defined as feed-
back) are identified as a source of information for module
updates and adaptation mechanisms. We refer to this hypothesis
as control-based learning. Note that this hypothesis is sometimes
referred in the literature as feedback-error learning. We do not
use this terminology to avoid confusions with other hypotheses.
Other works[9,10] introduce the hypothesis that adaptation is
driven by the difference between expected and actual outcome
of a motor command. This is the error signal in control language.
We therefore refer to this hypothesis as error-based learning. The
authors of ref. [11] propose a learning mechanism emerging
from the model of the Purkinje cells in the cerebellum.
Learning is guided by outcome error only, without taking into
account reactive motor actions from previous trials.

In the study of human manipulation, the learning of a proper
motor action through repetition of the same task is called previous
trial effect. Some of the authors of the current article experimen-
tally investigated this behavior in refs. [12–15]. In these experi-
ments, subjects were asked to lift an object with unexpected
mass distribution, maintaining it vertical (see Figure 1). In
the first execution of the task, the compensatory action appears
to be mostly reactive due to the lack of previous experience on the
object. In successive repetitions, all subjects implicitly learn the
interaction force patterns to correctly lift the object without tilting
it. Learning capabilities through repetition in manipulation is an
open research topic, made challenging by the high number of
environmental and human variables. The effect of anticipatory
and reactive actions in decision-making for manipulation is dis-
cussed in ref. [16]. Digit placement plays a clear role in exerting
effective feedback control actions. This is studied when using
thumb and index by ref. [15], and when using multiple digits

Figure 1. Experimental setup used for human data collection. In panel (i), we present a frontal schematic view of the inverted T device, composed
of two parts: a) a handle and b) a slotted box below. c) The subject grasps the object with thumb and index finger at fixed positions, represented
by circular plates. d) Two 6-axis force/torque sensors and e) a position sensor to measure the vertical pose of the device were used to collect the
experimental data. Panel (ii) depicts the actual device during an experiment. Panel (iii) shows the workspace of the experimental set-up.
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in ref. [17]. Anticipatory control affects initial digit position
and task performance as well. In case of objects with unknown
mass distribution, subjects prefer to put digit in standard posi-
tion.[18,19] Suggests there is no significant difference between
dominant and nondominant hands when learning a manipula-
tion task with unfamiliar objects. The role of dynamic primitives
in manipulation of objects with complex dynamics is discussed
in ref. [20].

Despite this lively research activity, no mathematical descrip-
tion of previous trial effect is, as of today, available in the litera-
ture. The aim of this work is to provide such characterization.
More specifically, we formulate and test the hypothesis that
previous trial effect can be described through a proper combina-
tion of linear iterative learning control[21,22] and delayed linear
feedback.

1.1. Proposed Approach

In an attempt to model both intratrial memory and the physio-
logical role of reactive mechanoreceptors,[23] we included in the
feedback law also an integral and a derivative action. The first
term accounts for human ability of reducing error also when
no knowledge of the system is available from previous executions
of the task. This means having no feed-forward compensatory
action available, according to our model. For what concerns
the latter action, deriving the signal produces a high pass effect,
which produces a signal resembling the kind of high-frequency
characteristics that it is provided by reactive mechanorecep-
tors.[24] Furthermore, derivative action accounts for the ability
observed in our subjects to damp oscillations. Iterative learning
control (ILC hereinafter) theory is used to model intertrial mem-
ory. The error evolution during the whole lifting action is used
here to update the anticipatory motor command used in execut-
ing the following repetition of the task. We introduce three con-
trol models implementing these principles, each corresponding
to a different neuroscientific hypothesis on which learning signal
is used to drive the anticipatory action: a control-based learning
algorithm, an error-based learning algorithm, and a model com-
bining the two. Note that no explicit internal model is trained
here. We instead focus on trial-by-trial approach. Instead of gen-
erating a desired control using reverse dynamics, previous trial
control signal is used and improved.

We identify the free parameters in our models using the exper-
imental data collected in ref. [14]. See Section 2.1 for more details
on the dataset. Convergence characteristics of the proposed con-
trollers are analytically discussed, leveraging on ILC literature.
Then, we test the capability of the three models to reproduce
human learning behavior, and the temporal evolution of the tor-
ques generated within each trial. We are not aware of any previ-
ous work in the literature tackling the mathematical description
of this behavior in human grasping and manipulation tasks. We
consider as benchmark one of the few analytical descriptions of
human learning by repetition, introduced in ref. [9]. There, sub-
jects were asked to walk on a treadmill, with an unknown force
field applied to their ankle by a robot. The autoregressive model
they propose is able to correctly describe the adaptation of motor
action across steps. We opportunely modify this algorithm to tai-
lor it to the problem under exam, and we use it as a benchmark.

Three validation tests are considered. The first evaluates the
ability of the proposed models to predict motor actions, when
the mass distribution is the same as in the identification dataset.
The second validation targets the case of different mass distribu-
tion between the identification and the testing phases. Finally,
the stability and robustness of the proposed strategies against
sensory noise are also evaluated in simulation. Performance
indexes include normalized root mean square error (RMSE)
(between experiment and model data) computed across all sub-
jects, and Bayesian Information Criterion (BIC), to evaluate model
complexity. Our findings suggest that a model combining control-
and error-based learning is the best choice to describe human
control actions, according to both the performance indexes.

The work is organized as follows. In Section 2, experimental
data collection is reported and qualitatively discussed, a mathe-
matical formalization is introduced, and the problem is stated.
In Section 3, we present our three architectures. Section 4 ana-
lytically describes the convergence properties of the proposed
models. In Section 5, we introduce the identification and valida-
tion procedures, and we present their outcomes. Section 7.2
reports a comparative study of closed loop accuracy, performed
in a simulative environment.

2. Problem Definition

2.1. Experimental Task

The previous trial effect behavior we consider in this work was
observed in the experiment described in ref. [14]. The experi-
ments involving human subjects have been performed with
the full, informed consent of the volunteers. Data from nine
right-handed volunteers (aged 20–26 years) were collected. Partic-
ipants had no history of musculoskeletal or neurological disorders,
and they were all naive to the experimental purpose of the study.
Without loss of generality, in this work we focus on the learning
process for force generation. For this reason, hereinafter we will
consider the outcomes of the experiments where finger positions
are constrained, as explained later and shown in Figure 1.

The device used for the manipulation task is shown in
Figure 1i. It is an “inverted T”-shaped object consisting of a
sensorized graspable handle and a bottom box with “left” and
“right” slots. A 0.400 kg load is hidden in one of the slots (either
right or left), thus resulting in a change in the devices’s center
of mass (CM) and mass symmetry. The total device mass is
0.396 kg. With the addition of the hidden load, it reaches 0.796 kg.

Two force/torque sensors are placed below the plates where the
subjects were instructed to place thumb and index (d in Figure 1i),
records the applied digit forces while an electromagnetic position/
orientation sensor (Polhemus Fastrack, orientation resolution
of 0.05�, e in Figure 1i) was used to record the orientation (roll)
of the device and the elevation along the vertical axis, as well as the
horizontal displacement w.r.t. the initial position.

2.2. Protocol

Subjects were asked to perform two distinct series of ten conse-
cutive trials, one series per hidden load position. The sequence
of load placement was randomized.
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In each trial, the subject comfortably seated in front of the
table as in Figure 1iii, with the device placed at 30 cm from
the hand rest position and aligned with the subject’s right shoul-
der. For each trial, the subject was asked to 1) reach, grasp, and
lift the object at a natural speed, with the only thumb and index
fingertips placed on the plates; 2) lift the object vertically to a
comfortable height of 15� 20 cm maintaining its vertical align-
ment; 3) hold it for about 1 s and replace it on the table.

Subjects had no previous experience on the device mass dis-
tribution before any series of trials. Changes to the object’s CM
were performed out of view, to prevent subjects from anticipat-
ing object’s CM location. Therefore, for the first trial of a series,
they relied only on vision, touch, and proprioception with no
other nonimmanent feedback information about the device.
Subsequent trials were used by subjects to learn how to cope with
magnitude and direction of the external torque caused by the
added mass. Experimental outcomes show that participants were
able to reduce the device peak roll error by trial 3, following the
pattern shown in Figure 2. Note that during the first trial the
error (in terms of roll, i.e., deviation from the vertical axis) is high
because subjects’ action is entirely reactive. The exponential
decay of the curve suggests an underlying first-order linear learn-
ing mechanism.

2.3. Mathematical Formalization

Given the task requirement of object roll minimization, we study
here the 2D problem on the vertical plane. Figure 3 shows the
corresponding free-body diagram. We consider as control input
the forces exerted at the fingertips, assuming a potential devia-
tion of the contact centroid w.r.t. the circular plates of Figure 1.
(Note that our approach does not assume which variables are
directly controlled or represented by the Central Nervous
System. For a discussion about this topic, the interested reader
can refer to refs. [25,26].)

Each digit exerts an independent force distribution on the
object, which we express here as the sum of grip forces (LFO
and RFO) and tangential forces (LFV and RFV ) (Figure 3).
Note that the contact forces are assumed to be applied in contact
points that may be different w.r.t. the geometrical centers of the
graspable plates. Indeed, the actual points of application of forces

are free to vary within the circular plate. Therefore, we schema-
tized this assumption in the free-body model through the defini-
tion of two contact points, namely, L 0 and R 0, which can in general
differ from L and R (i.e., the centers of the circular plates),
although this variation is bounded by the radius of the circular
plates (11mm). The relationship between the total wrench evalu-
ated on a fixed point P (Figure 3), and digit forces is

2
64

GFx

GFy

τ

3
75 ¼

2
64

cos θ � sin θ � cos θ � sin θ

sin θ cos θ � sin θ cos θ

�OyPL0
OxPL0

OyPR0 OxPR0

3
75
2
66664
LFO

LFV

RFO

RFV

3
77775 (1)

where ½ GFx
GFy τ �T ∈ R3 is the wrench, in global frame {G}

components, applied in an arbitrary point P ∈ R2; LFO,LFV∈ℝþ

are, respectively, the grip and load contact forces of the thumb in
the pressure centroid L

0 ∈ R2; RFO,RFV∈ℝþ are the same forces
of the index finger in R

0 ∈ R2;θ is the object roll; PL ¼
½ OxPL0 OyPL0 � ∈ R2 and PR

0 ¼ ½ OxPR0 OyPR0 � ∈ R2 are the
distances between the arbitrary point P and the digit contact points
L

0
,R

0
, while the torque applied w.r.t. the CM is

τC ¼ ½�OyCP OxCP 1 �

2
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cos θ sin θ 0

� sin θ cos θ 0

0 0 1

3
75
2
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GFy

τ

3
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From data recorded through the position/orientation sensor,
we observed that the translation of the device in the horizontal

Figure 2. The experimental performance averaged across all subjects and
all trials. Trials 1:10, all subjects, left/right hidden load. Average peak roll
behavior.

Figure 3. Schematic representation of the exerted forces with the
reference frames. {O} and {G} are, respectively, local and global frames.
C is the CM, P the external wrench reference point, L and R are the centers
of the graspable plates (which also represents the origin of the reference
frames of the two force/torque sensors), while L 0 and R 0 are the real digit
pressure points, T is the origin of the position sensor. LFO, RFO are the
grip digit forces and LFV, RFV are the load digit forces..
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line was 1.47 mm (median value, interquartile range 1.01 mm).
This supports the consideration that the horizontal displacement
of the device during the experiments is negligible, thus enabling
the introduction of the following simplifying assumption
GFx ≃ 0. Equation (2) then becomes

τC ¼ τ þ ½�OyCP OxCP �
�
sin θ

cos θ

�
GFy (3)

where τC, τ ∈ R are the torques applied, respectively, at the CM
C ∈ R2 and at the arbitrary external wrench application point P.
CP ¼ ½ OxCP OyCP � ∈ R2 is the distance of P from C in local
frame components. GFy ∈ R is the global lift force.

The data collected include digit grip forces (LFO, RFO),
digit load forces (LFV, RFV ), device roll and elevation (θ, h),
and digit center of pressure distance (ΔL 0, ΔR 0) from plates
centers (L, R).

2.4. Problem Statement

The aim of this work is to provide an analytical model connecting
the entire motor action τ generated by subjects in each iteration,
to the entire evolution of the roll error. We are not interested
in finding the optimal algorithm in terms of the task to be per-
formed (i.e., object tilting θ stabilization). On the contrary, we are
interested in understanding and modeling using our theoretical
framework, the mechanism used by the human CNS during the
execution of the experimental action under investigation.

This goal can be expressed in compact form as finding an
algorithm able to match as close as possible the following rela-
tionship, evaluated on k subsequent recorded trials

ðU0, : : : ,Uk�1,E0, : : : ,EkÞ ! Uk (4)

where

Uk ≜
h
τk½1� : : : τk½N�

i
∈ R1�N (5)

collects the torque samples, τk½i� ∈ R is the torque as in
Equation (1)–(3), evaluated from the measures LFO, LFV,
RFO, RFV at the ith time step; U0¼ 0

EkðΔÞ ≜
h
0 : : : 0 ϵk½1� : : : ϵk½N � Δ�

i
∈ R3�N (6)

is the error signal delayed of Δ time steps; E0ðΔÞ ¼ 0, ∀Δ. N ∈ ℕ
is the number of samples per trial. The parameter Δ quantifies
the delay (in terms of number of time frames) between the occur-
rence of an unwanted behavior (object tilt) and the instant in
which the subjects’ CNS produces a compensatory response.
In other terms, Δ is the sum of a perception, transmission,
and processing delays. It is one of the problem-free parameters
that need to be identified from data. The task error at trial k is
quantified as

ϵkðtÞ ¼ �
h
θkðtÞ, R

θkðtÞ, θ̇kðtÞ
i
T
∈ R3�1 (7)

where we consider the roll θk, its integral, and its derivative.
Integral terms are included to account for human ability of
reducing the error to zero also in the first iteration (i.e., without

any feed-forward compensatory action), whereas the derivative
accounts for the ability to damp oscillations. These signals could
be roughly related to slowly adaptive and fast adaptive receptors
placed in the fingertip (see, e.g.,[27]).

The models considered in this work will be identified on a
subset of the collected data, and will be tested on other, unseen,
datasets. Details on the split of recorded signals are reported in
the next sections.

2.4.1. Identification and Validation Sets

We split here the collected data into an identification set I and
two validation sets V. The first will be used to train the proposed
algorithms, and the second to evaluate their ability of predicting
human behavior.

For each subject we choose three trials belonging to the same
block of trials with a given CM distribution (left or right). In this
article, we choose the same trials for every subject as

TI ¼ f1, 3, 8g (8)

For each chosen trial, except for the first one, we need current
and previous data iterations to account for the entirety of the
learning process. The data identification set is

I ¼
n
ðUk,Uk�1,EkðΔÞ,Ek�1ð0ÞÞjk ∈ TI

o
(9)

Note that the identification set includes the first trial 1 ∈ TI.
This is done to guarantee enough information during the fitting
phase about the purely feedback behavior, when no learning has
occurred yet.

Two validation sets are considered. The first one tests predic-
tions within the same learning process (i.e., same mass distribu-
tion for the prediction and the identification phase), whereas
the second one targets the learning under different mass
distributions. The first validation set is composed of all the trials
with same mass distribution that are excluded from the identifi-
cation phase

TV ¼ ðf1, : : : , 10g \ TIÞ ¼ f2, 4, 5, 6, 7, 9, 10g (10)

from which it results the following validation set

V ¼
n
ðUk,Uk�1,EkðΔÞ,Ek�1ð0ÞÞjk ∈ TV

o
(11)

The second validation set is composed of experiments exe-
cuted when the load is placed in the left slot while maintaining
the identification set with the load on the right. The set of trials
used in validation is thus

TV ¼ f1, : : : , 10g (12)

The validation set is defined as shown in Equation (11). The
aim of this latter validation set is to measure if the proposed
mechanisms are independent from the asymmetries of human
hand anatomy and control or not.
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2.4.2. Performance Evaluation

We consider normalized RMSE across all subjects to measure
the ability of an architecture to explain data. We define it as

R̄ ¼ 1
S

PS
s¼1 RðsÞ, with RðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

KN

P
k∈TV

jjÛk
s�Uk

s jj2
r

max
k∈TV

Ûk
s�min

k∈TV
Ûk

s

(13)

where S,K,N∈ℕ are, respectively, the number of subjects,
iterations, and collected time samples. Ûk

s ,Uk
s ∈ ½1,N� are,

respectively, the measured and identified signals vectors for
every sth subject and tth trial.

We introduce also the following BIC[28] for evaluating the
quality of the model also from the point of view of complexity

BIC ¼ ln
�Ps

s¼1

P
k∈TV

jjÛk
s�Uk

s jj2
KNS

�
þ κ lnðKNSÞ

KNS (14)

where κ is the number of parameters of the model. Lower is the
BIC, better is the model in terms of the complexity-accuracy
trade-off it represents.

3. Proposed Models of Previous Trial Effect

As stated in Section 1, we use error-based learning and control-
based learning to refer to adaptation, respectively, resulting from
reactive motor actions[3–5] and outcome error.[9,10]

A first mathematical formalization of the error-based
learning theory is given in the form of an autoregressive model
in ref. [9]

τkðtÞ ¼ f τk�1ðtÞ þ αek�1ðtÞ (15)

where f, α are two constants, called forgetting and learning
factors, respectively: τk∶½t0, tf Þ ! Rm and ek∶½t0, tf Þ ! Rm are
the control action and error evolution at the kth execution of
the task, called also iteration hereinafter. t ∈ ½t0, tf Þ is a generic
time instant. Note that a similar learning rule also resulted from
the direct modeling of human cerebellum in ref. [11]. In ref. [29]
we observed that such rule can be seen in the more general
theory of Iterative Learning Control (ILC).[22] Indeed, ILC exploits
the error evolution in the whole interval ½t0, tf Þ of a previous
iteration, to update a feedforward command, according to
the law

τk ¼ Qðτk�1Þ þ Rðek�1Þ (16)

where the learning function R(⋅) identifies the ILC algorithm and
generalizes f of Equation (15), whereas the forgetting function
Q(⋅) maps the old control in the new one generalizing the
α in Equation (15).

To extend (16) to the case of control-based learning,[3,5] we can
still leverage on the ILC framework, which allows introducing
this effect by considering the current-iteration version of the
algorithm. In the general case, this corresponds to substituting
Rðek�1Þ with RðekÞ.[22] The introduction of the term ek considers
the current feedback action for the feed-forward estimation in
future iterations.

It is therefore natural to introduce a more general hypothesis,
combining error- and control-based learning. Leveraging on it we
introduce the following general form of motor learning

τkðtÞ ¼ f ðekðtÞ, ek�1ðtÞ, : : : , ek�mðtÞ, τk�1ðtÞ, : : : , τk�lðtÞÞ (17)

wherem, l ∈ ℕ are the number of past iterations used to evaluate
the new control action, and f ∶Rn � : : : � Rn ! Rn is a generic
smooth function combining current and past iteration errors and
the past control action.

In Section 2, we observed that the decreasing exponential
trend in Figure 2 suggests an underlying first-order linear learn-
ing mechanism. (Or, in other terms, average error in Figure 2
can be fitted with a single exponential function.) We propose thus
a linear form of (17) for modeling the learning behavior under-
lying previous trial effect

τkðtÞ ¼ K fbϵ
kðt� δÞ þ K ff ϵ

k�1ðtÞ þQτk�1ðtÞ (18)

where τkðtÞ ∈ R is the global torque applied in P (as in
Equation (3)), k ∈ ℕ is the iteration index, K fb,K ff ∈ R1�3 are
the coefficients matrices and 0<Q≤ 1 is a linear forgetting
factor. The term δ ∈ Rþ is the continuous-time counterpart of
the quantity Δ introduced in Section 2.4, and is used to account
for perception, transmission, and processing delays present in
the human control loop,[30] representing the delay between the
instant the subject realizes that an unwanted behavior occurs
and when she/he exerts the compensatory response. This value
will be identified from data in Section 5. The composite error
signal ϵk is the task error defined in Equation (7), which is
reported here to improve readings

ϵkðtÞ ¼ �
h
θkðtÞ, R

θkðtÞ, θ̇kðtÞ
i
T
∈ R3�1 (19)

To recap, in this article we propose three novel control archi-
tectures to describe the experimental observation. The first two
are built leveraging on preexisting neuroscientific hypotheses:
control-based learning and error-based learning. The third one
is the mathematical translation of the here introduced general-
ized hypothesis.

Control-based learning (CL)
In (18), we impose Kff≔ 0, and we keep Q and Kfb to be

identified. The control rule is

τkðtÞ ¼ K fbϵ
kðt� δÞ þ Qτk�1ðtÞ (20)

Error-based learning (EL)
The control rule is8<

:
τkðtÞ ¼ K fbϵ

kðt� δÞ þ τkff ðtÞ

τkff ðtÞ ¼ K̄ ff ϵ
k�1ðtÞ þ Qτk�1

ff ðtÞ
(21)

where K fbϵ
kðt� δÞ is the feedback contribution, τkff ðtÞ is the feed-

forward contribution—still applied in P—calculated through the
error-based learning rule. Note that if δ¼ 0, Equation (21) can be
rewritten in the generalized form (18) via algebraic manipulation
(see Appendix).
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Generalized model (GM)
This architecture is based on the full generalized

control rule (18), keeping all gains Q, Kfb, and Kff to be
identified.

Figure 4 graphically shows the three models. It is worth
noting that, while two of them are inspired by preexisting
neuroscientific literature, the three detailed algorithms are pro-
posed here for the first time.

Finally note that due to the larger number of parameters,
GM is expected to present equal or better performance
w.r.t. the other two proposed architectures in identification
phase. We will thus test in the following our architectures
using a cross-validation approach, to detect possible occur-
rences of over-fitting.

4. Convergence Properties of the Proposed
Models

The dynamic model of the inverted T object in Figure 3 is(
Jθ̈ ¼ ðOxCP cos θ �O yCP sin θÞGFy þ τ

mGÿC ¼ GFy �mg
(22)

where m, J ∈ Rþ are the object mass and inertia, respectively,
τ ∈ R is the compensatory torque (generated by the proposed
algorithm CL/ EL/GM), GFy ∈ R is the time-variant lift force,
g is the earth gravity acceleration, θ̈ ∈ R is the object angular
acceleration, θ ∈ R is the object roll, GÿC ∈ R is the vertical linear
acceleration of the CM C, and OxCP , OyCP ∈ R are the horizontal
and vertical distances of P from C in local frame coordinates,
respectively.

Leveraging on the ILC framework, we can analytically discuss
the convergence of (18), (20), and (21) when applied to (22). Let’s
consider, for example, the case of δ¼ 0, K ff ¼ ½0, 0, 0�, and
K fb ¼ ½0, 0, Dfb�, with Dfb ∈ R. By applying Theorem 3.1 in
ref. [31]—derived for a more general class of nonlinear system
—the following convergence condition results

Dfb

J þ 1
> 1 (23)

which, if fulfilled, assures that the error goes to 0 if Q¼ 1. If
insteadQ ∈ ð0, 1Þ, the error remains bounded in a neighborhood
of 0. A nonunitary forgetting factor is therefore coherent with the
experimental results shown in Figure 2.

Remark 1. Note that the only physical parameter affecting the
learning convergence is the object inertia J. The convergence is
assured independently from the position of the CM ðOxCP , OyCPÞ.
This confirms that the same mechanism, with the same parame-
ters, can be used to achieve the control goal independently from the
mass distribution. This hypothesis will be confirmed in Section 7.

Similar conclusions can be drawn using results provided in
ref. [32], when δ¼ 0, K ff ¼ ½0, 0, Dff �, and K fb ¼ ½0, 0, 0�, with
Dff ∈ R. In ref. [33], authors consider the case with δ 6¼ 0,
K ff ¼ ½0, 0, Dff �, K fb ¼ ½0, 0, 0�, and Q¼ 1, showing that the
delay does not affect the convergence of the algorithm.

Apart from combining the effects considered in refs. [31–33],
the proposed learning rule (18) includes also the use of θiðtÞ and
∫ θiðtÞ. As discussed in ref. [34] despite the convergence of ILC
algorithms is typically dictated by the higher order derivative of
the error involved in the learning rule, the use of proportional and
integral terms can ensure a smooth and monotonic convergence.
Unfortunately, we are not aware of any comprehensive conver-
gence result for the full control law (18). Deriving it is beyond
the scope of this article and it will be considered in future work.

5. Identification

5.1. Identification Procedure

To validate the effectiveness of the proposed models, we identify
here their free parameters. As quality measure for the identifica-
tion problem, we consider here

Figure 4. Block diagrams of the proposed learning models. The first
two models use either the motor command (i) or the error signal
(ii) to drive the learning processes. In (iii) we consider the simulta-
neous learning of control action from error and control signals.
The perception delay Δ is shown with a dedicated block. The anticipa-
tion performed before storing the error signal is shown too. Note
that—despite the proposed architectures are general in their
formulation—the reference tilting angle considered here is
zero.
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X
k∈TI

jjÛkðK fb,K ff ,Q ,ΔÞ �Ukjj2 (24)

where Ûk ∈ R1�N collects control action estimation at the kth
iteration. We derive it from Equation (18) as

ÛkðK fb,K ff ,Q ,ΔÞ ¼ K fbEkðΔÞ þ K ffEk�1ð0Þ þQUk�1 (25)

where K fb,K ff ∈ R1�3 are the control gains, Q ∈ R is the for-
getting factor, and Δ ∈ ℕ is the delay expressed in time steps.
Note that K fb,K ff ,Q are directly the unknown parameters of
the proposed models, whereas Δ can be converted into δ by mul-
tiplication for the sampling rate.

We split the problem of finding Kfb and Δ from the one of
finding Kff and Q that minimize (24), by assuming the first trial
to be driven by pure feedback action, i.e., U0¼ 0. This can be
justified by considering that at the first iteration subjects do
not yet experience of the object, which could be used for gener-
ating the anticipatory action. A small effect from the previous
block of trials may still occur. We will neglect this component,
being the block order randomized (refer to Section 2.2 for more
details). We thus focus on trial-by-trial evolution within a block of
trials instead of block-by-block interferences.

Leveraging on this assumption we identify feedback gains
Kfb as

argmin
K fb

jjU1 � K fbE1ðΔÞjj2 (26)

that can be solved in closed form as

K fbðΔÞ∶ ¼ U1ðE1ðΔÞÞ† (27)

where ð⋅Þ† is the Moore-Penrose right pseudoinversion.[35]

From all the delays we select Δ̄, minimizing
jjU1 �U1ðE1ðΔ̄ÞÞ†E1ðΔ̄Þjj2. We derive it as direct evaluation
of (24), ∀Δ ∈ f0, : : : ,Ng.

Finally, we evaluate the minimum of (24) for the three pro-
posed architectures as

(i) feedback Kfb plus control-based learning Q

Q ¼ ðUþ � K fbEþ
ΔÞðU�Þ† (28)

(ii) feedback Kfb plus error-based learning Kff

½ K̄ ff Q � ¼ ðUþ � K fbEþ
ΔÞ
�

E�

ðU� � K fbE�
ΔÞ

�
†

(29)

(iii) feedback plus both error- and control-based learnings

½K ff Q � ¼
�
Uþ � K fbEþ

Δ

�� E�

U�

�
†

(30)

where8>>>>>>><
>>>>>>>:

Uþ ≜ ½Uk1 : : : UkT � ∈ R1�NT

U� ≜ ½Uk1�1 : : : UkT�1 � ∈ R1�NT

Eþ
Δ ≜ ½Ek1ðΔÞ : : : EkT ðΔÞ � ∈ R1�NT

E�
Δ ≜ ½Ek1�1ðΔÞ : : : EkT�1ðΔÞ � ∈ R1�NT

E� ≜ ½Ek1�1ð0Þ : : : EkT�1ð0Þ � ∈ R1�NT

(31)

where 1 < k1 < : : : < ki < : : : < kT , ki ∈ TI \ f1g, and
T ¼ jTIj � 1.

Note that gains so evaluated could produce an unstable
feedback, and/or a nonconvergent iterative behavior. This is
not a issue per se because the identified values are tested
against two validations sets (see Section 2). Thus, in the case
an unstable behavior is identified which is not actually coherent
with the observed human behavior, this should result in
decreased performance in validation.

Nonetheless—for the sake of comparison—we also test a
second choice of the parameters, defined so to be inherently
stable in time and across the iterations. First, we impose
Δ¼ 0, and we evaluate the linearized system around the
desired equilibrium configuration. Applying the Routh–
Hurwitz stability criterion to this system yields to the following
necessary and sufficient conditions for the closed loop stability
in time

K fb,I > 0, K fb,D > 0,
�
G
�
þ K fb,P

�
K fb,D > JK fb,I (32)

where K fb ¼ [K fb,P, K fb,I, K fb,D] and G
�
¼ ∂G

∂θ . This latter value is
positive for the aforementioned experimental setup, i.e., gravity
produces a stabilizing effect once the correct feedforward
action is produced. Therefore, we propose the following
regularization of the feedback gains, forcing the closed loop
to be stable in time

K
�
fb,P∶ ¼ max

�
K fb,I

K fb,D
J � G

�
þ ϵth,K fb,P

�

K
�
fb,I∶ ¼ maxðϵth,K fb,IÞ

K
�
fb,D∶ ¼ maxðϵth,K fb,DÞ

(33)

with ϵth small positive constant, that we take here
equal to 10�3.

For what concerns the convergence of the learning process, we
consider the condition in ref. [36], which—in the authors’ best
knowledge—is the closest to the proposed algorithms among
the ones available in the literature (see Section 4). To apply it,
we must first impose Q¼ 1. Under this assumption, simple
steps yield the following convergence conditions—one for each
architecture

Control learning : K
�
fb,D <�2JorK

�
fb,D > 0

Error learning : 0<K ff ,D < 2Jþ2K fb,D, forK fb,D > 0

Generalized model : �K fb,D <K ff ,D < 2JþK fb,D, forK fb,D > 0
(34)

where J is the rotational inertia of the object, and K ff ¼ [K ff ,P,
K ff ,I, K ff ,D]. Note that we used the equivalence in appendix
for expressing the error learning case. Based on the
derived conditions, we introduce the following projections
assuring the convergence of the learning process in the iteration
domain
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Error learning : K
�
ff ,D∶ ¼

8><
>:

ϵth ifK ff ,D < 0

2J þ 2K fb,D � ϵth if K ff ,D > 2J þ 2K fb,D

K ff ,D otherwise

Generalizedmodel : K
�
ff ,D∶ ¼

8><
>:

�K fb,D þ ϵth if K ff ,D < �K fb,D

2J þ K fb,D � ϵth if K ff ,D > 2J þ K fb,D

K ff ,D otherwise

(35)

No projection is needed for the control learning scheme
because the fulfillment of the convergence condition is already
assured by (32). The remaining terms of K

�
fb and K

�
ff are equal

to the corresponding ones in Kfb and Kff.
Both K fb,K ff—standard identification hereinafter—and

K
�
fb,K

�
ff—projected or inherently stable identification

hereinafter—will be tested and compared within all the
considered validation sets.

5.2. Identification Results

We report in Table 1 the control gains resulting from the appli-
cation of (27)–(30) on the experimental data. The forgetting factor
Q is greater than 0.8 for each subject and for all the proposed
models. Relatively large integral gains (I) result too. This
suggests a dominant role of both long-term intertrials and
short-term intratrial memory w.r.t. other components. Indeed,
derivative terms (D) are instead in the order of 10�2, with values
very consistent among subjects. Proportional terms (P) are small
too, but they show a larger variability among subjects. Note
that—as we already discussed in Section 4—when aQ6¼1 is iden-
tified, the three ILC algorithms cannot ensure the perfect
tracking performance, and a steady-state error different from
zero should be expected. Interestingly, this characteristic can
be observed in the average regulation error in the experimental
data, as shown in Figure 2.

Table 1 also shows the results of the stability (32) and conver-
gence (34) tests applied when Q is imposed equal to one and δ to
zero. All identified parameters passed these checks, except for

the feedback gains of subject 2, the error-based architecture gains
of subject 5, and the gains of the generalized architecture for sub-
ject 1. The new gains for these three subjects—once projected
using (33) and (35)—are shown in Table 2.

The feedforward proportional contribution is often larger than
the feedback one. This is a consequence of the nature of the prob-
lem as stated in Section 3. Indeed, the feedback action suffers
from a physiological delay δ that we took into account with
the parameter Δ during the fitting phase. Instead the feedforward
action does not suffer from any real-time delay.

6. Closed Loop Accuracy

Previous validation is open loop in the sense that the system is not
simulated, and only the relationship between measured errors
and torques is considered.

However, this validation procedure does not inform us about
the ability of the strategies to work properly under perturbations
of the state or under uncertainties. These are essential character-
istics that an hypothetical neural controller must possess to func-
tion properly. It is thus paramount to test these important
characteristics with a dedicated validation routine.

All three proposed algorithms CL, EL, and GM will be
evaluated.

6.1. Performance Evaluation

To evaluate the ability of the architectures to actually perform the
task, we simulate the system (22), controlled through the four

Table 1. Gains resulting from the identification phase—performed using right load experimental data. For each architecture and subject we also indicate
if the corresponding test (33) is verified (T) or not (F), and if the feedback action is stable (T) or not (F), according to (31).

Sub Control-based Error-based Generalized FB stab.

Kfb Q Conv test Kfb K̄ ff Q Conv test Kfb Kff Q Conv test

P I D P I D P I D P I D P I D

1 0.68 4.12 0.02 0.81 T 0.68 4.12 0.02 0.45 3.22 0.02 0.82 T 0.68 4.12 0.02 0.19 �0.19 0.03 0.82 F T

2 0.01 3.68 0.03 0.95 T 0.01 3.68 0.03 0.07 2.89 0.02 1.02 T 0.01 3.68 0.03 0.11 �0.77 0.01 1.01 T F

3 0.12 2.23 0.04 0.83 T 0.12 2.23 0.04 0.33 1.68 0.02 0.85 T 0.12 2.23 0.04 0.22 �0.11 0.01 0.84 T T

4 0.17 2.16 0.09 1.06 T 0.17 2.16 0.09 0.34 2.23 0.01 1.06 T 0.17 2.16 0.09 0.12 0.20 0.01 1.04 T T

5 �0.14 0.83 0.02 0.92 T �0.14 0.83 0.02 0.05 0.75 �0.00 0.92 F �0.14 0.83 0.02 0.14 0.11 �0.00 0.88 T T

6 �0.09 1.27 0.05 0.89 T �0.09 1.27 0.05 0.30 0.98 0.01 0.88 T �0.09 1.27 0.05 0.36 0.07 0.01 0.82 T T

7 0.02 1.25 0.05 0.93 T 0.02 1.25 0.05 0.37 1.23 0.03 0.86 T 0.02 1.25 0.05 0.31 0.27 0.01 0.85 T T

8 0.08 2.10 0.04 1.02 T 0.08 2.10 0.04 0.31 2.51 0.03 0.96 T 0.08 2.10 0.04 0.22 0.63 0.01 0.94 T T

9 0.19 2.91 0.04 1.04 T 0.19 2.91 0.04 0.28 2.85 0.02 1.06 T 0.19 2.91 0.04 0.12 �0.13 0.01 1.05 T T
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architectures as introduced in Section 3. We are not interested
here in modeling the generation of GFy, which we already
discussed. We extract it from experimental data, and we directly
feed it into (22).

We also account for the well-known high level of noise in
human sensory system, testing robustness of the architectures
to noises with different amplitudes. Instead of evaluating the
controllers directly through the state ðθ, θ̇Þ, we use the following
noisy measurements

θ̂ðtÞ ¼ θðtÞ þ Z1
b t
Tc

ˆ̇θðtÞ ¼ θ̇ðtÞ þ Z2
b t
Tc

Zi
k ¼ Zi

k�1 þWi
k�1 , Z

i
0 ¼ 0

(36)

where Zi
k is the kth step of the ith random walk, with

Wi
k � Nð0, σÞ independent and equally distributed random

variables with normal distribution, null mean, and
variance σ. We test the algorithms performance for
σ ∈ f0, 10�5, 10�4, 10�3, 10�2, 10�1g. We use as index the aver-
age RMSE as defined in Section 2.4, calculated between the
measured and simulated torques. Each simulation is performed
30 times.

We consider as validation set the one described by (10),
i.e., the set of all the trials that were excluded during the identifi-
cation with the load placed in the left spot.

7. Results

In this section we assess the ability of all the proposed strategies
(namely, CL, EL, and GM ) of explaining experimental data. Their
control gains are identified as discussed in Section 5.

Together with the three algorithms, we also include here the
state of the art learning rule (15), serving as a benchmark.
Hereinafter, we will call itmodified Emkenmodel, from the name
of the author who originally proposed it. We added the adjective
modified to stress that this rule was developed for motor learning
of a quite different task, so to apply it to the problem under exam
we had to combine (15) with the here proposed force
mapping (3).

7.1. First Set: Same Mass Distribution

Figure 5i shows the average performances as defined by (13),
for the three proposed architectures and for the benchmark,

identified with (27)–(30). Figure 5ii shows the same results when
the projections (33) and (35) are applied. As expected, the two
trends are similar, and the projected ones perform always worst
than the ones obtained with standard identification. Figure 6
shows a comparison of torques produced by the generalized
model when projected—assuring inherent stability in time
and in iterations—and not projected parameters are considered.
The behavior is very similar in the two cases, with the nonpro-
jected model presenting an offset at steady state w.r.t. the pro-
jected one, that makes it closer to the measured data.

Emken model presents the worst performance among the
proposed ones, whereas EL, CL, and GM learning schemes
have similar performance with a slight advantage of the latter.
The average validation error is below 15% for all of them. To ver-
ify statistical difference between conditions, we used nonpara-
metric tests given the non-Gaussian distribution of samples,
as demonstrated by the application of Shapiro–Wilk test. In
Table 1 we collect the results of a P-value analysis among
RMSE R (see Equation (13)) with Wilcoxon signed rank test with
Bonferroni correction. The differences between the proposed
architectures and the benchmark are all statistically significant,
whereas differences between the three architectures proposed in
this work are not. Table 1 shows a comparison of BIC for the four
architectures on this validation. Results confirm a slight advan-
tage of GM w.r.t. the other four architectures even when model
complexity is penalized. Note that the parameter κ in (14) is two
for Emken, four for CL, seven for EL, and seven for GM. Other
parameters are defined as eariler.

Differences appear more evident considering temporal evolu-
tion. As an example, Figure 7 shows the measured and estimated
torques for subject 6. The proposed algorithms ( EL, CL, GM ) are
able to correctly reproduce salient characteristics of the measured
signals, e.g., peak torque, steady state behavior. The first iteration
shows that the pure feedback assumption fits well, except for the
small initial opposite peak. This is probably due to an unmodeled
anticipatory action, learned in a previous block of trials with an
opposite load position. As soon as the subject realizes that the
mass distribution is not the one experienced before, she/he
nullifies this action and the pure feedback model starts working
well. This happens around 1 s. Of note, as no feedback action is
included in the Emken model, no control action is produced
at the first iteration. The second iteration also presents a
slight lower estimation of the control for CL, and EL schemes.
The latter and the GM show some initial oscillations of the
control action, which are rapidly mitigated in the subsequent
iterations. However, the most evident observation is the strong

Table 2. Gains resulting from the identification phase when projections (32) and (34) are applied related to right load experimental data. Only the gains of
the three subjects that failed the checks (31) and (33) are shown. The other subjects have unmodified K fb,K ff , and Q¼ 1.

Sub Control-based Error-based Generalized FB stab

Kfb Q Conv test Kfb K̄ ff Q Conv test Kfb Kff Q Conv test

P I D P I D P I D P I D P I D

1 0.68 4.12 0.02 1.00 T 0.68 4.12 0.02 0.45 3.22 0.02 1.00 T 0.68 4.12 0.02 0.19 �0.19 0.02 1.00 T

2 0.12 3.68 0.03 1.00 T 0.12 3.68 0.03 0.07 2.89 0.02 1.00 T 0.12 3.68 0.03 0.05 �0.73 0.01 1.00 T T

5 �0.14 0.83 0.02 1.00 T �0.14 0.83 0.02 0.05 0.75 0.00 1.00 T �0.14 0.83 0.02 0.14 0.11 �0.00 1.00 T T
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mismatching between torques predicted by Emken model and
the measured ones.

7.2. Second Set: Different Mass Distribution

Figure 5iii shows average performance of the four algorithms
when a variation of the mass distribution is considered, identi-
fied with (27)–(30). Figure 5ii shows the same results when the
projections (33) and (35) are applied. As observed for the previ-
ous validation set, the two trends are similar, and the projected
ones perform always worst than the ones obtained with standard
identification.

The differences between architectures is here more evident
w.r.t. to previous section. Emken model exhibits the worst
performances. It is followed by the EL which, in turn, presents
this time a very high variance among subjects. Note that the two
models come from the same neuroscientific hypothesis. CL and
GL schemes have the best performance. These two architectures
are able to predict the subjects’ behavior with an error compara-
ble with the one attained in the first validation test, i.e., �17%.

Figure 5. Global performance of the three proposed architectures (CL, EL, GM), compared with the modified Emken model serving as benchmark,
for the three validation conditions. Bars indicate the average error (RMSE) across subjects as defined in (13), with their standard deviation.

Figure 6. Experimental and predicted torques for subject 1, iteration 5,
during validation with same mass distribution as the one used in the
identification. We consider here the GM architecture for data identified
with and without projection.
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Interestingly, the generalized scheme seems to perform worst in
this validation w.r.t. control-learning scheme, when the param-
eters are projected to be inherently stable. This could be due to
the larger amount of projections that the first undergoes

thorough. However, this difference is not statistically significant,
so no general conclusion can be drawn.

We evaluate statistical relevance of the results using
P-value analysis among RMSE R with Wilcoxon signed rank test
with Bonferroni correction. Table 3b shows the results. This time
only differences between CL and EL are not statistically
significant.

Table 4b shows a comparison of BIC indexes for the four
architectures. Interestingly, Emken performs here better than
EL due to the lower amount of parameters. Results confirm
the advantage of GM w.r.t. the other four architectures even
when model complexity is penalized.

Finally, Figure 8 shows an example of the evolution in time
of predicted an measured torques, for exemplary subject,
i.e., Subject 6. Emken model has very poor performances in
the first and second iterations, whereas error-based learning
has major limitations only in the second trial.

7.3. Closed Loop Results

Figure 5v shows average performance across subjects for σ¼ 0
(no noise), when gains are identified with (27)–(30). Figure 5vi

(i) First iteration (ii) Second iteration

(iii) Third iteration (iv) Fourth iteration

Figure 7. Experimental and predicted torques for subject 6, during validation with same mass distribution as the one used in the identification. CL, EL,
and GM can reproduce both general trend and distinctive features of the measured values (solid black lines).

Table 3. P-value comparisons for the errors achieved with the validations
considered in this work. Each enter of the tables reports a “yes” if the null
hypothesis is rejected, i.e., if the difference between the corresponding two
architectures is significative, “no” otherwise. Panel (c) refers to
significances evaluated for all the considered values of σ. Wilcoxon
signed rank test with Bonferroni correction and α¼ 0.05 is used to test
the hypotheses. The error index is calculated as specified by (13). EL,
CL, and GM represent error-based learning, control-based learning, and
generalized model, respectively. Emken is the benchmark as defined in
(3) and (15).

EL CL GM EL CL GM EL CL GM

Emken Yes Yes Yes Emken Yes Yes Yes Emken Yes Yes Yes

EL – No No EL – Yes Yes EL – Yes Yes

CL – – No CL – – No CL – – Yes

(a) Same mass distribution (b) Different mass distr. (c) Closed loop validation

Table 4. BIC comparisons for the validations considered in this work. The index is calculated as specified by (14). EL, CL, and GM represent
error-based learning, control-based learning, and generalized model, respectively. Emken is the benchmark as defined in (3) and (15).

BIC BIC BIC

σ 0 10�5 10�4 10�3 10�2 10�1

GM �5.82 GM �5.1662 GM �4.6 �4.6 �4.5 �3.4 2.4 6.3

CL �5.68 CL �5.1596 EL 1.6 1.6 1.1 2.0 10.8 13.6

EL �5.77 Emken �5.0754 CL 1.8 1.8 2.6 2.6 13.2 15.7

Emken �5.13 EL �4.8098 Emken 24.0 24.0 24.0 24.3 27.8 29.7

(a) Same mass (b) Different mass (c) Closed loop validation
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shows the same results when the projections (33) and (35) are
applied. The same trend observed before manifests itself once
more; the architectures which are made inherently stable by pro-
jection of their gains perform worst than their not projected
counterparts. This is particularly relevant considering that this
validation should maximally exacerbate instabilities because it
is the only one involving an actual simulation.

The differences between models exacerbate, when the dis-
tance from the ideal nominal conditions learned in the identifi-
cation phase increases. The generalized model confirms to be the
best in terms of accuracy between the four, with a performance
index of�18%. It is followed by control-based learning and error-
based learning, with a mean RMSE of more than 200%. Emken
model shows here very poor performance, with an error several
degrees of magnitude bigger (�107%). Figure 9 shows an exam-
ple of the evolution in time of the tilting angle θ, for subject 6.
Evolution produced by Emken model is characterized by a
marked instability arising already at the second iteration. (The
evolution produced in the fourth iteration is barely visible, since
it soon diverges beyond the plot limits.) This is coherent with the
very high RMSE error reported earlier. Error- and control- based
learning generate shaky but limited trajectories. Oscillations
increase with the continuation of the learning process. The gen-
eralized model instead brings the system on trajectories resem-
bling both the general trend and distinctive features of the
measurements. This result appears even more relevant when
considering that the model is not explicitly identified to match
θ, but τP instead (see Section 3 and 5).

Figure 10i,ii report averages and variances of the results when
noise is introduced. As expected the performance decreases with
the increasing of noise variance for all the architectures. Among
them Emken consistently shows very poor performance.
Interestingly, pure error-based learning works well for small
σ, while it is surpassed by control-based learning for higher

noise. The generalized model combines the best characteristics
of the two learning approaches, and it is the one that copes better
with the noise both with small and high values σ. Finally,
Table 4c shows a comparison of BIC indexes for the four
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Figure 9. Experimental and predicted angles for subject 6. GM can
accurately reproduce the subject behavior (solid black lines). EL and CL
learning schemes generate strong oscillations, which increase with the
continuation of the learning process. Emken model (Emk) presents a
strongly unstable behavior already at the second iteration.

(i) First iteration (ii) Second iteration

(iii) Third iteration (iv) Fourth iteration

Figure 8. Experimental and predicted torques for subject 6, during validation with opposite mass distribution w.r.t. the one used in the
identification. Thus none of the evolutions presented here is part of the identification set.
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architectures on this validation. The same trend discussed earlier
is maintained also when complexity is penalized, with the gen-
eralized model strongly outperforming the other architectures
for all the considered noise levels.

8. Conclusions

Humans are able to efficiently learn the proper control action
for lifting an object with unknown mass distribution, leveraging
on the sensory-motor memory acquired in few trials. In this work
we formulated and tested the hypothesis that this behavior, called
previous trial effect, can be explained as proper combination of
linear feedback and iterative learning control. The proposed
architectures successfully reproduce the human behavior in
the generation of compensatory actions on a trial-by-trial basis.
Leveraging on ILC theory we were able to discuss analytically the
stability and performance of resulting control strategies.

We tested the three proposed models against a benchmark
with three validation tests of increasing complexity. In the first
one, the model’s ability to predict evolutions when the weight is
placed in the same position as in the identification set is tested.
The three proposed architectures show better performances
w.r.t. the benchmark, but similar between each others. In the
second validation test the weight distribution changes between
the identification and the validation set: the performance of
the benchmark degrades, and differences between the proposed
architectures start to appear. Finally, the third validation tests the
model ability to control the system, both with and without noisy
measurements. Here, the proposed architectures show perform-
ances which are several degrees of magnitudes better than
the benchmark. Among them, the model mixing error and
control-based learning (i.e., generalized model) presents again
the best performance, comparable with the ones obtained in
the first two validations.

The fact that the generalized model had the best performance
is consistent with the recent trend in neuroscience research,
where motor adaptation can be attributed to a combination of
parallel neural mechanisms which differ in time-space and
sensorimotor memory usage.[5,37,38] In addition, our model
can capture within-trial temporal evolution of human motor

control during trial-by-trial adaptations, whereas most previous
studies consider the motor output and error signals only as sca-
lars for each trial.

Future work will further extend the proposed architectures, to
include changes in digit positioning. We will also test different
instances of (17), including nonlinear terms and extending the
algorithms memory beyond one trial back. We will also devise
mechanical apparatuses able to impose on the object more com-
plex disturbance profiles. In this way, we could go further in the
exploitation of the mathematical formalization of the problem by
optimally exciting disturbances for identification (i.e., persistent
excitation).

The results presented in this work open promising perspective
in robot control, e.g., to devise control laws in autonomous
robotic manipulation of external environment as preliminary
depicted in refs. [29,39]. We believe that including the modeling
of human behavior could be a key step forward for a new gener-
ation of robotic manipulators successfully and autonomously
interacting with the external world, in a way similar to the human
one and taking advantage from sensory-motor memory collected
during task execution.

Appendix

An Error-Based Learning to Generalized Model Equivalence

We rewrite error-based learning rule (21) in the generalized
model form (18) when δ¼ 0. Through algebraic manipulation

τk ¼ K fbϵ
k þ K̄ ff ϵ

k�1 þ τk�1
ff

¼ K fbϵ
kþ1 þ K̄ ff ϵ

k þQðτk � K fbϵ
kÞ

¼ K fbϵ
kþ1 þ ðK̄ ff �QK fbÞϵk þQτk

¼ K fbϵ
kþ1 þ K ff ϵ

k þQτk

(37)

where K ff ¼ K̄ ff �QK fb.
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