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Abstract

Event cameras are novel bio-inspired sensors, which
asynchronously capture pixel-level intensity changes in the
form of “events”. Due to their sensing mechanism, event
cameras have little to no motion blur, a very high temporal
resolution and require significantly less power and mem-
ory than traditional frame-based cameras. These charac-
teristics make them a perfect fit to several real-world appli-
cations such as egocentric action recognition on wearable
devices, where fast camera motion and limited power chal-
lenge traditional vision sensors. However, the ever-growing
field of event-based vision has, to date, overlooked the po-
tential of event cameras in such applications. In this pa-
per, we show that event data is a very valuable modality
for egocentric action recognition. To do so, we introduce
N-EPIC-Kitchens, the first event-based camera extension
of the large-scale EPIC-Kitchens dataset. In this context,
we propose two strategies: (i) directly processing event-
camera data with traditional video-processing architectures
(E2(GO)) and (ii) using event-data to distill optical flow in-
formation (E2(GO)MO). On our proposed benchmark, we
show that event data provides a comparable performance
to RGB and optical flow, yet without any additional flow
computation at deploy time, and an improved performance
of up to 4% with respect to RGB only information. The N-
EPIC-Kitchens dataset is available at https://github.
com/EgocentricVision/N-EPIC-Kitchens.

1. Introduction
Egocentric vision has introduced a variety of new chal-

lenges to the computer vision community, such as human-
object interaction [18,65], action anticipation [1,30,39,64],
action recognition [52], and video summarization [23, 57,
58]. With the advent of novel large-scale datasets [14, 15],
new tasks are being proposed, such as wearer’s pose es-
timation [105] and egocentric videos anonymization [95].
This trend will grow in the next years thanks to the very
recent release of Ego4D [41], a massive-scale egocentric

*The authors equally contributed to this work.

Figure 1. N-EPIC-Kitchens: the first event-based dataset for
egocentric action recognition. From RGB images, we generate
a stream of events (bottom). Positive polarity is represented by red
events, whereas blue events represent negative polarity. Events
focus on motion, similarly to optical flow (top). With their low
latency, high temporal resolution, and low-power consumption,
event data are a perfect fit for egocentric action recognition.

video dataset offering more than 3,000 hours of daily-life
activity videos accompanied by audio, 3D meshes of the
environment, eye gaze, stereo, and multi-view videos.

Among all, RGB sensors provide by far the richest
source of visual information. However, the performance
of RGB-based deep models drastically decrease when the
training and test data do not share the same distribution [20].
This issue, known as environmental bias [53,72,78,85,89],
originates from RGB-based networks’ tendency to rely on
the environment in which activities are recorded, affect-
ing their ability to recognize actions when they are per-
formed in unfamiliar (unseen) surroundings. This is mainly
caused by appearance-based networks’ tendency to primar-
ily focus on background cues and objects texture, which are
typically uncorrelated with the action being performed and
thus largely varying in different environments. As a result,
appearance-free modalities, such as motion, have become
the favored choice in current egocentric vision systems, as

https://github.com/EgocentricVision/N-EPIC-Kitchens
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testified by the results of recent EPIC-Kitchens challenges
[16, 17, 19]. However, the optical flow used in this setting
is computed from RGB frames by solving expensive op-
timization problems (TV-L1 algorithm [108]), introducing
significant test-time computations [12].

Event-based cameras, on the other hand, have been
shown to be particularly suitable for online settings [24,31].
Their high pixel bandwidth results in reduced motion blur,
and the extremely low latency and low power consumption
make these novel sensors particularly good in egocentric
scenarios, where fast motion often impacts RGB-based sys-
tems negatively. Moreover, as they only convey differential
information, event sequences reveal more information about
the dynamic of the scene than its appearance, making them
a valid alternative to RGB frames when learning to focus
on motion. Still, despite these advantages, no prior research
has looked at how to exploit their sensitivity to motion in
egocentric vision, where these devices remain unused.

As a first step in this direction, we propose N-EPIC-
Kitchens, a novel dataset that enables, for the first time, the
use of event data in this context. It consists in the exten-
sion of the large-scale EPIC-Kitchens dataset [14] under the
setup proposed in [72]. The latter is particularly appealing
for both the availability of multiple environments (kitchens)
and multiple modalities, i.e., RGB, optical flow, and audio.
These characteristics allow for the analysis of the afore-
mentioned environmental bias as well as the comparison of
event data to well-established modalities. On the proposed
N-EPIC-Kitchens, we introduce two approaches to exploit
the intrinsic motion characteristics of event data in this con-
text. The first, which we call E2(GO), consists in extend-
ing traditional 2D and 3D action recognition architectures
with layer variations aimed at exploiting the motion-rich
features of event data. The second, E2(GO)MO, extends
motion reasoning by distilling motion information from op-
tical flow to event data. This is accomplished following a
teacher-student approach that allows taking full advantage
of expensive offline TV-L1 flow during training only, while
avoiding its computation at test time. We summarize our
contributions as follows:

• We release N-EPIC-Kitchens, the first event-based
egocentric action recognition dataset, which unlocks
the possibility to explore event data in this context;

• We benchmark N-EPIC-Kitchens on popular action
recognition architectures, showing performance of
both event data alone and combined with RGB and op-
tical flow modalities. Moreover, we demonstrate the
robustness of event data to environment changes;

• We propose E2(GO) and E2(GO)MO, two event-
based approaches tailored at emphasizing motion in-
formation captured by event data in egocentric action
recognition;

• We show that event data can outperform RGB in chal-
lenging unseen environments and are competitive with
them in known environments, suggesting that using
event data is a viable option and more research should
be performed in this direction.

2. Related Works
Event-based Vision. Taking advantage of the event-
based cameras’ inherent ability to perceive changes [24,31],
researchers have started creating new solutions to tackle
traditional computer vision problems exploiting this new
way of sensing the world, including optical flow predic-
tion [37,113], motion segmentation [73,112], depth estima-
tion [35, 44], and many others. While traditional cameras
are capable of providing very rich visual information at the
tradeoff of slow and often redundant updates, event-based
cameras are asynchronous and spatially sparse, and capable
of microseconds temporal resolution. Event-based systems
range from designs that focus on exploiting and maintaining
event-camera sparsity during computation [4,86,107], to al-
gorithms that combine events with standard cameras [7, 35,
46,79,99], exploiting the complementarity of the two. With
the goal of achieving minimum-delay computing, research
has also focused on asynchronous designs, either by mod-
ifying regular CNNs [5, 69] or by utilizing specific hard-
ware solutions [2, 21, 29], often leveraging on bio-inspired
computing frameworks [68]. Despite event-based cameras
have already been applied to action and gesture recognition
tasks [10, 48, 67], previous works have not taken advantage
of their complementarity with other visual modalities yet in
these contexts, and used these cameras mainly in controlled
environments where both the camera and the background
are static [3,70]. In this paper, instead, we tackle egocentric
action recognition with events for the first time and combine
them with other modalities.
Action Recognition. The success of 2D CNNs in the con-
text of image recognition [43, 49] inspired the first video
understanding architectures. Traditional 2D CNNs are of-
ten used to process frames individually, eventually fusing
optical flow information [103], while late fusion mecha-
nisms ranging from average pooling [102], multilayer per-
ceptrons [111], recurrent aggregation [26, 61], and atten-
tion [40, 92] are employed to model temporal relations for
action understanding. The use of 3D convolutions has also
been proposed as an alternative [8, 96]. However, despite
their ability to learn spatial and temporal relations simul-
taneously, they often introduce more parameters, requiring
pre-training on large-scale video datasets [8]. To reduce
the model’s complexity, other approaches focus on finding
more efficient architectures [28, 82, 94, 97, 98, 106]. As an
example, a parameter-free channel-wise temporal shift op-
erator has been introduced in the Temporal Shift Module
(TSM) network [62], resulting in a 2D CNN capable of
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Figure 2. N-EPIC-Kitchens vs existing event-based action classi-
fication datasets in the literature [3, 47, 66, 70, 100].

encoding temporal information. Although all these archi-
tectures aim at implicitly modeling motion, most of them
still mix video frames with the externally estimated op-
tical flow. While this improves the overall performance,
it also requires pre-computing the flow, making these ap-
proaches impracticable in online settings. In addition, two-
stream approaches come at the cost of increased model
complexity and number of parameters. To overcome this
issue, a line of research proposes approaches that integrate
the RGB and optical flow modalities in lighter architec-
tures [56, 101, 110]. Finally, authors of [12, 77] proposed to
distill optical flow information to the RGB stream at train-
ing time, while avoiding flow computation at test time.
First Person Action Recognition. The complex nature of
egocentric videos raises a variety of challenges, such as ego-
motion [60], partially visible or occluded objects, and en-
vironmental bias [53, 72, 78, 85, 89], which limit the perfor-
mance of traditional, third-person, approaches when used in
first person action recognition (FPAR) [14, 15]. The com-
munity’s interest has quickly grown [16,17,19,84] in recent
years, thanks to the possibilities that these data open for the
evaluation and understanding of human behavior, leading to
the design of novel architectures [30,51,52,92,104]. While
the use of optical flow has been the de-facto procedure [14–
17,19,41] in FPAR, the interest has recently shifted towards
more lightweight alternatives, such as gaze [27, 59, 71], au-
dio [9, 52, 78], depth [32], skeleton [32], and inertial mea-
surements [41], to enable motion modeling in online set-
tings. These, when combined with traditional modalities,
produce encouraging results, but not enough to make them
viable alternatives. With this work, we show that the intrin-
sic motion information encoded by event data makes this
modality potentially more suitable than RGB.

3. N-EPIC-Kitchens
Thanks to their focus on capturing only variations in the

scene, event-based cameras are particularly efficient in ego-

centric scenarios, as they drastically reduce the amount of
data to be processed and acquired, avoiding motion blur
artifacts and providing fine-grained temporal information.
However, so far only a limited amount of datasets have
been made freely accessible [22, 36, 47, 75]. Despite the
field is actively working towards increasing their availabil-
ity, as testified by the recent release of event-based ver-
sions of ImageNet [54, 63], relatively few datasets for hu-
man activity recognition are currently available. As re-
ported in Figure 2, most of them focus on action or ges-
ture recognition [3,47, 48,70] in controlled settings, where
both the camera and the background are static, and none
considers egocentric action recognition, preventing event-
based cameras use in this scenario. To demonstrate the ad-
vantages of event-based cameras in egocentric online set-
tings, as well as their complementarity and equivalence to
other modalities, we extend the EPIC-Kitchens (EK) [14]
dataset, a large collection of egocentric action videos featur-
ing multiple modalities and different environments. Follow-
ing the setting of [72], we selected the three largest kitchens
from EPIC-Kitchens in number of training action instances,
which we refer to as D1, D2 and D3, analysing the per-
formance for the 8 largest action classes, i.e., ‘put’, ‘take’,
‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’ and ‘pour’.

In the following, we first introduce the operating princi-
ples of DVS cameras. Then, we outline the approach used
to generate N-EPIC-Kitchens and emphasize its benefits.

3.1. Event-Based Vision Data

Pixels of DVS cameras are independent and respond to
changes in the continuous log brightness signal L(u, t), dif-
ferently from a standard RGB camera. An event is a tu-
ple ek = (xk, yk, tk, pk) specifying the time tk, the loca-
tion (xk, yk) and the polarity pk ∈ {−1, 1} of the bright
change (brightness decrease or decrease). An event is trig-
gered when the magnitude of the log brightness at pixel
u = (xk, yk)

T and time tk has changed by more than a
threshold C since the last event at the same pixel, as de-
scribed in the following equation:

∆L(u, tk) = L(u, tk)− L(u, tk −∆tk) ⩾ pkC. (1)

Therefore, the output of an event camera is a contin-
uous stream of events described as a sequence E =
{(xk, yk, tk, pk)|tk ∈ τ}, being τ the time interval.

N-EPIC-Kitchens generation. We leverage ESIM [83],
a recent event camera simulator, to enhance the EPIC-
Kitchens dataset with the event modality. Since videos in
EPIC-Kitchens are limited to 60 frames per second, far
lower than the microseconds temporal resolution of an event
camera, we first upsample them to a higher fps. To this end,
we used Super SloMo [50] for its unique ability to gener-
ate frames at any temporal precision, following the adap-
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Figure 3. RGB (top), optical flow (middle) and Voxel Grid repre-
sentation (bottom) from the same action (“cut”) on the three dif-
ferent kitchens (D1, D2, D3).

tive sampling procedure proposed in Vid2E [33] to extract
event streams. Finally, we use Voxel Grid [113], a frame-
like event encoding technique, to convert sparse and asyn-
chronous events to a tensor representation and enable learn-
ing with typical convolutional neural network architectures.

4. Challenges of Evaluating Event Data

The fundamental problem in assessing event data in first-
person action recognition comes from the fact that, unlike
other modalities, its use in egocentric vision is completely
novel. To set a benchmark in this setting, we evaluate four
different aspects of event-based modeling. We start by con-
sidering the importance of performance on both seen and
unseen test sets, where seen indicates performance on the
same kitchen on which training is performed, and unseen
the performance obtained on a different one. We propose to
evaluate them altogether in our experiments. While the first
provides a good indication of the modality’s upper bound
performance, the second evaluates the ability of the model
to encode domain invariant features and, as a result, the vi-
ability of using it in real-world scenarios. Then, as the per-
formance of different modalities may greatly vary depend-
ing on the architecture used for processing [80], we bench-
mark events using three of the most accredited architectures
in FPAR, namely TSM [62], TSN [103] and I3D [8]. We
leverage a well-established procedure for converting event
streams into a frame-like representation that has been shown
to efficiently integrate with off-the-shelf CNNs [79,91], and
finally propose to encourage modeling of motion features
by employing attention at channel level.

Event Representation. Since event cameras produce
sparse encodings of the scene, they must be converted
into intermediate representations before processing. Sev-
eral representations have been proposed, ranging from bio-
inspired [5,11,68] to more practical ones. Frame-like repre-
sentations are by far the most widespread methods as they
can be directly used together with off-the-shelf networks.

Among available ones [5,6,25,34,48,55,87,113] we chose
Voxel Grid [113] as it proved to be superior in cross-domain
settings [79,91]. This representation computes a B-channel
image by discretizing time in B separate intervals:

xE(x, y, b) =

N∑
k=1

pkkb(b− t∗k), (2)

where b are the channels, t∗k are the timestamps scaled into
[0, B − 1], pk is the polarity and kb(a) = max(0, 1− |a|).
Backbone Architectures. To assess how event data be-
haves on different network designs, we examine two pop-
ular 2D-CNN approaches, TSM [62] and TSN [103] as
well as one 3D-CNN, I3D [8]. The first two rely on a
2D-CNN backbone, but while TSN [103] can only lever-
age late fusion for temporal modeling, TSM [62] exploits
shift modules to exchange channel information across adja-
cent frames. In contrast, I3D [8] is a pure 3D-CNN model,
which inflates filters and pooling kernels into the temporal
dimension. In the literature, there is currently no clear win-
ner, as some modalities may react better with one technique
than the other indiscriminately.

The Importance of Motion. Environmental biases are typ-
ically managed in egocentric vision systems by employing
complementary, often appearance-free, modalities. Opti-
cal flow is generally the one performing the best in action
recognition tasks [14,15,103], as (i) it helps focusing on the
moving content, i.e., the action being performed, while (ii)
preserving the edges of moving objects and (iii) ignoring
background information. In this paper, we argue that event
cameras’ sensitivity to moving edges and ability to disre-
gard static information only partially capture the three key
features of optical flow listed above. In reality, as a result of
the camera movement, these sensors still catch events in the
background. This encourages us to learn from flow in order
to improve our ability to filter out less discriminative data.

5. Learning from Motion
While a traditional RGB frame encodes static informa-

tion only, frame-based representations used for event data
also carry motion information on the channel dimension
(see Section 4). Indeed, each temporal channel encodes the
motion that occurs in the blind-time between a pair of stan-
dard frames of the video recording. We propose two differ-
ent approaches to make standard CNNs able to exploit this
information. The first, which we name E2(GO), explicitly
models temporal relationships by introducing channel oper-
ations that promote motion reasoning. The second, instead,
uses a student-teacher strategy that we call E2(GO)MO to
encourage the network to extract motion features during
training by utilizing a pre-trained optical flow based net-
work. We detail the two approaches in the following.
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Figure 4. Illustration of the proposed E2(GO)MO. The input xE

and xF from the event and flow modality are passed to the fea-
ture extractors FE and FF respectively. Information from the
pre-trained teacher stream (frozen) FF is distilled to the student
stream FE . The latter is trained with standard cross-entropy loss.

5.1. E2(GO): Event Motion

In order to enable standard CNNs to capture motion in-
formation from event data, we propose two simple but ef-
fective architectural variations, which improve the capabil-
ity of extracting temporal inter-channel relations in 2D and
3D CNNs. We refer to them as E2(GO)-2D and E2(GO)-
3D, respectively.

E2(GO)-2D. A common practice in the literature is to
extract temporal correlations at video level by modeling de-
pendencies between different frames [52,62]. A peculiarity
of event representation is that the channel sequence encodes
continuous motion, thus describing micro-movements in the
scene. This observation motivates us to extend the practice
of modeling temporal relations to also learn short-range cor-
relations between event channels.

We propose to do this by exploiting Squeeze And Ex-
citation modules [45] to enhance attention correlations be-
tween channels in 2D CNNs. Given an event volume xE ∈
RT×H×W×F as input, where T is the temporal dimension,
H × W is the feature map resolution and F indicates the
number of channels, we refer as fi

E ∈ RT×Hi×Wi×Ci to
the features extracted from the i-th layer of the network. As
a first step, we “squeeze” the spatial information content of
fEi into a channel descriptor by performing feature aggre-
gation along the spatial dimensions. It follows an “excita-
tion” operator, which takes in input zEsq to produce an acti-
vation vector s to be used to scale xE . The scaling vector

s is obtained from zEsq through two fully-connected layers
with a bottleneck that down sizes C to C/r. Finally, s is
used to re-weight xE , resulting in a new feature vector x̃E

to enhance discriminative motion features and discard the
less informative ones. As a result, x̃E encodes the relation
dynamics between different temporal channels, effectively
modeling the dependencies between them as a result of a
self-attention function on channel dimension.

E2(GO)-3D. Similarly, we propose to exploit 3D-CNNs’
ability to process temporal information through a 3D ker-
nel. Starting from the same input xE ∈ RT×H×W×F ,
traditional 3D CNNs apply a 3D convolution on the
(T,H,W,F ) dimensions, resulting in an output of shape
(T ′, H ′,W ′, C). We re-purpose the 3D convolution oper-
ator in this context to operate on xE ∈ R(F ·T )×H×W×1

by moving the channel dimensions on the temporal axis.
The convolution directly models the micro-movements con-
tained across the temporal channels of the event representa-
tion, which would otherwise be ignored when processed on
the channel dimension.

5.2. E2(GO)MO: Learning from Flow

Our goal is to train a network using both event and opti-
cal flow data, avoiding the need to estimate the latter during
testing. Given a multi-modal input X = (XE , XF ), where
XE denotes the event modality and XF denotes the flow
one, we indicate with FE and FF their respective feature
extractors, and the resulting features with fE = FE(xE)
and fF = FF (xF ). As a first step, we train the flow extrac-
tor FF using a cross-entropy loss between the true action
labels ŷ and the labels yF predicted by a fully connected
layer on top of FF . Then, we first freeze the flow stream
FF , and then train the event stream FE by combining the
standard cross-entropy loss with a distillation loss defined
as the L2 between features fE and fF :

Ldist = α||fE − fF ||2. (3)

where α is a scaling hyperparameter. Such loss encour-
ages features of the event stream to match those of the flow
one, forcing FE to mimic the behavior of FF , and thus en-
abling the two to produce similar activations. Notice that
we use optical flow data only during training and remove
the teacher branch during inference, thus exploiting the ad-
vantages of this modality but effectively avoiding its com-
putational complexity in prediction.

6. Experiments
In this section, we first introduce the experimental setup

used (Section 6.1), then we benchmark event data and val-
idate the proposed E2(GO) and E2(GO)MO. We conclude
the section with a discussion and limitation paragraph.



6.1. Experimental Setup

Input. Experiments with I3D [8] are conducted by sam-
pling one random clip from the video during training and 5
equidistant clips spanning across all the video during test, as
in [72]. The number of frames composing each clip is 16 for
RGB and optical flow, and 10 for events. For TSN [103] and
TSM [62] architectures, uniform sampling is used, consist-
ing of 5 frames uniformly sampled along the video. During
testing, 5 clips per video are adopted, following [62]. The
Voxel Grid representations are clipped between −0.5 and
0.5, and all data modalities are rescaled and normalized in
accordance with the pretrained network associated with the
architecture adopted. For all modalities, we used standard
data augmentation following [102].

Implementation and Training Details. With regard to
I3D, the original implementation from [8] has been cho-
sen, while TSN and TSM models have been built using re-
spectively a BN-Inception [49] and a ResNet-50 [43] back-
bone. In the multi-modal experiments, a classic late fusion
strategy is used, in which prediction scores from different
modalities are summed and the error is backpropagated to
all modalities. All models are implemented in PyTorch [74].
SGD with momentum [81] with a starting learning rate η of
0.01, a weight decay of 10−7 and a momentum µ of 0.9 is
used as optimizer. We trained the networks for a total of
5000 iterations with a learning rate decay to 1e−3 at step
3000. All the experiments are performed with a batch size
of 128 on 4 NVIDIA Tesla V100 16Gb GPUs. For the dis-
tillation loss, we found the best hyperparameter α = 100
(see Supplementary for details). As far as the evaluation
protocol used, for seen results we train on kitchen Di and
test on the same (Di → Di), i ∈ {1, 2, 3}. We evaluate
performance on unseen test by training on Di and testing
on Dj , with i ̸= j and i, j ∈ {1, 2, 3} (Di → Dj).

6.2. Results

Event Analysis. In Table 1 we show the performance of
events on the three selected action recognition architectures
(see Section 4). We observed that extracting 3-channels
Voxel Grid is the optimal choice and we used it in all the
remaining experiments (more details in Supplementary).
Considering the performance on both seen and unseen test
sets, the TSM model is the one performing the best, while
I3D performs slightly worse. One explanation is that it only
processes a small portion of the video at a time, catching
only local features when trained at the clip level. TSM, on
the other hand, can capture global features because it works
with frames that cover the full video. The poor performance
of TSN is to be expected, given that its frame aggrega-
tion prevents any temporal correlation from being modeled.
Thus, unless otherwise stated, we perform video-level anal-

Model Voxel ch. Testing Seen (%) Unseen (%)

I3D 3 Clip 53.75 35.90
Video 55.54 37.52

TSN 3 Clip 58.81 34.65
Video 59.82 35.24

TSM 3 Clip 64.38 37.75
Video 65.93 38.23

Table 1. Mean accuracy (%) over all Di → Dj combinations on
I3D, TSN and TSM on both seen and unseen test sets.

ysis and evaluate the proposed approaches on TSM and I3D
backbones in all of the following experiments.

Event vs RGB. In Table 2 we compare events against the
RGB modality. Results show that events surpass RGBs by
up to 3% on unseen test sets. Indeed, it has been shown
in the literature that appearance-based CNNs are biased to-
ward texture, which causes them to underperform across-
domain, but their robustness improves when shape-bias is
increased [38]. We believe this is the primary reason why
event representations, focusing more on geometric and tem-
poral information rather than texture variations, are more
invariant to domain changes. The same considerations also
apply to seen tests, where RGB-based networks overfit by
leveraging domain-specific features. We remark that until
now the event modality was still lagging behind RGB im-
ages in purely visual tasks, as reported by the recent release
of N-ImageNet benchmark [54], where the best perform-
ing event architecture scores 48.94%, considerably below
RGB’s > 90% accuracy [13, 42, 76, 109]. In this study, in-
stead, we show that events can outperform RGBs in chal-
lenging unseen scenarios and compete under seen ones, em-
phasizing their importance in egocentric vision.

E2(GO). In Table 2 we show the performance of E2(GO)-
2D and E2(GO)-3D. Those are beneficial especially on un-
seen test sets, as they aim to enhance temporal correlations,
thus allowing the network to emphasise motion features that
are informative while suppressing those that are not corre-
lated with the action. E2(GO)-3D achieves an improvement
by up to 2% on seen test set, while E2(GO)-2D achieves re-
sults on-par with the baseline TSM. This could be explained
by the fact that 2D CNNs, being based on frame-based tech-
niques, rely heavily on visual signals. Indeed, while those
are harmful when changing environments, they can be help-
ful on seen ones. I3D, on the other hand, is naturally more
responsive to temporal correlations. Extending its tempo-
ral reasoning to micro-movements facilitates it in extracting
discriminative features for the action, reflecting in an higher
accuracy even when testing on the same environment.

Multi-Modal Analysis. Table 3 illustrates the behavior of
the event modality when combined with RGB and optical



Modality Model D1 D2 D3 D1→ D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Seen (%) Unseen (%)

RGB I3D 53.67 61.12 60.70 34.50 35.70 34.94 36.46 33.93 38.37 58.49 35.65

Event I3D 50.32 58.33 57.99 37.27 39.12 32.98 36.52 35.68 43.56 55.54 37.52
Event E2(GO)-3D 50.52 62.99 60.11 38.07 38.71 35.02 38.49 36.73 45.53 57.87 38.76

RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97

Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23
Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33

Table 2. Accuracy (%) of event w.r.t. RGB on both I3D and TSM. Results are shown on all shifts, i.e., Di → Dj indicates we trained on
Di and tested on Dj , and Di means we trained and test on the same. E2(GO)-3D and E2(GO)-2D improvements are shown w.r.t. to their
respective baselines, where no architectural variations are performed. In bold the best results on both seen and unseen for each backbone.

Model Streams Pretrain Seen (%) Unseen (%)
I3D Event Kinetics-400 (R) 55.54 37.52
E2(GO)-3D Event Kinetics-400 (R) 57.87 38.76
TSM Event ImageNet 65.93 38.23
E2(GO)-2D Event ImageNet 65.40 40.33
I3D Event+RGB Kinetics-400 (R) 59.12 38.13
E2(GO)-3D Event+RGB Kinetics-400 (R) 61.23 41.85
TSM Event+RGB ImageNet 71.88 39.92
E2(GO)-2D Event+RGB ImageNet 72.42 40.61

I3D Event+Flow Kinetics-400 (R) 60.48 44.47
E2(GO)-3D Event+Flow Kinetics-400 (R) 62.66 45.86
TSM Event+Flow ImageNet 72.26 46.89
E2(GO)-2D Event+Flow ImageNet 72.87 49.23
I3D RGB+Flow Kinetics-400 (R) 62.07 44.56
TSM RGB+Flow ImageNet 75.08 45.66

Table 3. Accuracy results (%) of the event modality when used in
combination to stardard RGB and optical flow. In bold the best
result for each modality combination.

flow. When combined with RGB, it achieves an improve-
ment of up to 7% on seen test sets and 3% on unseen ones.
When combing events with optical flow, the best perfor-
mance is achieved, improving event results by up to 7% on
seen domains and 9% on unseen ones. This suggests that,
while both event and flow encode motion, flow emphasizes
the motion-relevant part, neglecting the scene or object af-
fordances, while the event data maintain useful information
about objects’ shape (see Figure 3). For this reason, the
event modality is potentially more convenient to be com-
bined with optical flow data than with RGB, which, instead,
suffer on unseen domains due to its dependency on appear-
ance. It is also worth noting that it outperforms standard
RGB+Flow since standard event representations does not
emphasize features of appearance as much as RGB does.

E2(GO)MO. In Table 4 we illustrate the performance of
E2(GO)MO against an RGB-based TSM, which we proved
to be the most robust architecture in the previous analy-
sis. To prove our claim that the proposed distillation tech-
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Figure 5. Accuracy vs time of RGB modality, E2(GO)MO, esti-
mated PWCNet optical flow and TV-L1 optical Flow on seen and
unseen scenarios for one clip evalutation.

nique benefits from motion features, we also apply the same
mechanism to an RGB-based stream, which we label in Ta-
ble 4 with the RGB+Ldist entry. Both event and RGB ben-
efit from the flow learning strategy, improving performance
on unseen tests (+5.3% and +3% respectively), confirming
the importance of motion information in real-world scenar-
ios. However, E2(GO)MO gains far more from the distilla-
tion loss Ldist than RGB, indicating that event data conveys
more motion-rich features than RGB streams, thus prov-
ing our argument. Finally, we compare these two networks
against their multi-modal upper bound performance, ob-
tained exploiting the offline-computed optical flow also in
prediction, namely RGB+Flow and E2(GO)+Flow. Despite
both are unable to reach their upper bound, E2(GO)MO
is much closer to E2(GO)+Flow, and it even exceeds the
multi-modal RGB-Flow performance. This result further
motivates the use of event data in egocentric vision.

Event vs. Optical Flow. We illustrate in Figure 5 the ac-
curacy vs. average time per frame trade-off at test time on
both seen and unseen data. We report performance with
both TV-L1 flow, computed offline [108], and the one ex-



Method Model D1 D2 D3 D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Seen (%) Unseen (%) Mean (%)
RGB TSM 61.61 77.08 75.75 37.39 32.49 34.28 38.99 34.43 38.25 71.48 35.97 53.73
RGB + Ldist TSM 63.36 79.47 77.97 38.61 35.73 39.36 41.09 34.76 49.68 73.60 39.87 56.73 +3

RGB + Flow TSM 66.97 79.69 78.58 43.76 43.76 45.80 47.13 45.44 48.09 75.08 45.66 60.37

Event TSM 56.86 72.43 68.49 28.73 34.00 37.09 42.30 42.27 45.02 65.93 38.23 52.08
Event E2(GO)-2D 56.58 70.03 69.60 34.98 35.16 38.21 47.80 41.71 44.13 65.40 40.33 52.87
Event E2(GO)MO-2D 61.38 75.83 75.08 39.77 37.19 44.71 51.03 47.01 53.73 70.76 45.57 58.17 +5.3

Event + Flow E2(GO)-2D 65.11 77.58 75.91 42.12 41.80 48.20 53.50 51.85 57.91 72.87 49.23 61.05

Table 4. Accuracy (%) of E2(GO)MO w.r.t. the baseline on events (TSM) and E2(GO)-2D. We compare E2(GO)MO with the same
approach on RGB to validate the choice of combining event and flow. In bold the best uni-modal, underlined the best multi-modal.

Stream Model Repr. Seen Unseen
Time (ms) (%) (%)

RGB I3D 58.49 35.65
Event I3D 6ms 55.54 37.52
Event E2(GO)-3D 6ms 57.87 38.76
Flow (TV-L1) I3D 488ms 58.47 43.40

RGB TSM 71.48 35.97
Event TSM 6ms 65.93 38.23
Event E2(GO)-2D 6ms 65.40 40.33
Flow (TV-L1) TSM 488ms 73.23 53.98

Table 5. Accuracy result of RGB, Event and optical flow (TV-
L1), along with their representation time, i.e., time to calculate the
Voxel Grid for event, and extraction time for TV-L1 flow.

tracted from PWC-Net [93]. The latter is the most compet-
itive among existing end-to-end CNN models for flow, pro-
viding an optimal balance between time and accuracy. For
calculation, we use a NVIDIA Titan RTX GPU, and report
both input’s computation and forward time, ignoring data
access time. We also highlight the range under which we
can perform real-time action recognition, using the thresh-
old considered in [88] to determine a sufficient frame (sam-
pling) rate for a motion tracking system as a reference point.
The plot clearly shows how TV-L1 achieves higher accuracy
at the cost of 488 ms of extraction time, making it unsuitable
for online scenarios. When the optical flow is estimated on-
line with PWC-Net, performance drops dramatically (by up
to 10% on seen tests and 8% on unseen tests). Addition-
ally, PWC-Net necessitates the execution of an additional
network, increasing the parameter count (≈ 40M) and re-
quiring an additional fine-tuning stage. In contrast, we do
not have to compute flow at test time, thus we can take full
advantage of the more precise optical flow when distilling.
Despite E2(GO)MO does not explicitly use flow during in-
ference, it still outperforms PWC-Net on seen tests (by up
to 6%) and performs on par with it on unseen ones.

Discussion and Limitations. As it is currently not possi-
ble to fully replicate event camera behaviors, event simula-
tion may create undesirable sim-to-real domain shift [79,
91]. Nevertheless, several works showed that simulated
events are robust enough to generalize well to real ones [33,

79, 91]. As we introduce event data in egocentric action
recognition for the first time, we aim at providing a di-
rect comparison with common benchmarks in the litera-
ture [14, 15, 27] and place the event modality in a com-
petitive setting against well-established modalities. These
aspects motive us to simulate the event data instead of gen-
erating a new first-person dataset from scratch.

Starting from the promising results of our work, we plan
to further explore the use of real event streams in this con-
text in order to validate the considerations done so far on
a real camera. Moreover, Table 5 shows that, despite its
high computational and time cost, TV-L1 optical flow still
demonstrates higher performance, especially an extraordi-
nary resiliency to domain changes. We primarily attribute
this to the fact that the algorithm for extracting it par-
tially filters out camera motion, resulting in cleaner mo-
tion data compared to the unprocessed events. To this pur-
pose, interesting future works could involve the exploitation
of motion compensation techniques commonly used with
events [90, 90] to remove redundant background noise.

7. Conclusion
In this paper, we presented N-EPIC-Kitchens, the first

event-based egocentric action recognition dataset. Exploit-
ing the variety of data modes at our disposal, we carried out
an in-depth comparative analysis whose results demonstrate
the relevance of motion information in action recognition
context. Given these findings, we proposed and evaluated
two novel approaches suited for event data (E2(GO) and
E2(GO)MO) that, by emphasizing motion information, pro-
duced competitive results compared to the computational
expensive optical flow modality. Through extensive exper-
iments, we bring to light the robustness of event data and
their applicability in an online action recognition setting,
pushing the community to further explore in this direction.
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