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ABSTRACT

The aim of this work is the study of the adhesion integrity of metallic Single Lap Joints (SLJs) through the
assessment of the MUL2 CODE, software developed by the MUL2 Research Group - Department of Mechanical
and Aerospace Engineering of Politecnico di Torino. The MUL2 CODE is implemented through the Carrera
Unified Formulation (CUF) for 2D structures based on Hierarchical Legendre Expansion (HLE) polynomials.
An efficient method for the Structural Health Monitoring (SHM) of bonded joints is simulated and verified by
CUF approach, in order to reduce the computational cost of analyses: by using transient excitations (toneb-
urst signals), the structural health of damaged SLJ can be numerically evaluated. The interaction mechanism
between the waves traveling through the investigated specimens is numerically modeled with a simple Finite El-
ements (FE) model and it is solved via MUL2 CODE and commercial software Ansys Workbench, respectively.
Experimental campaigns data are compared with CUF and Ansys results demonstrating the consistence of the
MUL2 formulation that is computationally simpler, but very efficient for the joint analysis. The presented and
discussed CUF application is able to quantify with a high accuracy the debonding extension in the damaged
SLJ, simply tuning the excitation frequency of the SHM technique.

Keywords: Carrera Unified Formulation, Structural Health Monitoring, Single Lap Joints, Local Defect Reso-
nance

1. INTRODUCTION

The simulation of ultrasonic guided waves in thin-walled structures is a challenging task for several reasons.
First, these waves can travel long distances with low levels of attenuation, therefore the domain of analysis
become usually very large. In addition, the short wavelengths and periods involved in the mechanical problem
call for very fine discretizations both in space and in time. Many analytical methods were developed in the last
decades focusing on the obtention of the dispersion relations and the wavefront characteristics. Among these,
the transfer matrix method1 and the global matrix method2 are the most popular in the field. Semi-Analytical
Finite Element (SAFE) methods3–5 were also generated by exploiting the versatility of the Finite Element
Method (FEM) in some directions where the discontinuities in the material and geometry could not be described
analytically. Three dimensional approaches such as Local Interaction Simulation Approach (LISA),6,7 based on
explicit finite differences, and the Mass-Spring Lattice Method (MSLM)8 were also introduced. Minimal models
based on ray-tracing techniques and stored data of the dispersion curves can be found in the literature as well.9

The aforementioned models provide fast solutions for certain study cases, but their application to complex 3D
geometries involving scattering of the waves caused by arbitrary defects is not a straightforward task, therefore
numerical methods are often preferred in these cases.

Most studies on the interaction of ultrasonic waves with discontinuities and defects were carried out using
FEM or similar techniques.10–13 However, when dealing with these problems, weak-form solutions such the
FEM must always respect certain refinement constrains to compute acceptable results. Specifically, the element
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length should be smaller than the minimum wavelength, which for ultrasonic waves are typically very short.
This limitation, together with the small time steps required for transient analyses, and the large spatial domains
which are required for damage detection simulations, makes the use of standard FEM extremely expensive from
the computational point of view.

In order to increase the efficiency of the numerical simulations in wave propagation problems, a commonly
adopted technique is to make use of sets of higher-order shape functions to interpolate the displacement vari-
ables. Inspired by this approach, many methods have been recently proposed for the computation of the time
signals, such as the Spectral Element Method (SEM),14,15 the IsoGeometric Analysis (IGA),16,17 the spectral
cellmethod,18 the enriched finite element method19 and the p-version of FEM.20 In the latter work, a comparison
between some of these higher-order elements was presented and it is shown that the superiority of higher-order
approaches with respect to commercial low-order FEM in terms of convergence rates. Since ultrasonic wave-based
systems are used in thin-walled structures, the geometry of the domain requires the use of dimensionally reduced
theories of structure, i.e. plates. These models permit to overcome the aspect ratio constrains of 3D FEM by
adopting mathematical assumptions on the transverse directions. Some examples of the use of plate elements
based on 2D SEM for SHM simulations can be found in the literature.15,21 In particular, due to their lower
computational costs, 2D elements allow for the study of the propagation of ultrasonic waves in real aerospace
structures.22,23 However, one must be aware that the simple approximation in the transverse direction of classi-
cal plate theories presents some drawbacks: (1) the symmetric modes may be neglected or poorly approximated,
(2) the quality of the numerical simulation (computed phase and group speeds) is significantly reduced, as it is
proven in,24 (3) higher-order modes cannot be studied with enough accuracy.

The present work proposes the use of advanced structural theories in the framework of Carrera Unified
Formulation (CUF)25 to overcome most of the issues of classical structural theories for the simulation of ultrasonic
waves. In essence, making use of CUF as a generator of structural models, the displacement assumptions in the
transverse plane are enriched using different sets of higher-order polynomials.26 In this manner, the complex
mode shapes of the ultrasonic waves can accurately be captured with no need of 3D discretizations, thus reducing
the computational cost of the analysis. In particular, the main goal of the present research is to validate
CUF models in simulating ultrasonic waves propagating in two bonded plate for the detection and sizing of a
debonding region. Using CUF and recognizing the importance of the correct through-thickness distributions of
displacements and stresses, a delamination model was implemented in recent works27,28 for the free-vibration
analysis of delaminated composite plates and shells. In light of the conclusions drawn in those works, layer-wise
models are directly chosen for the present analyses because of the possibility to consider the layers separately and
its resulting high accuracy. The final aim, to be pursued in a companion work, will be to apply the same models
to the detection of delaminations in multilayered composite plates, where the CUF turns out to be particularly
convenient in terms of computational efficiency.

2. MATERIALS, EXPERIMENTAL & NUMERICAL METHOD

2.1 Specimens & Experimental Setup

Testing samples were made of two plates with an overlap zone equal to 30 mm. The plate material was the
aluminum since its mechanical properties are well known and easy to be simulated, while the adhesive layer was
an acrylic film with elastic modulus equal to 3.69 GPa, density of 1300 kg/m3 and Poisson ratio equal to 0.3. The
adhesive zone was artificially damaged by inserting a Teflon patch between the layer and the upper aluminium
plate: when the shear stresses exceed the maximum allowed value at the edges of the adhesion area, the adhesive
fails as in the experimental samples. Furthermore, in order to avoid that the boundary conditions strongly affect
the ultrasonic waves propagation through the specimen, two sponges at the two ends simply supported the SLJ.
Different disbonds lengths (Deb) were investigated and each experimental campaign was repeated five times in
order to verify its repeatability. The artificial debonding area and the experimental setup are shown in Figure 1.

The “workflow” of the experimental campaign is the following.

1. The signal generator TG5012A (Aim & Thurlby Thandar Instrument) (top-right corner in Figure 1) pro-
duces the toneburst signals (according to the technique presented in29). . .
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Deb
overlap

Figure 1: Experimental Setup.

2. . . . to the power-amplifier Falco System WMA-300 (top-left corner in Figure 1) that multiplied by 50 the
input voltage.

3. The left piezo-sensor is excited with high purity toneburst waves, low harmonic distortion, low phase noise;

4. then the right sensor receives the transmitted waves and sends them. . .

5. . . . to the oscilloscope Serie 3000 PicoScope (bottom-right corner in Figure 1).

6. Eventually, the real-time acquisition of the propagating waveforms is performed with a portable PC
(bottom-left corner in Figure 1) and subsequently post-processed, using PicoScope 6 software and MATLAB
codes in order to detect the several investigated damage lengths.

The analytical approach. presented by Nicassio et al. in29 and used for describing the wave propagation in
the specimen is briefly shown. The Lamb waves originated by the exciting sensor travels through the aluminium
plate and two different joint regions (overlap and Deb areas in Figure 1) with different speeds: (i) cov in the
overlap region, where the waves travels through three layers (top plate, adhesive ply and bottom plate), (ii) cal
in the Deb region, where the wave travels through the top plate, reaches the edge and is reflected. At the line
between overlap and Deb zone there is interference between the two waves. So, a toneburst (with N number
of peaks) can be sent though the SLJ and its frequency can be tuned until a destructive interference appear.
Through the Equation 1 this frequency fatt is directly related to the defect extension Deb.

fatt =
N (cov − cal) + cal

4Deb
(1)

2.2 Layer-Wise 2D models based on Carrera Unified Formulation

As explained in many previous works related to the Carrera Unified Formulation, classical theories have several
limitations. The main point is that, in order to predict higher order effects and overcome the physical inconsis-
tencies, the kinematics should be theoretically enriched with an infinite number of terms (see Washizu30). This
is obviously not possible from a practical point of view and the theories of structure are generally formulated
by truncating the expansion of the primary mechanical variables (along the smallest dimensions of the structure
domain) to a given order. Nevertheless, the more the terms in the kinematics, the more the complexity of the
formulation and resolution of the problem is. The Carrera Unified Formulation (see31,32) solves this issues by
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describing the kinematic field in a unified manner that will be then exploited to derive the governing equations
in a compact way.

Let us consider a generic multilayered plate structure whose mid-plane lays in the xy-plane, with respect to a
Cartesian coordinate system. The displacement field of two-dimensional models in CUF framework is described
as a generic expansion of the generalized displacements (in the case of displacement-based theories) by arbitrary
functions of the thickness coordinate z (see33):

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, 2, ...,M (2)

where u = {ux, uy, uz} is the vector of 3D displacements and uτ = {uxτ , uyτ , uzτ} is the vector of general
displacements, M is the number of terms in the expansion, τ denotes summation and the functions Fτ (z) define
the 2D model to be used. In fact, depending on the choice of Fτ (z) functions, different classes of plate theories
can be implemented.
In this paper, only Lagrange expansions are considered, but other types of expansions based on the use of
Taylor or Legendre polynomials can be conveniently employed as discussed in many previous works by Carrera
et al.32,34,35

Layer-wise plate theories based on Lagrange expansion (see32,36,37) are formulated by adopting 1D Lagrange
polynomials as Fτ thickness functions (up to the desired order p) and expanding the variables independently in
each layer k:

ukx = F1(ζ) ukx1
+ F2(ζ) ukx2

+ Fi(ζ) ukxi
uky = F1(ζ) uky1 + F2(ζ) uky2 + Fi(ζ) ukyi
ukz = F1(ζ) ukz1 + F2(ζ) ukz2 + Fi(ζ) ukzi

(3)

where i denotes a summation and ranges from 1 to p+ 1.
Lagrange polynomials have been extensively employed in the formulation of variable kinematics plate and shell
theories in a unified framework by Kulikov and his co-workers. The readers are referred to the original papers
for more details about 2D models based on Lagrange-type expansions, see for example.38,39

2.2.1 Finite element formulation

The main advantage of CUF is that it allows to write the governing equations and the related finite element
arrays in a compact and unified manner, which is formally an invariant with respect to the Fτ functions. In the
sections below, the mathematical derivation of the fundamental nuclei of the stiffness matrix and mass matrix
in the case of CUF 2D models is provided in detail.

2.2.2 Geometrical relations and constitutive equations

According to classical elasticity theory, stress and strain tensors of each layer can be organized in six-term vectors
with no lack of generality. They read, respectively:

σσσkT =
{
σkyy σkxx σkzz σkxz σkyz σkxy

}
εεεkT =

{
εkyy εkxx εkzz εkxz εkyz εkxy

} (4)

Regarding to this expression, the geometrical relations between strains and displacements with the compact
vectorial notation can be defined as:

εεεk = D uk (5)

where, in the case of small deformations and angles of rotations, D is the following linear differential operator:

D =



0 ∂
∂y 0

∂
∂x 0 0
0 0 ∂

∂z
∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(6)
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On the other hand, for multilayered composite materials the relation between stresses and strains is obtained
through the generalized Hooke’s law:

σσσk = Ck εεεk (7)

where Ck is the matrix of elasticity coefficients of the arbitrarily oriented orthotropic layer with respect to the
global reference system (x, y)

Ck =


Ck22 Ck12 Ck23 0 0 Ck16
Ck12 Ck11 Ck12 0 0 Ck26
Ck23 Ck12 Ck33 0 0 Ck36
0 0 0 Ck55 Ck54 0
0 0 0 Ck45 Ck44 0
Ck16 Ck26 Ck36 0 0 Ck66

 (8)

The coefficients Ckij depend on the Young’s moduli E1, E2, E3, the shear moduli G12, G13, G23 and Poisson
moduli ν12, ν13, ν23, ν21, ν31, ν32 that characterize the layer material.

2.2.3 FE Approximation of the generalised displacement

In the case of 2D models, the discretization on the midsurface of the plate is made by means of the finite element
method. The generalized displacements are in this way described as functions of the unknown nodal vector, qτi,
and the 2D shape functions, Ni(x, y):

ukτ (x, y) = Ni(x, y)qkτi, i = 1, 2, ..., nelem (9)

where nelem is the number of nodes per element and the unknown nodal vector is defined as

qkτi =
{
qkuxτi qkuyτi qkuzτi

}T
(10)

Different sets of polynomials can be used to define FEM elements. Lagrange interpolating polynomials have
been chosen in this work to generate two-dimensional elements. For the sake of brevity, their expression is not
provided, but it can be found in the book by Carrera et. al,31 in which four-node (Q4), nine-node (Q9) and
sixteen-node (Q16) plate elements are described.
By combining the FEM approximation with the kinematic assumptions of the Carrera Unified Formulation, the
3D displacement field can be written as:

uk = FτNiq
k
τi (11)

2.2.4 Governing equations

The governing equations are obtained via the principle of virtual displacements. This variational statement sets
as a necessary condition for the equilibrium of a structure that

δLint + δLine = δLe (12)

The internal work is equivalent to the elastic strain energy

δLkint =

∫
V k
δεεεkTσσσk dVk (13)

where V k stands for the volume of the layer domain. By adopting the geometrical relation (Eq. (5)), the
constitutive law (Eq. (7)), the CUF kinematic field and the FEM discretization (Eq. (11)), the internal work
can be rewritten as:

δLkint = δqkTτi Kkτsijqksj (14)

where Kkτsij is the 3× 3 fundamental nucleus of the stiffness matrix.
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The inertial work can be written as:

δLkine =

∫
V k
δukT ρk ük dVk (15)

where ρk is the density of the layer material. By adopting the CUF kinematic field and the FEM discretization
(Eqs. (11), it becomes:

δLkine = δqkTτi Mkτsijq̈ksj (16)

where Mkτsij is the 3× 3 fundamental nucleus of the mass matrix.

Finally, the external work is:

δLke =

∫
V k
δuTp dVk (17)

where p is the vector of the external forces applied to the plate. By substituting the CUF kinematic field and
the FEM discretization (Eqs. (11), one has:

δLke = δqkTτi Pkτi (18)

where Pkτi is the 3× 1 fundamental nucleus of the nodal forces vector.

It should be noted that the formal expressions of the components of the fundamental nuclei are independent
on the choice of the expanding functions Fτ , which determine the theory of structure, and shape functions Ni,
which determine the numerical accuracy of the FEM approximation. This means that any plate element can be
automatically formulated by appropriately expanding the fundamental nuclei according to the indexes k, τ , s, i,
and j. By expanding the fundamental nuclei on the indexes τ and s the matrices of each layer are obtained. Then,
the matrices of each layer are assembled at multi-layer level by imposing the continuity of the displacements at
the interface between the layers (for more details, refer to40). Schematic of an assembled block matrix according
to layer-wise approach is shown in Figure 2.

Layer 1

Layer 2

Layer 3

Layer Nl -1

Layer Nl

Layer 1

Layer 2

Layer 3

Figure 2: Assembling procedure at multi-layer level according to layer-wise approach

In this paper, the acronyms B2, B3 and B4 are used for linear, parabolic and cubic approximation through
the thickness, respectively; as well as the acronyms Q4, Q9 and Q16 are used for the linear, parabolic and cubic
discretization of the midsurface, respectively. According to these characteristics, the expansion order is set as a
free input of the model that determines the number of unknowns to be solved.
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3. RESULTS & DISCUSSIONS

In the following Figures and Tables, the CUF model results are reported and, for each value of tested Deb,
the comparison of the experiments/analytical results/FE model with the data provided by the CUF models is
presented.

x
y

Figure 3: MSC Patran mesh

The first step for the CUF approach is the in-plane discretization of the plane geometry with Q9 elements,
as shown in Figure 3. The SLJ models were meshed via MSC/PATRAN (Geometry and Elements Moduli) in
order to obtain shell elements, each of which with 9 nodes. This kind of output can be obtained if the PATRAN
geometrical model is exported into ABAQUS format. The modeled joint was divided into 3 areas, regarding the
Lagrange expansion (by using B3 approximation for all layers) through the thickness: two of this with just one
layer (aluminium plate), while the overlap zone was discretized as a 3-layers structures (aluminium-adhesive-
aluminium). Particular attention was paid to the debonding area: in order to simulate the disbond between
the top adherend and the adhesive, the displacement continuity among interface nodes was not imposed in that
area. The spatial grid was set in order to ensure proper developing of exciting in-plane toneburst and several
Lamb waves interactions (in terms of maximum wavelength); furthermore, the time step was evaluate to ensure
the convergence condition by Courant-Friedrichs-Lewy (for inhomogeneous media).

Table 1: Debonding attenuation results (∗ indicates technical literature data reported in29).
Deb

Ni
∗ fatt [kHz] Error [%]

[mm] Experimental∗ Analytical∗ FE Model∗ CUF Model An. vs FEM An. vs CUF
5

5

230 229 240 217 4.8 -5.2
7.5 155 153 165 149 7.8 -2.6
10 116 114 115 108 0.9 -5.3

12.5 95 92 92 104 0.0 13.0
15 3 87 79 80 73 1.3 -7.6

In Table 1 and 2 the results obtained through the CUF approach are reported. For each Deb value, the
excitation frequency fatt is reported at which a destructive experimental/analytical/numerical interference was
found. These already known frequencies were compared with the one predicted by the CUF model through the
presented approach. Also in this case an excellent agreement with each other was achieved, in view of the fact
that CUF results were carried out by solving a much narrower Degrees of Freedom (CUF DoFs = 55629 vs Ansys
DoFs = 179808). The little fatt difference (Deb = 12.5 mm case, grey cells in Table 1) is caused by constant
grid mesh and time step. Despite each damage needs a certain spatial and time discretization, for the sake of
simplicity, fixed steps were implemented for all five CUF simulations.

In Table 2 the spectrograms evaluated by application of a Short Fourier Transform to the numerical signal are
shown: per each case, the destructive interference (related to relative Deb value) is clearly identified. Comparing
2nd and 3rd columns of Table 2, it can be seen that the observation time window reported on the y-axis of each
spectrogram (3rd column), represents the output signal time evolution (2nd column). The “holes” spectrogram
and relative PSD “cusps”, can be associated to the output signal attenuations: per each row, at the “hole time”,
the uy plot shows a deformed toneburst-shape due to the destructive interference between the direct signal and
the reflected wave in the Deb area.

In practice, a SHM specialist should generate the toneburst signal and monitor the real-time acquisition of the
propagating waveforms: the exciting frequency should be changed as long as the output signal does not contain
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Table 2: CUF results.
Deb [mm] Output Signal Spectrogram
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shape changes, suggesting the presence of damage in the overlap zone, in terms of waveform and frequency
spectrum (as presented in 2nd and 3rd columns of Table 2). In the authors’ opinion, the simplicity and low cost
of the CUF model make it particularly interesting for SHM applications, since it can easily evaluate the certain
frequency promoting destructive wave interference in a damaged SLJ and suggests (and definitely reduces) the
frequency range at which a SHM specialist has to work in order to correctly identify the damage length.

4. CONCLUSIONS

In the present work the CUF model for Lamb waves interferences in SLJ is proposed as novel SHM tool.
From the numerical point of view, the kinematics of the model was simulated by using Legendre Expansions
polynomials. In this manner, Lamb waves and their interactions were studied via dimensionally reduced models
(in comparison with standard FE models). From the experimental point of view, the SLJ samples were made of
two thin aluminum plates bonded by an biadhesive layer. An artificial defect was introduced in the overlap zone
between the adhesive layer and the upper plate.

The already known method showed that for each debonding value there is one excitation frequency for which
a destructive interference occurs, univocally related to the defect. The CUF results show an excellent agreement
with the experimental/analytical/FE data. This good correlation demonstrated the validity of the proposed
CUF model for the SHM of SLJs.

Future work can be addressed to apply the same CUF approach for the delaminations detection in multilayered
composite SLJ, where the CUF turns out to be particularly convenient in terms of computational efficiency.
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