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Visual Navigation Using Sparse Optical Flow and Time-to-Transit
Chiara Boretti, Philippe Bich, Yanyu Zhang, and John Baillieul

Abstract� Drawing inspiration from biology, we de-
scribe the way in which visual sensing with a monocu-
lar camera can provide a reliable signal for navigation
of mobile robots. The work takes inspiration from the
classic paper [3] which described a behavioral strategy
pursued by diving sea birds based on a visual cue
called time-to-contact. A closely related concept of time-
to-transit, � , is de�ned, and it is shown that steering
laws based on monocular camera perceptions of � can
reliably steer a mobile vehicle. The contribution of the
paper is two-fold. It provides a simple theory of robust
vision-based steering control. It goes on to show how
the theory guides the implementation of robust visual
navigation using ROS-Gazebo simulations as well as
deployment and experiments with a camera-equipped
Jackal robot. As will be noted, there is an extensive
literature on how animals use optical �ow to guide
their movements. The novelty of the work below is
the introduction of the concepts of Eulerian optical
�ow and time-to-transit, � and the demonstration that
control laws based on the � -values associated with an
aggregated set of features in the �eld of view can be
used to reliably steer a laboratory robot.

Keywords: Time-to-transit, Eulerian optical �ow,
Lagrangian optical �ow, vision-based navigation

I. INTRODUCTION

The terminology time-to-contact and the notation �
appear to have originated among researchers working
in the Cornell University lab of James J. Gibson
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in the 1970’s and 1980’s ([1],[2],[3]), and it has
been suggested that it may play a role in goal-
directed navigation, [6]. Since then, � has been a
signi�cant focus of research in perceptual psychol-
ogy (e.g. [4],[5]). The basic idea is simple. When
an observer is approaching an object at a constant
velocity, the image of the object on the observer’s
retina (or camera’s image plane) is an expanding
�bundle� of vectors, and if we take any particular
image point r(t) (in image plane coordinates) and
differentiate with respect to time, then as noted in
[3], r= _r is equal to ��the time-to-contact or time-
to-collision. In order to explore how � might be
used as a navigation signal, we recently introduced
a generalization called time-to-transit ([7],[8]). To
understand how time-to-transit can be perceived and
used to guide navigation, we consider the geometry of
planar motion of a camera-equipped unicycle vehicle
relative to a feature point in the environment. The
kinematics of the vehicle are:0
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where v is the forward speed in the direction of the
body-frame x-axis, and u is the turning rate.

De�nition 1: Consider a feature point with coor-
dinates (xf ; yf ) and a vehicle whose body-frame
con�guration is as depicted in Fig. 1. Given the
current con�guration (x(t); y(t); �(t)) and unicycle
kinematics (1), the geometric time-to-transit (geomet-
ric � ) is the time it would take the vehicle to cross a
line intersecting the feature and perpendicular to the
current heading under the assumption that speed v
and heading � are held constant. �

Simple plane geometry shows that geometric � ,
de�ned in this way, is given by

�(t) =
cos �(xf � x(t)) + sin �(yf � y(t))

v
: (2)



Fig. 1: When � = 0, � is a proxy for distance
or depth. If the forward-looking camera is directly
abeam of the feature point to its right or left, the
value of � is zero; it is the instant at which the transit
occurs. If � 6= 0, then �per 6= �geom, but for j�j
small and constant, the difference in these � -values
is modest. In the top inset, constant speed forward
motion of a forward-looking camera results in an
expanding bundle of velocity vectors produced by the
motions of feature images. The quantities r= _r in the
inset and di= _di in the large �gure, are the perceived
time-to-transit.

Time-to-transit, � , is of interest as a navigation signal
because under the assumption of constant speed v and
heading �, this geometric value of � can be perceived
on the image plane or retina as r= _r, which in the case
of a forward-looking camera, is just � = di(t)= _di(t)
as depicted in Fig. 1. Because equality only holds
under the assumptions that � and v are constant
and the camera is forward facing with the optical
axis being aligned with the direction of motion, we
call this value perceived time-to-transit and denote
it by �per. When these ideal assumptions (constant
speed, heading, and camera angle) don’t hold, �per is
distorted relative to �geom. The extent of the distortion
caused by the camera’s misalignment with the vehicle
heading can be illustrated by having the vehicle (1)
follow a straight line path along the positive y-axis�
(x(t); y(t); �) = (0; t; �=2). We assume that the
feature point (xf ; yf ) (1) is located such that xf > 0,
yf > 0, and that v = 1. It can be shown that for this

motion1,

�per(t) = yf � t+
�
xf

(yf � t)2 � �xf + o(�): (3)

When � = 0, this value yields the linear decrease
�per(t) = yf � t, which is equal to �geom. When
� 6= 0, the expression for �per(t) involves a second
order term, whose effect, as illustrated in (3) is small
if � has small magnitude. The value of �per will be
more severely distorted if the assumption of constant
heading is relaxed, and this will be discussed in detail
in the next section.

The remainder of the paper is organized as fol-
lows. In the next section, we brie�y describe how
a highly idealized model of optical �ow and time-
to-transit can provide a robust navigation signal. We
brie�y discuss factors that confound visual signals in
implementations, and by considering how perceived
values of � become distorted from the ideal, we are
led to mitigation strategies that make � -based steering
feasible. Implementations using resources from ROS,
Gazebo, and OpenCV are discussed in Section II.
Selected details of a theory of � -based motion control
are presented in Section III, and experiments involv-
ing both simulations and tests with a Jackal robot
are presented. The paper concludes with a discussion
of future work involving experimental exploration of
ideas motivated by the neurophysiology of animal
movement.

II. IMPLEMENTING A SENSE-ACT CYCLE

Our previous work on � -based navigation intro-
duced an idealized model called Eulerian optical
�ow, which by analogy with the Eulerian description
of �uid �ow, assumes that feature images stream
continuously across all photo receptors such that
values of � at each photo receptor are continuously
available, [9]. A number of � -based steering laws
in the Eulerian setting have been shown to produce
robustly stable steering in a variety of settings. In
order to obtain reliable visual information in actual
implementations using perceived time-to-transit rel-
ative to features in the environment, a less idealized

1More details can be found in the extended version of this
paper at https://arxiv.org/abs/2111.09669.

https://arxiv.org/abs/2111.09669


Fig. 2: Graphical representation of the ROS framework used in this paper. Navigation is accomplished by
message passing among nodes in the system ROS graph.

Lagrangian Optical Flow (LOF) model is used, ([9]).
Since one of the goals of this paper is to develop a
navigation strategy capable of running in real-time
on a robotic platform, we have created software that
implements our navigation laws using ROS/Gazebo
together with several well-known Optical Flow esti-
mation techniques.

The Lucas-Kanade method ([10]) allows the com-
putation of a sparse OF �eld (this means that OF
vectors are estimated just for selected features in
the image) by optimizing an energy-like function at
points in the image that have been determined by a
feature detector. We choose this technique because
it is fast and computationally ef�cient. Since, by its
nature, it works well for small movements but it fails
when large pixel motion occurs, in our implementa-
tion it is used in its pyramidal form ([11]). In Fig. 2
an outline of the ROS framework developed in this
work is proposed with snapshots of the functionalities
implemented in each node.

The Optical Flow node is responsible for the OF
estimation. It acquires a sequence of images from
the camera mounted on the robot and it extracts
the relevant features to �nally compute the optical
�ow vectors. The minimum quality and the maximum
number of features to retain are parameters provided
to the detector.

The goal of the tau computation node in Fig. 2 is
to analyze the array of keypoints with their velocities

packed in the OF message, to compute � values and
to create the input signals for the controller. We
transform the data coming from the Optical Flow
node in order to make them coherent with a reference
frame that has its origin at the intersection of the
camera axis and the image plane. In this position, the
origin of the coordinate frame is approximately at the
Focus of Expansion (FOE), and since the precise esti-
mation of the FOE is computationally expensive and
sensitive to noise, and since our approximation has
worked well in practice, we have used the camera-
axis frame to determine � .

Once all the data are expressed in the right ref-
erence frame, time-to-transit is computed as �i =p
x[i]2 + y[i]2=

p
vx[i]2 + vy[i]2, where x, y, vx and

vy are the arrays packed in the OF message. We
de�ne a �xed-size set of inputs that are given to the
controller with the goal of providing a good repre-
sentation of the environment without over burdening
the controller with computational effort.

To obtain more robust �per data we choose to
divide the input image into �ve Regions of Interest
(ROIs), as depicted in Fig. 2, which will output a
single value each. The number and the dimension
of these regions can be adapted to the speci�c envi-
ronment in which we want to use the robot and the
motion primitives that will be presented can be used
regardless the number of regions.

Since the distribution of � values is strongly related



to the environment in which the robot is moving we
can use it to select the right control law with the
correct gains to be used. When moving in a straight
corridor the tau values are continuous in time and
they generally come from every region except the
central ROI. The presence of a ninety degree turn,
say at the end of a corridor, can be detected by a
discontinuity in � values, a suddenly unbalanced OF
�eld, and small � values in the central part of the
FOV.

As noted in the introduction, camera rotation
caused by a time-varying heading of the vehicle
can cause large distortion of the estimate of � .
To make �per � �geom a sense-act segmentation
is implemented, which consists in segmenting the
motion into alternating straight (sensing) and curved
(acting) path segments. Care must of course be taken
to ensure that neither portion is sustained for too
long. An instantaneous sensing is possible only in an
ideal scenario. In a real environment the sense phase
must be long enough to obtain a good estimation
of � values, but sensing for too much time means
not being able to detect instantaneous variations of
the OF �eld potentially losing important information
coming from the environment. Moreover, the sense-
act interleaving must guarantee the stability of the
control law applied in the acting phase, and following
a mathematical argument along the lines of [9] (the
arXiv version), it can be shown that if both the cycle
length and act phase are of suf�ciently short duration,
the robot will stably and reliably move through the
corridor�always tending to center itself. This is
checked with Matlab simulations assuming Eulerian
sensing and we can conclude that the stability is
guaranteed for a wide large of sense-act duration
values. To understand how much this strategy can
improve time-to-transit estimation a simple simula-
tion in Gazebo using Lagrangian sensing has been
set up. A feature is positioned in the left wall of a
straight corridor and during three tests a robot collect
information moving straight, then turning away from
the feature and �nally turning towards it. Fig. 3 shows
a comparison between �geo and �per; in (a) no sense-
act interleaving is used, while in (b) it is shown the
signi�cant improvement in perception of � when a
sense-act cycle is used (sense duration is 0:4s, act

duration is 0:25s and linear velocity v = 0:5m=s).

Fig. 3: Direct comparison between geometric (thick
line) and perceived (�ne line) time-to-transit values
during three tests, at the top without and at the bottom
with the implementation of the sense-act interleaving.

III. STEERING CONTROL BASED ON time-to-transit

When �ying through a narrow passage, bees po-
sition themselves in the center of it in order to
experience the same image velocity in both eyes. This
characteristic of bee’s �ight has been highlighted by
Srinivasan et al. in [12] and it represents the idea
behind the Tau Balancing control law described in
[13]. In this section we brie�y describe how we adapt
the motion primitives to the �ve ROIs. In particular,
remembering (1), in this work we choose to use:

u(t) = kf (�fl � �fr) + km(�l � �r) (4)

where �fl, �fr, �r and �l are the time-to-transit value
averages of the different ROIs of the image (the
central ROI not included) as seen in the central panel
of Fig. 2. Stability is guaranteed for every choice of
kf and km, but this parameter must be tuned to obtain
best performances.



When features points are available only in the right
or in the left part of the image (as in Fig. 4), tau
balancing cannot be used. In [8], we introduced a � -
difference maximizing strategy for navigation using
cues from a single wall. Unfortunately, this strategy
has proven to be too sensitive to noise, and we will
instead examine the control law

u(t) = �k(�x � c) (5)

where �x 2 f�fl; �l; �r; �frg and c is a constant
([14]). To demonstrate the stability of (5), we analyze
Eulerian models along the lines of [9], [13]. It is
possible to isolate from (1) the following subsystem:

�
_x
_�

�
=
�

cos�
�k(�x � c)

�

and compute the rest point that, in this case, is
(x; �) =

�
� (c� fR� f)

f ; �2
�

depending on the chosen
�x. The constant c is selected a priori depending
on the general geometry of the environment, but a
dynamic selection of c is possible. Using Eulerian
sensing, a straightforward mathematical proof shows
that the linearized controlled system is asymptotically
stable. It can further be shown that if k < 4

fc2

the eigenvalues of the linearized Eulerian dynamics
become complex numbers, and this introduces oscil-
lations in the system.

IV. PHYSICS-BASED SIMULATION AND
IMPLEMENTATION ON ACTUAL ROBOTS

In this section we present some results from
Gazebo simulations and from the tests performed on
a real robotic platform2.

A. Simulation Results: To verify the behaviour
of the system presented in Fig. 2 we run multiple
Gazebo simulations in realistic and arti�cial envi-
ronments and for each of them different geomet-
ric structures are considered (straight corridors, 90
degrees turns, corridors with multiple turns, single
walls). Arti�cial environments have been used to
verify the effectiveness of the software components
in scenarios with a precise feature density. However,
since the robot has to be able to navigate in the

2The code we used for the experiments is available on GitHub
at https://github.com/johnbaillieul/Vision based Navigation TTT.

Fig. 4: At the top an arti�cial and at the bottom a
realistic environment together with the trajectories
followed by the robot during Gazebo simulations.

real world, realistic environments are used to test
the real potential of the controlled system. Fig. 4
provides an example of both types of environments
together with the possible challenges that the robot
has to overcome when it navigates using our control
strategy. The trajectories followed by the robot are
also reported and they show that the platform is able
to safely navigate in these environments by switching
among the control laws.

B. Experiments with a Jackal Robot UGV: The
promising results obtained with Gazebo simulations
lead us to test our tau-based navigation strategy on
real robots. The robotic platform we use is the Jackal
UGV, an unmanned ground vehicle developed by
Clearpath Robotics whose skid-to-turn steering is
somewhat more challenging that the unicycle ide-
alization (1). The extent of the difference between
model (1) and the actual robot has proven to be
fairly negligible, and the control laws described
above have worked well. The Jackal robots have
been equipped with stereo cameras (the MYNTEYE
S1030 in Torino and the Stereolabs ZED at BU).
We used the right monocular cameras as the only
sensors of our navigation experiments. The most
important characteristic is the horizontal �eld of view
that has to be wide enough to recognize, with the

https://github.com/johnbaillieul/Vision_based_Navigation_TTT


Fig. 5: On the left the Jackal UGV equipped with the MYNTEYE S1030 stereo camera (top image) and the
Stereolabs ZED stereo camera (bottom image). On the right, some results from the tests run both at Boston
University and at Politecnico di Torino. A variety of environments were constructed using moving boxes.

proper timing, speci�c characteristics of the visual
cues, e.g. discontinuities of the time-to-transit signal
in environments containing turns. The two robots
are shown in the left panel in Fig. 5. We test the
effectiveness of the entire algorithm by observing the
behavior of the Jackal robot moving through different
environments which have been set up at Politecnico
di Torino and at the Boston University Robotics Lab.
In each setting, we combine odometry and the IMU
data to compute the position of the robot with respect
to a coordinate frame that has its origin where the
Jackal is powered on for the �rst time. In the upper
images of Fig. 5 the different environment setups are
shown, the features are mainly represented by the
edges and the corners of the post-it notes but, since
the tests have been conducted in real environments,
there are also features belonging to other objects.
The graphs in the lower panels of Fig. 5 are based
on odometry data that show that the tau-balancing
control law, as predicted by the theory, steers the
robot toward the center of the corridor and even
successfully negotiates corners.

V. CONCLUSION AND FUTURE WORK

Selected results on reliable navigation of a mobile
robot using the perceptual cue time-to-transit have
been reported. The work validates ideas with origins
in the Cornell University Perception Lab of James J.
Gibson, and at the same time it sets the stage for a
broader investigation of vision based navigation using
perceptual cues associated with optical �ow. The
results on the use of a camera that is steered indepen-
dently of the robot so as eliminate the confounding
effects of movement along a curved path will be re-
ported. While a simple strategy of steering the camera
so as to cancel the rotational component of movement
can be shown to be effective, our current work is also
aimed at understanding how camera movement might
be used to support perceptual processes that involve
numerous animal and human brain regions that are
known to support spatial cognition, [15],[16],[17].
In particular, our current research is being informed
by investigations by Boston University colleagues
(M. Betke and M. Hasselmo) who are working to
correlate neural activity in running laboratory animals
with 3D tracking of head and body poses recorded
on thermal videos.
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