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Abstract. Hydropower generation units (HGUs) are electromechanical systems meant to transform the
potential energy of flowing water (i.e., a renewable energy source) into electrical energy. Thanks to their high
manoeuvrability and green footprint, nowadays, HGUs are mission-critical assets for grid operators, as the
global energy policy is pushing for a more ecological and healthier energy production. Condition monitoring
becomes then a fundamental task for fostering safety while optimizing the maintenance regime of such HGUs. In
this regard, this work is meant to improve an ISO20816-based vibration monitoring system by proposing further
rotor health indicators based on orbital analysis. The proposed improvement is implemented on a real HGU of
the Signayes hydroelectric power plant from C.V.A. S.p.A.�Compagnia Valdostana delle Acque�Compagnie
Valdôtaine des Eaux.

Keywords: Hydropower diagnostics / vibration monitoring / orbit identification / PCA ellipse fitting
1 Introduction

Hydropower generation units (HGUs) are electromechan-
ical systems meant to transform the potential energy of the
flowing water (i.e., a renewable energy source) into
electrical energy. In particular, a turbine is used to turn
the hydraulic energy into mechanical energy, while a
generator finally performs the transformation into elec-
trical energy. The power that can be obtained by the
flowing water depends on its hydraulic head and its
volumetric flow rate [1] as:

_W ¼ hrgh _V ð1Þ
where _W is the rated power, h is the efficiency of the
system, r is the water density, g is the acceleration of
gravity, h is the difference in height between the
water inlet and outlet (i.e., the head) and _V is the
volumetric flow rate.

In general, two main groups of hydropower plants can
be distinguished. High-flow, low-head power plants are
common for run-of-the-river stations usually involving
Kaplan or Francis turbines. Such plants need a continuous
water flow and therefore have less ability to provide power
uigi.garibaldi@polito.it
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on demand. On the contrary, low-flow, high-head plants
usually exploit high altitude dams/reservoirs combined to
(Kaplan or) Pelton turbines, which allow quick start-up
and high manoeuvrability [2].

This peculiaritymakes the HGUsmission-critical assets
for grid operators (e.g., TERNA for the Italian high voltage
electricity grid), which often have the need of compensat-
ing sudden increases in the electricity demand [3].
Furthermore, the global energy policy is pushing for an
ever more ecological and healthier energy production, so
that it is reasonable to believe that in the future HGUs will
gain further and renewed interest [4,5]. Hydropower, in
fact, despite few concerns about hydro-morphological
alterations and aquatic ecosystems issues, which could
be easily solved adopting new technologies and practices,
remains a key renewable energy source [5].

Condition monitoring of such HGUs becomes then a
fundamental task for optimizing their maintenance regime,
allowing both safety and economic advantage at the same
time.

In this regard, this work focuses on a real hydropower
plant of the low-flow/high-head kind located in Valle
d’Aosta (Italy), whose HGU features a SCADA (i.e., a
Supervisory Control And Data Acquisition) system for
vibration monitoring compliant to the ISO20816-5:2018
latest standard. The aim of the work is that of proposing an
improvement of the available vibration monitoring system
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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Fig. 1. A picture of the Signayes Hydropower Plant from C.V.A.
S.p.A.
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based on orbital analysis, which will be introduced in
Section 3. A description of the particular power plant on
the contrary, is given in the next section.

2 The Signayes hydroelectric power plant
from C.V.A. S.p.A.

The Signayes plant from C.V.A. S.p.A. (Compagnia
Valdostana delle Acque � Compagnie Valdôtaine des
Eaux) is a hydroelectric power plant located upstream of
Aosta at 604 MSL and uses water from Gran San Bernardo
and Valpelline valleys in Valle d’Aosta, Italy.

The power plant is built in a cave at the bottom of a
120m well and features a gross head of 351m, a nominal
flow rate of 16 m3

/s and a nominal power of 42 MW. It is
capable of producing an average of 220 GWh/year. The
Signayes hydropower plant is shown in Figure 1. Object of
the present work is the first HGU.

The Signayes HGU is made by a horizontal shaft with
twin Pelton turbines featuring zb=20 buckets, supported
by two pedestal bearings on rigid foundations. The left
bearing is able to give both radial and axial thrust (i.e.,
thrust bearing), while the right one can only carry radial
load (i.e., guide bearing). The Signayes HGU features a
SCADA system for vibration monitoring compliant to the
ISO20816-1:2016 and the ISO20816-5:2018 latest standard
[6,7]. In particular, as shown in Figure 2, it is equipped with
absolute bearing housing vibration sensors on both the
supports for monitoring the root-mean-square (RMS)
vibration velocity in mm/s (i.e., integrated accelerometers
signal) and relative shaft vibration sensors (i.e., two
proximity 90° apart) on the right support for acquiring the
peak-to-peak shaft displacement in mm. The location of the
sensors complies with the ISO standard and is shown
schematically in Figure 3. Further information is given in
the next section.

Auxiliary data such as the produced power (i.e., the
load), the rotational speed and the oil temperatures are also
recorded by C.V.A. S.p.A.

2.1 Simple HGU bearing hydro-dynamic model

In order to validate the here proposed analysis, a simple
dynamic model of the shaft motion within the journal
bearing was created on the basis of the real HGU system at
nominal work conditions.

Under the assumption of infinitely long journal bearing,
the shaft motion can be proved to generate a load-
supporting pressure profile in the (incompressible) lubri-
cant film described by the Reynolds equation [8]:

∂
∂#

h3

m

∂p
∂#

� �
¼ 6vr2

∂h
∂#

þ 12r2
∂h
∂t

ð2Þ

where p is the pressure profile, m is the dynamic viscosity, r
is the nominal radial dimension of the shaft, v is the
(stationary) angular shaft speed and h is the lubricant film
thickness, which can be described in terms of the relative
angular coordinate #, highlighted in Figure 4:

h #; tð Þ ¼ c 1þ e tð Þcos#ð Þ ð3Þ
where c is the radial shaft-support clearance and e (t) is the
absolute value of the displacement of the centre of the shaft
with respect to the centre of the support, described by the
vector e tð Þ ¼ ex tð Þ̂i þ ey tð Þĵ.

Once equations (2) and (3) are established, it is easy to
produceanumerical schemetodouble-integrate thepressure
profile and compute the supporting forces from the lubricant
film. In particular, using the relaxation method [9],
derivatives are replaced by finite difference approximations
leading to a linear system of equations which can be solved
considering Full-Sommerfeld periodic boundary conditions
(i.e., null initial and final pressures). Nevertheless, the Full-
Sommerfeld solution does not consider the occurrence of
cavitation, so that the Half-Sommerfeld approach will be
used in this simplified model (historically accepted journal
bearing design approximation [10]).

Integrating the so-computed Half-Sommerfeld hydro-
dynamic pressure profile on the shaft surface (i.e., summing
all theF p t;#ð Þ in Figure 4 over thewhole angular coordinate
#), it is straightforward to find the overall pressure force at
present time step FHS tð Þ ¼ FHS;x tð Þ̂i þ FHS;y tð Þĵ . Such a
force, summedtothereactionof the supportontheshaft (i.e.,
F rv tð Þ), is supposed to balance the inertia forces, so that the
eccentricity at the next time step can be found by finite
difference approximation of the second order differential
equation of motion obtained from the free body diagram
in Figure 5 under the assumption of half the shaft mass
M concentrated in its centre of gravity:

FHS tð Þ þ Frv tð Þ ¼ M

2

∂2e tð Þ
∂t2

ð4Þ



Fig. 2. A picture of the HGU bearing housing with sensors.

Fig. 3. Sensors’ location for absolute bearing housing vibration
(a) and for relative shaft vibration (b) according to ISO20816-
5:2018 latest standard [7].

Fig. 4. Graphical problem statement and definition of the
reference frames for the bearing hydro-dynamic model.

Fig. 5. Free body diagram of the half-shaft.
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Despite the strong assumptions and simplifications, the
here described model can be used to derive theoretical
orbits for nominal working conditions. For example,
considering an additional harmonic contribution synchro-
nous to the rotation speed v, F rv tð Þ ¼ F rv þ F 0e

ivt;the
shaft centre point will move according to the trajectory
reported in Figure 6. Assuming a defective operation
featured by an increase in the static unbalance F 0, it is also
possible to derive an unhealthy orbit to be compared to the
previously found reference one.

From Figure 6, several considerations arise:

–
 The model, despite simple, is able to produce physically
consistent, stable orbits.
–
 The order-one orbits induced by synchronous perturba-
tions of the equilibrium position can be reliably modelled
as ellipses.
–
 Increasing the perturbation amplitude, the orbit centre is
shifted, the orbit shape may slightly deviate from the
perfect ellipse, while the orbit size and orientation
undergo variations.

3 ISO20816-based signal processing and the
proposed improvement

The fundamental scope of vibration monitoring is that of
inferring the state of health of amachine given the available
acquisitions. In the simplest case, the problem simplifies to
a binary classification: a “healthy” or a “damaged” label is to
be assigned to a chunk of data. Indeed, it is common for
industrial continuous monitoring equipment to store data



Fig. 6. Orbits due to a synchronous harmonic forcing� the black
dots represent truly elliptical orbits.
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in temporary buffers, aggregate the data by extracting the
selected feature (e.g., the RMS) and compare the so
computed feature to a given threshold which separates the
“healthy” from the “anomalous” levels. Usually, in normal
conditions, just the aggregated information is stored (i.e.,
the feature), while the vibration signal over time is saved
only when some level is exceeded, to allow higher level
analyses (e.g., spectra, envelopes, etc.) [11]. In principle,
this corresponds to the setting of a threshold through a
hypothesis testing for normality [12], which can be
considered a Novelty Detection (or Anomaly Detection)
task, as “Novelty” (i.e., a deviation from the normal
behaviour), can be used as a damage indicator in absence of
confounding influences [13–17].

In this regard, the ISO standard [7] actually identifies
four different zones for the assessment of a machine health
state:

–
 Zone A and B: the machine is new or anyway in
acceptable condition.
–
 Zone C: the machine condition is unsatisfactory.

–
 Zone D: the vibration level is anomalous and may lead to
damage.

FromzoneA&BtozoneCafirst action limit isdefined.An
alarmshouldbe then triggereduponexceeding this threshold,
and further analysis is recommended (i.e., spectral analysis to
identify unbalance, misalignment, oil instability etc., shaft
orbit analysis, shaft centreline shift analysis, bearing temper-
atures check, visual inspection, etc.).

A second action limit, on the contrary, separates zone C
from zoneD.When a threshold of 1� 1.25 times this second
limit is reached, a trip system is supposed to either reduce
the load or shut down the machine, while a complete visual
inspection and further checks are required (i.e., tightness of
all the mounting bolts, stress evaluation, modal analysis,
Non-Destructive Testing, etc.).

It is important to point out that the ISO standard, in
its annex A, derived precise action limits for all the main
HGU types, based on a statistical analysis of an
international vibration database containing more than
7000 datasets of hydraulic machines all over the world. A
Burr distributionwasfitted on the data, and the 75-th and
90-th percentile critical values were computed to be used
as action limits. For a horizontal Pelton HGU with
pedestal bearings, for example (i.e., the Signayes case),
the generator drive-endbearing action limits are 1, 8mm/s
and 2,9mm/s for the RMS velocity of the absolute
vibration and 145mm and 225mm for the peak-to-peak
relative shaft displacement.

These values hold for an HGU at 100% of the rated
power, with bearing and oil temperatures stabilized at
normal values (i.e., roughly around 50° for a conventional
guide Babbitted bearing and 70° for a conventional thrust
Babbitted bearing). Load, speed and temperature are in
fact the main confounding influences for a correct
diagnostic, and their variation should be taken into
account with a more complex signal processing or simply
avoided by comparing only pre-filtered data at nominal,
stable values for the confounders.

It is important to point out that, according to the ISO
standard, an alarm should be triggered even in case of a
sudden change of at least 25% of the normal value (i.e., a
stable value for at least three months prior to the detected
change), even if the first action limit is not reached. Hence
it can be useful to keep track of the trends of the average
vibration levels.

Finally, the standard also prescribes the main acquis-
ition parameters:

–
 The acquisitions should represent a minimum of 10
revolutions of the machine shaft
–
 The frequency range of interest is 0,1� 3 ⋅ zb times the
rotational frequency, where zb is the number of blades of
the runner (i.e., the number of buckets for a Pelton
turbine)
–
 The sampling frequency should be at least 2,56 times the
maximum frequency. Higher sampling rates are advis-
able, but if it is reasonable to believe that the high
frequency components cannot induce significant stress
levels, it is suggested to filter them out (e.g., with a low-
pass filter).

Hence, it is clear that the maximum rotational
frequency is the main design parameter for the SCADA
acquisition system. According to [5], the HGUs rotational
speed is synchronous with the grid frequency, as the speed
governor works to control the water flow so that the
produced power matches the need of the grid.

The Signayes plant works at a nominal speed of 500 rpm
(i.e., 8.33Hz), hence, every second of acquisition contains 8
full revolutions. The acquisitions duration was then set to
three seconds. Also, the frequency range of interest
corresponds to 0.8� 500Hz, so that the selected sampling
frequency was 2560Hz (i.e., twice the 2.56 ⋅ 500Hz require-
ment).

3.1 Weaknesses and possible improvements

As it is clear from the previous section, the main features
acknowledged by the ISO standard are the RMS velocity of
the absolute vibration (inmm/s) and the peak-to-peak
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relative shaft displacement (in mm). No other feature is
accepted by the standard, as in section B.2 of [7] it is said
that, despite the various claims made in support of features
different from the RMS (i.e., the peak value, the crest
factor, etc.), no one can be trusted in all the conditions.
Even if one feature outperforms the others in some cases, in
fact, no general rule can be derived, so that the RMS-
velocity of relative vibration and the peak-to-peak absolute
vibration remain the reference features. In this regard, a
multivariate Novelty Detection able to merge the infor-
mation frommultiple features was proposed by the authors
in [11–17] to improve the basic univariate approach and
proved successful in many different applications.

However, on exceeding the first action limit, spectral
analysis is suggested to identify the cause of an abnormal
dynamic behaviour in the absolute vibration, while orbit
analysis is proposed for studying anomalies of the relative
vibration. The standard, unfortunately, does not elaborate
on these diagnostic tools, but focusing on [18], it appears
clear that such analyses are founded on additional features:

–
 Frequencies of the main relative vibration components
and vibration amplitudes relative to the first orders
–
 Orbital paths and orbits of absolute vibration:

–
 Amplitude and Phase angle of the orbits.

–
 Shaft centreline position.

Similar considerations arise in [19–24], where orbit
shape (i.e., circular vs elliptical), directivity (i.e., forward
or backward) and inclination (i.e., angle of the major axis of
the ellipse with respect to one of the sensors) are recognized
as relevant indicators for relative vibration analysis, as
defects or faults can cause changes to the orbits [19].

Hence, the goal of the present paper is to widen the ISO-
suggested normal monitoring process (i.e., based only on
RMS velocity and peak-to-peak displacement), including
additional features from spectral analysis of relative
vibration and from orbital analysis of absolute vibration.
Unfortunately, if it is easy to find the main spectral
contributions (e.g., with a simple Fast Fourier Transform
(FFT)), this is not the same for orbit-related features. In
this regard, the present work is meant to propose a
methodology, which is described in the next section, based
on a fitting of the filtered orbits via Principal Component
Analysis.

3.2 Orbit-related features and the proposed extraction
methodology

As specified in [19,22] and proven by the here proposed
simulations in Section 2.1, defects in rotating machines
cause a change in the filtered orbits, which in general can be
considered as Lissajous figures (i.e., parametric equations
describing complex harmonic motion). When the x (t) and
y (t) displacements from the two orthogonal probes are
considered, if the signals are band-filtered around a
particular harmonic (i.e., 1x, 2x of the rotational frequency
are of interest), the resulting orbit can be generally
assumed elliptic.

The main features describing an elliptic shape are:

–
 The first semi-axis rx;

–
 The second semi-axis ry;
–
 The inclination of the first semi-axis from the x axis (i.e.,
the angle #).

Indeed, the standard parametric equation of a discrete
rotated ellipse can be written as a particular Lissajous
curve rotated by an angle # (see annex A for derivation):

x nð Þ ¼ rxcos
2pn

N

� �
cos #ð Þ � rysin

2pn

N

� �
sin #ð Þ

y nð Þ ¼ rxcos
2pn

N

� �
sin #ð Þ þ rysin

2pn

N

� �
cos #ð Þ

8>><
>>:

ð5Þ

where n=0�N� 1 is the sample index, whileN is the total
number of samples.

Anyway, it is common to summarize the two semi-axes
rx and ry using the major semi-axis R and a measure of
eccentricity e (i.e., a measure of dissimilarity of the elliptic
shape to a circular shape, answering the question “how far is
the ellipse from a perfect circle?”) depending on R=max
(rx, ry) and r=min(rx, yy) as:

e ¼ 1� r2

R2
ð6Þ

The aim is then to find a suitable estimate of R, e and #
given a noise-affected measure of the trajectory
x nð Þ; y nð Þð Þ.

In order to perform the function fitting, a Principal
Component Analysis (PCA) is proposed in this work. A
mathematical investigation of PCA applied to a theoretical
(i.e., noise free) elliptic trajectory is derived in annex A to
prove the effectiveness of the methodology. In the
demonstration, the covariance matrix S of the discrete
trajectory of one entire revolution is defined given the
triplet of variables rx, ry and #. According to PCA [25], the
eigenproblem Sv= lv (where S is a 2� 2 covariance matrix,
v is a 2� 1 eigenvector and l is a scalar eigenvalue) is then
solved to prove that the eigenvalues correspond to half the
squared semi-axes, while the inclination angle of the first
eigenvector is exactly the inclination angle # of the first
semi-axis from the x axis:

l1 ¼ r2x
2
; ਡl2 ¼

r2y
2
; ਡ

v1 2ð Þ
v1 1ð Þ ¼ tan# ð7Þ

This perfectly works for the theoretical discrete
trajectory of an entire orbit (i.e., Eq. (2)). Anyway,
PCA can easily deal with noisy acquisitions and multiple
revolutions to find the best fit, proving to be the ideal tool
for estimating the triplet of orbital featuresR, e and # from
measured data. This shown also in Figures 7 and 8, on a
synthetic orbit, and proved via Monte Carlo repetition in
the next section.

3.3 Validation via Monte Carlo repetition

In order to test the robustness of the here proposed PCA
ellipse fitting, aMonte Carlo simulation was set up. Normal
random noise was added to a theoretical orbit having
rx=5.1mm, ry=2.8mm and #=15°, similar to the ones
derived in Section 2.1. The standard deviation of the



Fig. 7. PCA on ideal elliptic orbit (synthetic data).

Fig. 8. PCA on noisy elliptic orbit (synthetic, noise std=0.15).

Fig. 9. Monte Carlo repetition for noisy elliptic orbit: PCA
estimated rx, ry and #Vs random normal noise standard
deviation. In red, a 5% threshold for the estimation error.

Fig. 10. Modelled orbits and their elliptical fits (dotted).
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random normal noise was set to vary in a range 0� 2. A
thousand repetitions for increasing values of the noise
standard deviation were run. The average results are
shown in Figure 9, from which the algorithm robustness
can be appreciated, as it is able to find satisfactory
estimates (i.e., with errors lower than 5%) even if the orbit
is corrupted by a noise with SNR up to 4.5 (i.e., roughly
2.8/0.6 for ry and 5.1/1.1 for rx).

4 Results and discussion

In order to increase the confidence in the here proposed
algorithm, thiswas testedbothonmodelledorbits (Sect. 2.1)
and on real acquisitions from the Signayes HGU.

The PCA fitting of orbits modelled according to
Section 2.1 led to the results reported in Figure 10. In
particular, it can be noticed that:

–
 the PCA ellipse-fitting algorithm is effective in summa-
rizing the entire orbit with just three features (i.e., R, e
and #),
–
 in stationary working conditions, (i.e., when the only
possible source of variability is damage), the so produced
features are effective in recognizing damage.

Real acquisitions from the Signayes HGU were then
treated with the here proposed algorithm. At first, a FIR
filter was optimized to extract a single order from the
absolute vibration channels, here named x and y. An order
of 500 samples was selected for the bandpass filter, whose
spectral properties are shown in Figure 11. In Figure 12, the
resulting filtered time signals are shown together with their
composition in a 2D plane where the orbit can be
visualized.

The proposed algorithm was then run on such filtered
data to automatically identify the ellipse-characteristic
parameters R, e and #. Repeating the PCA ellipse-fitting
algorithm over time, the stability of the 1� and 2� orbits
and of their estimated characteristic parameters encourage
their use as diagnostic features. This is highlighted in
Figure 13, where the results of several months of
monitoring are shown. The here considered measurements
refer to nominal, regimated conditions (i.e., nominal speed,
nominal bearing temperatures, almost nominal power
load), so as to limit the confounding influences. Figure 13



Fig. 11. Amplitude spectra of the x and y relative displacements
with highlighted the selected filter for the 2� orbit.

Fig. 12. PCA on real signal from Signayes HGU (nominal,
regimated condition) filtered around the second order. The 2�
orbit is visualized in red and features an eccentricity of almost 1.
The major semi-axis (i.e., the first principal component) is
represented in yellow and is inclined of 138.9°.

Fig. 13. Time evolution of the PCA estimates of R, e and # on
real signal from Signayes HGU (nominal, regimated condition). In
blue the 1� orbit, in red the 2� orbit.
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shows that the estimates of R, e and # are stationary (i.e.,
wide sense stationarity), and apart from some natural
variability, they feature a constant average value and
variance. This holds also when monthly data are
aggregated (see Tab. 1) highlighting the absence of long-
term trends.

5 Conclusions

The present work proposes the integration of higher-level
features in ISO20816 HGUs vibration monitoring systems
with minimum computational effort. Standard vibration
monitoring SCADA, indeed, are commonly equipped with
accelerometers for recording absolute bearing housing
vibration and with proximity sensors for measuring the
relative shaft vibration. Hence, in order to take full
advantage of the sensors, it can be wise not to focus only on
standard features such as the RMS-velocity of relative
vibration and the peak-to-peak absolute vibration, but to
include also additional features from spectral analysis and
orbit analysis, which usually are reserved for offline
additional monitoring if particular action limits are
exceeded. Anyway, if it is true that the main spectral
contributions can be simply highlighted by tried-and-
tested algorithms (i.e., FFT), this is not the same for orbit-
related features.

It is then the scope of this paper to propose a simple yet
effective algorithm for extracting orbit-characteristic
features from filtered, relative vibration signals (i.e.,
bandpass filtered around the first spectral orders). In
particular, a PCA ellipse fitting algorithm is proposed in
this work to identify parameters such as the major semi-
axis (i.e., the first principal component R), its inclination
(i.e., the angle #) and the eccentricity e of the filtered orbit.

The parameters identification was tested both on
synthetic data (without and with added noise) that on real
acquisitions from the HGU of the Signayes hydropower
plant located in Valle d’Aosta (Italy). The analysis proved
the reliability and stability of the indicators, which are
known to be very sensitive to damage or faults that can
cause changes to the orbits (as reported in [19,22] and
proven by the here proposed hydro-dynamic simulations in
Sect. 2.1). Given the low computational burden, such an
analysis could be easily implemented online, fostering the
monitoring and diagnostics of HGUs.

Future works may involve different filtering strategies,
different fitting strategies, as well as the integration of
different sensors (e.g., temperature, absolute and relative
vibration sensors fusion or machine vision [26–28]).



Table 1. Monthly average values of Produced Power P, overall peak-to-peak relative shaft displacement Spp (ISO20816
requirement), 1� and 2� proposed orbital features: major semiaxis R, inclination angle #, eccentricity e.

Month
P Spp

1�

R ∂ e

MW mm mm ° –

12/20 14.7 73.1 7.2± 0.3 6.5± 3 0.48±10�3

01/21 14.5 73.3 7.1± 0.3 8.0± 3 0.50±10�3

02/21 14.7 73.3 7.1± 0.3 10±3 0.55±10�3

2�
R ∂ e

12/20 14.7 73.1 7.4± 0.3 141±1.5 0.96±10�3

01/21 14.5 73.3 7.4± 0.3 141.2± 1.5 0.97±10�3

02/21 14.7 73.3 7.3± 0.3 141.5± 1.5 0.96±10�3
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Acknowledgments. Thanks to C.V.A. S.p.A. for their availability
and support.
Annex A: PCA for ellipse fitting

1) Definition of the trajectory of an entire orbit having the
shape of a rotated ellipse, starting from the equation of a
discrete parametric equation of a Lissajous figure:

xpr nð Þ ¼ rxcos 2pn=Nð Þ
ypr nð Þ ¼ rysin 2pn=Nð Þ

�
ðA1Þ

where n=0�N� 1 is the sample index, while N is the
total number of samples.

In matrix notation, using the symbol “’” for transpose:

tpr nð Þ ¼ xpr nð Þ ypr nð Þ½ �0 ðA2Þ
2) Counter-clockwise rotation of an angle # in the range

0�p/2 while setting an ¼ 2pn
N :

t nð Þ ¼ cos #ð Þ �sin #ð Þ
sin #ð Þ cos #ð Þ

� �
tpr nð Þ ðA3Þ

x nð Þ ¼ rxcos anð Þcos #ð Þ � rysin anð Þsin #ð Þ
y nð Þ ¼ rxcos anð Þsin #ð Þ þ rysin anð Þcos #ð Þ

�
ðA4Þ

3) Arranging the trajectory in a single data-matrix and
solving for the corresponding covariance matrix S:

T ¼ t 0ð Þ . . . t nð Þ . . . t N � 1ð Þ½ �0 ðA5Þ

S ¼ 1

N
T 0T ¼ 1

N

XN�1

n¼0
t nð Þt0 nð Þ

S ¼ 1

N

XN�1

n¼0

x2 nð Þ x nð Þy nð Þ
x nð Þy nð Þ y2 nð Þ

� �
ðA6Þ
Remembering the Euler identities:

cosan ¼ 1

2
eian þ e�ian
� �

sinan ¼ 1

2i
eian � e�ian
� � ðA7Þ

it is possible to derive:

x2 nð Þ ¼ r2x
4
cos2 #ð Þ ei2an þ e�i2an þ 2e0

� �

þ r2y

4i2
sin2 #ð Þ ei2an þ e�i2an � 2e0

� �
� rxry

2i
sin #ð Þcos #ð Þ ei2an � e�i2an

� � ðA8Þ

y2 nð Þ ¼ r2x
4
sin2 #ð Þ ei2an þ e�i2an þ 2e0

� �

þ r2y

4i2
cos2 #ð Þ ei2an þ e�i2an � 2e0

� �
þ rxry

2i
sin #ð Þcos #ð Þ ei2an � e�i2an

� � ðA9Þ

x nð Þy nð Þ ¼ r2x
4
sin #ð Þcos #ð Þ ei2an þ e�i2an þ 2e0

� �

� r2y

4i2
sin #ð Þcos #ð Þ ei2an þ e�i2an � 2e0

� �
þ rxry

4i
cos2 #ð Þ ei2an � e�i2an

� �
� rxry

4i
sin2 #ð Þ ei2an � e�i2an

� � ðA10Þ

Considering that the exponential sum has a well-known
solution:

XN�1

n¼0
einx ¼ sin 1

2Nx
� �

sin 1
2x
� � eix

N�1
2 ðA11Þ
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if x=2p/N, i.e., an entire orbit is taken, the exponential
sums are all null, so that the covariance S formulation
simplifies to:

S ¼
r2x
2
cos2#þ r2y

2
sin2#

1

2
cos#sin# r2x � r2y

	 

1

2
cos#sin# r2x � r2y

	 
 r2x
2
sin2#þ r2y

2
cos2#

2
664

3
775

ðA12Þ
4) Eigendecomposing the covariance matrix S, it is

possible to write:

SV ¼ VL ðA13Þ
with:

L ¼ l1 0
0 l2

� �
ਡV ¼ v1 1ð Þ v2 1ð Þ

v1 2ð Þ v2 2ð Þ
� �

ðA14Þ

5) Eigenvalues can be found given:

det S � lIð Þ ¼ 0 ðA15Þ
from which a characteristic equation can be easily derived:

l2 � l

2
r2x þ r2y

	 

þ r2xr

2
y

4
¼ 0 ðA16Þ

leading to:

l1 ¼ r2x
2

ਡl2 ¼
r2y
2

ðA17Þ

6) Eigenvectors can be found as:

S � lI½ � v 1ð Þ
v 2ð Þ

� �
¼ 0

0

� �
ðA18Þ

The system of equations from an eigenvalue/eigenvec-
tor pair is underdetermined, so that, if the first pair is
considered, the following identity can be found:

�sin#v1 1ð Þ þ cos#v1 2ð Þ ¼ 0 ðA19Þ
So that:

v1 2ð Þ
v1 1ð Þ ¼

sin#

cos#
¼ tan# ðA20Þ
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