
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Optimal Path Planning for Autonomous Spraying UAS framework in Precision Agriculture / Becce, L.; Bloise, N.; Guglieri,
G.. - (2021), pp. 698-707. (Intervento presentato al convegno International Conference on Unmanned Aircraft Systems
tenutosi a Athens, Greece nel 15-18 June 2021) [10.1109/ICUAS51884.2021.9476690].

Original

Optimal Path Planning for Autonomous Spraying UAS framework in Precision Agriculture

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICUAS51884.2021.9476690

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970201 since: 2022-07-20T13:43:24Z

Institute of Electrical and Electronics Engineers Inc.

Optimal Path Planning for Autonomous
Spraying UAS framework in Precision Agriculture

Lorenzo Becce1, Nicoletta Bloise1, Giorgio Guglieri1

Abstract— This paper presents a novel guidance and control
strategy for multirotor Unmanned Aerial Systems (UASs) which
aims to provide an autonomous and safe mission in precision
agriculture applications.

In the last few years, the research in this field has always
improved thanks to the advent of new technologies and with
the launch of the first smart farms. Precision aerial spraying
of Plant Protection Products (PPP) in vineyards is the focus
of this work, highlighting several advantages in terms of
quality management, time and cost. In particular, we propose
a combination of a Traveling Salesman Problem (TSP) solver
with the well-know Theta* algorithm to investigate optimal
UAS trajectories in order to visit a specific number of plants
that require intervention. The final goal is to demonstrate the
fulfillment of the evaluated trajectory with the on-board control
system of the vehicle in provision for UAS field testing.

Finally, the planning strategy is applied to two case studies
so as to present the feasibility of a more efficient autonomous
UAS path planning.

I. INTRODUCTION

During the past decades, the progress of new and powerful
technologies in the field of Internet of Things (IoT), Big
Data, Artificial Intelligence (AI) and Robotics has sparked
the so-called fourth agricultural revolution, which relies on
essential innovation to ease the strive for food security in the
spite of demographic expansion, scarcity of natural resources
and climate transformations by increasing productivity while
reducing its environmental impact.

In this context, various research areas propose studies on
future sustainable agriculture with new instruments and oper-
ations in order to optimize crop monitoring and management
in the new Smart Farms, as in [1]. In particular, aerial robots,
commonly named Unmanned Aerial Systems (UASs), are
programmable vehicles able to perform several functions in
this sector, such as mapping crops or precisely administering
Plant Protection Products (PPP), as discussed in [2], [3]. This
specific application is growing significantly for its numerous
advantages in terms of precision and operational flexibility.
In addition, aerial vehicles collaborating with Unmanned
Ground Vechicles (UGVs) provide an excellent alternative to
traditional farming methods, as discussed in depth in [4]. In
this framework, authors propose a cooperation among UAVs,
dedicated to crop survey, and a fleet of UGVs and UAVs for
operations such as spraying for pest control.

Nowadays, the most common UAS applications in agri-
culture are crop mapping and monitoring, with a progressive

1L. Becce, N. Bloise and G. Guglieri are with the Department of
Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca
degli Abruzzi 24, 10129 Torino, Italy. Corresponding author: Nicoletta
Bloise (e-mail: nicoletta.bloise@polito.it)

shift towards new challenging applications such as crop
spraying. Anyway, restrictions for the use of drones as
carriers of spraying systems for agriculture still apply in
many countries while certification and regulatory organiza-
tions are working to remove these limitations. The use of
these vehicles in agricultural areas is less restrictive than in
urban scenarios due to the minor threats to human safety
and privacy protection, as outlined in [5], but a dedicated
regulation on aerial spraying applications has not yet been
coded. Basically, the European Aviation Safety Agency
(EASA) identifies three categories of UAS operations (Open,
Specific and Certified) with different safety requirements
depending on weight and mission. Aerial spraying operations
fall under the Specific category: they involve specialized
flight operations for which an authorisation is mandatory,
as discussed in [6]. This category places a limit on vehicle
size and Maximum Take-Off Weight (MTOW) to 25 kg,
therefore limiting the payload to be carried. On the other
hand, Beyond Visual Line-of-Sight (BVLOS) operation is
allowed. The advantages of BVLOS flight are described in
[7], where operational modes, communication technologies
and automation levels of UAS operations in urban areas are
reviewed. In particular, the study underlines the capability
of semi-autonomous (where human supervision is involved
in the decision making process) and autonomous flight
operations of minimizing human factors, which is the major
cause of UAS accidents [8]. As for the PPP spray application,
the minimization of drift problems, the improvement of spray
precision and the differentiated crop treatment will be most
essential in ensuring flight permission even in countries like
Italy where, as indicated in [9], aerial spraying of pesticides
is prohibited, except in extreme cases where its advantages
in terms of human and environmental impact are evident.

In particular, [10] carries out the preliminary design of
an agricultural UAS, equipped with a spray system and
whose MTOW is smaller than 25 kg, through a trade off
analysis between drone market and mission requirements.
Moreover, the spray system is designed by aerodynamics
analysis, with a focus on nozzles position and geometries,
and on the definition of spray operative modes. The precision
of spraying is strongly influenced by parameters such as
flight speed and altitude and nozzle configuration, to take
advantage of rotors downwash in order to minimize the drift
problem.

As for the present work, the reference scenario is the
vineyard where the benefits of employing aerial vehicles are
evidenced by the hilly terrain and irregular rows. In this situ-
ation, a careful initial mapping, producing a high-resolution

map of the work area, is of paramount importance to the
precise fulfilment of the task. [11] presents an interesting
algorithm for vineyard detection based on 3D point-cloud
maps processed from multispectral imagery obtained by UAS
surveys.

Once achieved an accurate vineyard map, the timely de-
tection of grapevine symptoms is essential to plan dedicated
flights with spraying drones to prevent larger outbreaks of
plant diseases with potentially disastrous impacts on yield.
Convolutional Neural Network (CNN) architecture, a class of
deep neural networks introduced in [12], has great success in
various applications including pattern recognition, and hence
can be useful for our project in defining target waypoints
that must be visited during the mission The main idea is
to automate the detection of vineyard problems exploiting
leaf color information, as discussed in [13]. However, the
complex aspect of a Deep Learning Network lies outside
of the scope of the present work. On the other hand, the
limited endurance of the contemporary multi-rotor UASs
calls for an optimised schedule of the trajectory touring
through the plants in need of intervention that have been
located, keeping terrain morphology, obstacles (buildings and
plants) and vehicle constraints into account while minimising
the distance flown. We propose a combination of a Traveling
Salesman Problem (TSP) solver and Theta* algorithm. The
TSP is widely studied for its many applications in modern
technology, but nonetheless is currently an open problem.
In the typical notation, the points to visit take the name of
cities. [14] provides a comprehensive survey of the main
approaches to TSP solution, some of which have been put to
use in this work, namely the Nearest Neighbor, also detailed
in [15] and used to provide a first, rough estimate, and
the more sophisticated Genetic Algorithm which refines the
solution to a highly satisfactory level.

The guidance system is completed with the introduction
of an any-angle path planning algorithm, Theta*, well de-
scribed in [16], [17]. Deriving from the better-known A*,
it overcomes some of its flaws, chiefly the suboptimality of
the solution, while maintaining its intuitiveness and speed
by introducing a simple line of sight (LOS) verification to
cut through the corners that characterise the typical jagged
A* solution. An alternative philosophy was investigated
envisioning Dubins curves [18] to generate the path after
the TSP solution has been obtained. Some papers [19], [20]
even propose to solve the TSP directly while keeping the
Dubins constraints into consideration, guaranteeing that all
manoeuvers between waypoints are feasible by the selected
vehicle. While been a very interesting approach and surely
worth further consideration, many disadvantages have been
outlined. First, the need for obstacle-avoidance required a
LOS-checking routine anyway, leaving two options: either
including such a routine in the Dubins solver, quite compli-
cated, or performing obstacle-free course planning after the
Dubins solver and then running the latter again to ensure
feasibility of the new plan, with a disastrous impact on
computational requirements and running times for the overall
planning system. Then, the three-dimensional adaptation of

the Dubins is more complicated than that of A*-like planners.
For these reasons, the Dubins approach has been rejected
quite early in the decision process.

Since operations require excellent precision, the control
system must guarantee the best performance and stability.
In general, the autopilot system is based on various layers
of Proportional, Integral and Derivative (PID) controllers to
regulate position, attitude and angular velocities [21].

In summary, the main goal of this research is to determine
an optimal and innovative UAS path planning to guarantee
precision and autonomous spray applications in vineyards,
minimizing flight application time. First of all an introduc-
tion of the overall project is presented, summarizing the
agricultural UAS main characteristics, the spray operational
modes and the automation levels. In particular, we proposed
a solution to introduce autonomous spray application in vast
areas by reducing time and cost, improving precision. Our
original contributions compared to previous papers are the
combination of TSP with Theta* algorithm to generate a
sequence of waypoints to feed the UAS autopilot in a global
framework.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the definition of the operational scenario, the
agricultural UAS dynamics and design, and the instrument
to realize autonomous missions. In Section 3, the most
important part of the research is described with regards to
routing and robust guidance algorithms. Then, in Section
4, the control system and relative dynamics constraints are
described. The simulation results are discussed in Section 5.
Finally, our conclusions are exposed in Section 6.

II. PROBLEM STATEMENT

The proposed coupling of a TSP solver with a robust path
planner guarantees high efficiency in spraying missions with
multirotor UASs, where high accuracy is requested in visiting
diseased plants. Vineyards are a reference scenario for this
project due to their typical sloped and irregular terrain and
the challenges of meticulously mapping of vine rows.

First of all, activities can be divided into three phases,
as shown in Figure 1. During the vineyard mapping phase,
small UASs are tasked with acquiring images by means
of multispectral sensors in order to obtain high resolution
3D maps. The second phase, with the help of an expert
agronomist, concerns crop monitoring for the purpose of
detecting plant problems related to water shortages or the
presence of pathogens and consequently creating prescription
maps. In this way, it will be possible to identify plants
that require prompt intervention, which are classified as
waypoints on which to plan trajectories, taking into account
desired flight speed and external disturbances. Once off-
line path planning is performed, the crop spraying phase
can start. The objective of this larger research effort is to
achieve an intelligent and autonomous plant treatment system
powered by UASs. One of the most critical elements, due to
the lack of a dedicated human pilot, is the communication
system. Thanks to the newest mobile Internet technologies,
with 5G as the latest mobile network, Cloud technologies

Figure 1. Spray applications phases with UAS

offer extraordinary opportunities, discussed in [22], to solve
on-board resource limitation: the connection of devices to
high-capacity wireless networks enables the management
of massive amounts of data off-board, conferring a high
computational power to a small and agile UAS. This allows
AI methods to assist in the identification of critical issues
on the field and to prevent serious diseases timely and
autonomously.

The development of autonomous missions has a number
of benefits, such as the reduced risk of accidents, human
factors, operative flight time and cost. Any UAS mission can
be classified based on the level of automation of the system,
as in [23], for the aircraft system. In [7], authors resume this
topic and evaluate the automation control of UAS in terms
of human involvement. Moreover, they also explain how a
high level of autonomy, combined with the BVLOS flight
authorization, represents a huge opportunity for this type of
drone operations in terms of distance, safety and flexibility
in poorly accessible area.

A. UAS design

The activities listed above enforce several UAS design
and architecture requirements. In particular, for the first
two phases, we simply need a small drone with a full HD
camera. The same is used to simulate and to evaluate path
planning algorithm at the beginning. The reference model is
the MAVTech Q4T Drone, a light UAS with a MTOW equal
to 5 kg, reported in Figure 2. It is a commercial quadrotor,
with good maneuverability and a programmable guidance,
control and navigation system. For more details, refer to [24].

Whereas for spraying applications, a bigger drone
equipped with a dedicated spray system is required. To
comply with current regulations, the maximum weight must
be less than 25 kg including payload. A preliminary design
of a concept rotary-wing UAS for aerial precision spray-
ing application is proposed in [10]. Moreover, the authors
propose two interesting application modes to minimize drift
problems exploiting the downwash of rotors. The first one

Figure 2. MAVTech - Q4T model

involves flying in a cross configuration over the vineyard,
while in the second one, the UAS flies in a X configuration
over the centre line section of two neighbouring rows of the
vineyard.

B. Quadrotor dynamics model

A simplified six-Degrees of Freedom model of a quadrotor
UAS has been put in place in order to test our guidance and
control algorithms. An invaluable source on system modeling
has been [25].

A simplified relation between the ith rotor speed and its
actions on the quadrotor frame is employed as

Ti = KT ω2
i

τi = (−1)i+1Kq ω
2
i

These relations exclude more complex effects such as blade
flapping and aerodynamics, but are sufficient to guarantee a
satisfactory model.

Figure 3. Rotor forces and moments

The general control strategy provides four control inputs
depending on the rotor speeds, defined from the combination
of rotor forces and moments illustrated in figure 3 as follows:
• total thrust: u1 is the sum of all rotor forces. Referring

to (II-B),

u1 = Tb =

4∑
i=1

KTω
2
i (1)

• rolling moment: u2 is the torque generated by the even-
numbered rotors, that is the ones placed along yb. They

generate a moment along xb as follows

u2 = τϕ = l(−F2 + F4) (2)

• pitching moment: u3 is described by a similar equation
to the previous one

u3 = τθ = l(F1 − F3) (3)

Due to the symmetry of the vehicle, the pitch dynamics
is the same as the roll dynamics.

• yawing moment: u4 is generated by taking advantage
of the directions of rotation of the rotors, by using (II-B)

u4 = τψ =

4∑
i=1

(−1)i+1Kqω
2
i (4)

Knowing the maximum and minimum rotation speeds for
the rotors, the limit control actions can be easily evaluated
by simply substituting the maximum or minimum rotational
speeds in (1), (2), (3) and (4).

In order to simplify the equations, some assumptions have
been made:
• the flexibilty of the small structure is not taken into

consideration
• the inertia matrix Jb is symmetrical, that is Jb =
diag[Jxx, Jyy, Jzz]

• the Earth is considered flat and non rotating, as is
often done when such phenomena contribute largely
insignificant accelerations on small and relatively slow
aircraft

• the ground effect is negligible, as is the wind
• the rotors are not flexible, so no flapping effect takes

place
• the motors are not modeled, and therefore do not

introduce delays in the dynamics
The translational dynamics is based on the classical North-

East-Down (NED) inertial reference frame, noted by a “G”
superscript for “ground” in the following. Therefore, XG =
{N,E,D}ᵀ will indicate the coordinates.

The total force in the ground frame is given by the sum of
drag, gravity, and total rotor thrust (u1). The complex shape
of the drone makes the estimations of aerodynamic effects
an excessively hard task, so drag is simplified as a force
proportional to the velocity components in each direction:

Fd =

kdx 0 0
0 kdy 0
0 0 kdz

ẊG

˙Y G

ŻG

u1 is rotated from the body frame, to which it is fixed, by
means of the fed back states from the rotational dynamics.

FT
G = RGb (ϕ, θ, ψ)

 0
0
−u1

In a similar manner, the equations for the rotational dynamics
can be found as a sum of three contributions:

Jbω = τm − τg − ω × Jbω (5)

The first term are motor torques due to the controls:

τm =

τϕτθ
τψ

 =

u2

u3

u4

For the gyroscopic torques due to propellers, let Jr be the
rotational inertia of the single rotor, Gz the global z-axis
versor (i.e. Gz = {0, 0, 1}ᵀ) and ωi the angular velocity of
the ith rotor. Then

τg = ω ×Gz
4∑
i=1

Jr(−1)i+1ωi

represents the gyroscopic torques generated by the propellers
rotation when coupled with the rotation of the frame. Keep
in mind that the boldface ω represents the angular velocities
with respect to the frame p, q, r as the ones picked up by the
gyroscopes on the frame, and that the signs in the sum have
to be alternated to account for the different spin directions
of the propellers as described above. The development of the
cross product yields

τg =

 θ̇
−ϕ̇
0

 Jr

4∑
i=1

(−1)i+1ωi

Finally, gyroscopic torques due to rigid body rotation are
described by classical, rigid body dynamics:

ω × Jbω =

θ̇ψ̇(Jz − Jy)
ψ̇ϕ̇(Jx − Jz)
θ̇ϕ̇(Jy − Jx)

III. PATH PLANNING

Given a number of waypoints representing the positions of
each plant to treat, we are interested in the shortest possible
tour visiting each of them. This is a common iteration of the
famous Travelling Salesman Problem (TSP). The solution
approaches of our interest are two: the Nearest Neighbor
(NN) and the Genetic Algorithms family (GA); the former
skips from city to city by simply choosing the closest. While
being very intuitive, when the number of cities grows larger
than a handful, this approach does not lead to optimal or even
acceptable results, but due to its low computational effort can
be used to work out a starting approximation to be further
refined. The inner workings of the latter family are detailed
in section III-A.

After the optimal visiting sequence has been obtained, a
more precise path planning effort is necessary due to the
variable nature of vineyards: slopes and other unforeseen
obstacles may render the flight domain very hazardous, to
the point where simple straight-line planning is not sufficient.
The availability of a map of the yard, provided by the
preliminary survey, proves very helpful in regard to this
problem: after being converted to a Digital Elevation Model
(DEM), it can be used for offline path planning around the
orographic features of the terrain and other large obstacles
such as plant rows and buildings. We decided to rasterize this
model and feed it to a suitable path planning algorithm as

discussed in section III-B. The work started on a basic 3D
A* algorithm, extended to enable any-angle path planning
as suggested by [16]. Further collision avoidance has to be
enforced through the use of on-board sensors, but lies outside
of the scope of the present work.

A. Traveling Salesman Problem

Due to the complex nature of the problem and the large
abundance of solvers openly available online, we chose to
pick one from the MATLAB Central portal. A comprehensive
toolbox built by Joseph Kirk [26], also available on GitHub,
was retrieved. The toolbox contains numerous solvers tai-
lored for several iterations of the problem, including multiple
salesmen and constrained capacity vehicle routing problems,
hence proving invaluable in future extensions of the applica-
tion, such as the case where a single yard is too large to be
covered in a single pass (i.e. checking whether the sprayer
tank runs dry before completion) or where more sprayer
UASs are to be employed simultaneously on a single yard.
These, however, are possible future developments still to be
investigated, but they reveal the flexibility provided by this
package.

In order to improve on the computational times, a sequence
of a Nearest Neighbor solver and a Genetic Algorithm has
been put together as suggested by the package author. The
NN provides a first approximation to be fed into the GA,
which can significantly improve on it by generating a number
of random permutations of the starting path, that is called
the initial population, which is then evolved through several
iterations until some condition is satisfied, such as the lack
of further improvement through consecutive iterations or a
fixed number of steps. The evolution process can be detailed
as follows: from an initial population of randomly generated
paths, based on an appropriate metric, a small number of
the best ones (four in this case) is picked. The rest is
discarded (go extinct, to maintain the biological terminology
from which GAs take inspiration), while the best are mutated
enough times so as to rebuild a new population of the original
size. The cities are contained in the rows of a matrix, so a
path is represented by a vector containing the indices of said
rows in a determined order. The possible permutations that
can operate on each path are:
• flip: a portion of the path, chosen by a random pair of

indexes (start and end of the segment) is reversed.
• swap: the positions of two randomly chosen cities in

the path are swapped.
• slide: the last city of a random segment is pulled out

and reinserted at the beginning of the segment, which
has now slid forward one position.

A brief comparison between two methods has been put in
place: the two-stage computation running NN+GA and the
GA alone, both on sets of 20, 100 and 500 cities randomly
generated in a cubic, 100-metres sided 3D space. The running
times have been recorded using the well-known tic/toc
MATLAB commands and are compared in Table I together
with the best distances found. The direct run is respectively
1.4%, 6.7% and 158.8% worse than the combined run in

NN+GA, overall GA, direct

20 cities time [s] 4.296 8.287
length [m] 632.05 640.86

100 cities time [s] 15.568 17.726
length [m] 1775.6 1883.3

500 cities time [s] 161.1 60.7
length [m] 5157.0 8191.2

TABLE I
COMPARISON BETWEEN COMBINED APPROACH AND DIRECT RUN

terms of total length, even though having taken 92.9% and
13.8% longer and 62.3% shorter. In conclusion, the combined
approach has been selected due to its more desirable results
with respect to the direct run, even at the expense of
increasingly longer computational times, especially since we
do not expect the waypoints to be as dense or numerous as
the 500-city case.

B. Theta* algorithm

The Theta* algorithm is an extension of the famous A*
search algorithm, on which a comprehensive explanation is
available in [27] and whose limit lies in the strict adherence
to the grid, which enables any-angle path planning. The
A* search algorithm was introduced in [28]. The domain
is discretised through a grid made of nodes, or vertices, for
each of which three values are retained:
• G-value: g(s) is the cost-to-come of the vertex s, that

is the smallest cost found to go from the starting node
sI to s.

• H-value: h(s) is an estimate of the cost-to-go, that is
an underestimation of the cost to go from s to the goal
node sG. Usually the best estimate, easy to calculate
and sufficient to ensure a satisfactory performance, is
the distance between s and goal

h(s) = ‖sG − s‖

• F-value: f(s) is of practical usefulness, namely the sum
of G and H, which indicates the estimated cost of a
shortest start-end path passing through s:

f(s) = g(s) + h(s)

Often, and in this case, an α value is inserted which
multiplies the heuristic H-value, called a “heuristic
weight”:

f(s) = g(s) + αh(s)

This weight influences the relevancy of the heuristic
with respect to the cost-to-go. Another source [17] uses
a slightly different method with two gains, one for
g(s) and one for h(s), to gauge the impact of the two
estimates.

• parent identification: p(s) is needed to trace back the
path from the goal to the start once A* has successfully
reached the end of the search.

The above values are calculated for each node encountered
by the algorithm and stored in one of two data structures:

• open list: it contains the nodes that are still available
for expansion.

• closed list: it gathers all the nodes which have been
expanded and for which no further examination is
possible.

The idea is to move from node to node by choosing, among
the neighbors of the current one, the one with the lowest
F-value. A simple kinematic constraint can be inserted here:
we can instruct the system to avoid moving from a cell to
the one directly above or below it, thereby restricting vertical
climb.

Introduced by [16] in 2010, Theta* foresees a Line of
Sight (LOS) checking routine between each new move s′

departing from s and its grandparent (or the parent of s, so
p(s)). If the checking routine has positive outcome, then the
path is updated so as to cut short through s and connecting
p(s) with s′ directly. This reduces the length of the solution
and creates a smoother path: A* is in fact characterized by
jagged paths due to its constraint of moving by multiples of
45 degrees. The algorithm for A* and its modification into
Theta* can be found in [16].

As done in the previous chapter with the TSP solver, a
MATLAB function implementing the A* was retrieved and
adapted for the occasion. The selected script was developed
by A. Chrabieh and is available at MATLAB Central File
Exchange [29]. This is a 2D solver that was chosen based
on the clarity and readability of the code, due to the necessity
for an intense modification. In particular, we had to extend
it to three dimensions and introduce LOS checking. This
last feature is implemented, as suggested in the appendix
of [16], by means of a modified Bresenham line drawing
algorithm. Published in 1965 to draw rectilinear segments
on rasters, it can easily be modified to check if there is a
straight, unobstructed rectilinear path between to points on a
discretized map. It simplicity gives it very low computational
requirements, hence its short execution times make it a
suitable choice.

The 3D extension of this method is made of two instances
of the 2D algorithm, working on the XY and XZ projections
of the line and merging the coordinates of the blocks. The
script we adopted was retrieved and adapted from [30].
Figure 4 shows the result of a illustrative test script for the
LOS checking routine. Green lines represent a favourable
outcome of the procedure, while red ones imply that one of
the walls got in the way.

On a side note, multiple iterations of Bresenham’s algo-
rithm can be used to check the visibility for a cylindrical
tube centered around the original line, in order to enable a
safety clearance around the UAS in pursuit of safer paths.

Another advantage of having a LOS-checking routine is
that we can verify the visibility between two consecutive
waypoints and decide whether or not path planning is needed
at all, potentially saving time and computational resources.
We set up a small environment to demonstrate the advantages
of the selected method: on a 20-by-50-by-30 cells map,
voxel obstacles have been placed so as to disrupt the linear
path between the two endpoints, including ”trees” with

Figure 4. LOS checking test

random position and height. Figure 5 shows the results of the
planning algorithms in the scenario, and Figure 6 contains
their projections in the side and top planes. In particular, the
legend of the former states the paths’ lengths in cells: we
can see that Theta* yields a 12% shorter route with respect
to A* (that is, DΘ∗ = 88%DA∗).

IV. CONTROL SYSTEM

The control system relies, to date, solely on PID control
and is organized by concentric control loops, each one
providing the set point for the next or, eventually, the control
inputs for the system itself as outlined in II-B:
• the outermost provides an attitude request based on the

distance from the goal,
• the middle one provides an angular rate request based

on the angular distance from said command,
• and the last loop listens to these rate commands in order

to generate the actual control inputs (u2, u3, u4, which
are torques) to the plant.

A further controller regulates the altitude by commanding
the cumulative rotor thrust u1, without interacting with the
others.

At the time of the actual hardware assembly, a fourth array
of controllers will be required so that the propellers are spun
at the exact speeds requested by the controller.

Inputs to the controller are the coordinates of the current
waypoint and the 12-state vector of the system, composed of
ground-referenced position (X,Y,Z), Euler angles (ϕ, θ, ψ),
linear velocities (Ẋ, Ẏ , Ż) and body frame angular rates
(p, q, r) as output by the dynamic model. The sensors and
their relative noises have not been modeled. The architecture
is visualized in Figure 7.

Before simulation, a waypoint enrichment routine adds
points to the original sequence by linear interpolation be-
tween consecutive waypoint pairs spaced by a predetermined
amount. This ensures a smoother, more regular control action
by driving the system by small steps instead of feeding
it large position errors. More refined strategies are under
investigation at the time of writing.

The setpoint for the first control loop is decided by a
dedicated selection routine, which contains an indexed list of

Figure 5. Path planning behaviour in a reference scenario

Figure 6. Projection of the resulting paths

coordinates (those provided by the path planning algorithm)
and picks the next index based on the position of the
system and the distance from the current waypoint. When
the system is within a defined minimum distance from the
current waypoint, this is considered visited and the index is
increased, making the selector skip to the next point.

A. Position control loop

The force necessary to move a multi-rotor UAS comes
from the attitude: by tilting the frame, to which rotors
are fixed, the total force u1 projects components in the
horizontal plane and hence pushes the frame horizontally:
the outermost loop requests the necessary attitude changes
for the movement.

A rotation operation around the z-axis (ψ) is performed to
project the X and Y position errors on the UAS body frame,
so as to produce a pitch and roll command respectively.
Two PID controllers are contained here, with a saturation
to avoid excessive tilting of the frame with consequent
decreases in the upward force component. This could lead to
higher movement speeds, as the altitude controller (described
below) would keep increasing the total force, leading to an
increase of the horizontal component that would make the
system less safe and precise. The simulations proposed in
the following have this limit at 25°.

An attempt to build a control logic for yaw has not

Figure 7. Controller schematic

produced any significant advantage at the time of writing
and is left for future work. However, the idea is to calculate
the goal ψ as the arctangent of the error components in the
body frame

ψreq = arctan

(
ebY
ebX

)
so as to direct the system head-on toward the next waypoint:
therefore, the position error in the body frame would lie al-
most entirely in the body-x axis, making the pitch controller
work on reducing the distance on its own, while the roll
controller concentrates on minor course-correction actions.
The flight dynamics, therefore, would resemble more closely
that of a fixed-wing system.

B. Attitude control

The middle loop controls the attitude based on the ref-
erence given by the position control. Three PID controllers
gather the respective roll, pitch and yaw commands from
the outer loop and compare them with their feedback ho-
mologous, generating body-framed angular rate commands
(p, q, r).

C. Altitude control

The Z controller calculates the altitude error from the
current goal in the ground frame and rotates it into the body
frame:

eGZ (t) = Zreq − ZG(t);

ebZ(t) =
eGZ (t)

cosϕ cos θ

This signal is then fed to the altitude PID controller, to
whose result the contribution of gravity is added. The feed-
forward of gravitational action rids the controller of an
unnecessary burden (the gravitational action is constant with
good approximation) and allows it to focus solely on altitude
corrections.

Finally, the signal is saturated with the minimum and
maximum commands available from the actuators, u1,min

and u1,max. For example, for u1:

u1,max = KT

4∑
i=1

ω2
i,max = 4KTω

2
max

and similarly it goes for the minimum.

D. Angular rates loop

The innermost loop generates the three rotational control
actions to drive the angular velocities along the body axes
in order to achieve the requested Euler angles.

A Proportional and Derivative (PD) architecture has been
preferred over the PID configuration in pursuit of a better
behaviour: we found that the addition of the integral term
would extend the settling time and, most importantly, cause
an overshoot that could hinder the precision of the control in
the wider picture. Again, saturations have been enforced to
limit the control action to the ones actually available by the
rotors, similarly to what done above for the Z-loop controller.

V. RESULTS

To demonstrate the functionality of the planning and
guidance algorithms, two typical missions have been sim-
ulated and analysed to gauge the UAS’ ability to follow a
predefined path in the presence of obstacles: a grid mission
with obstacles and an optimal path obtained by the strategy
described in the previous section with 30 waypoints. The
simulation results are achieved using software code in MAT-
LAB/Simulink. The vehicle under consideration is a small
UAS, precisely MAVTech 4QT [24].

The versatile plotting capabilities of MATLAB have been
exploited to visualise the results of the simulations by means
of a voxel plotter found, again, online and substantially
modified to fit our needs [31].

A. Grid Pattern

Our simulations start with a classic grid pattern, with a
wall-like obstacle placed in the middle, interfering with the
original trajectory so as to showcase the work of Theta*.
This type of mission is useful in all situations where the
coverage of the entire field is required, like photogrammetric
surveys and monitoring operations. Figures 8 and 9 show
the trajectories (ideal, planned and simulated) and some
relevant simulation parameters (Euler angles and control
inputs) respectively. The red dashed line is the response
of the planner to the presence of the wall, detected in the
mapping phase prior to planning and disrupting the ideal grid
(blue, solid line). The solid yellow line is the trajectory flown
by the system. For increased safety, the UAS will deploy a
Sense and Avoid system to detect barriers in real time during
the flight, and to modify the path to avoid them.

Figure 8. Grid path scenario

Figure 9. Control inputs and Euler angles

B. Random waypoint-based path

The visualisation of figure 10 is based on the likely
morphology of typical Mediterranean vineyards on hillsides,
pseudo-randomly generated with rows spaced by three me-
tres and a plant each metre along the rows. The position of
each plant is registered in an array while generating the rows,
from which the desired number of plants to treat is randomly
picked. These, represented by white circles in Figure 10,
will constitute the waypoints with an overhead clearance of
4 metres. This height was added for testing purposes, but
can be adjusted according to mission requirements. The map
created is a square with 50-metres sides and a maximum
height of circa 26 metres. In this space, as a demonstration,
30 waypoints are inserted to show the work of TSP together
with Theta* and the control algorithm. Again, the red dashed
line represents the result of Theta*, following the waypoints
sequence obtained through TSP, and the yellow line shows
the simulated trajectories.

In Figure 11, the history of controls and Euler angles

Figure 10. Trajectories for the 30-waypoints scenario

Figure 11. Control inputs and Euler angles

required and obtained is shown.

VI. CONCLUSIONS

In this paper, we have outlined a preliminary solution to
plan optimal and safe trajectories in agricultural spraying
applications.

Results are obtained for two cases proposed to highlight
the work of Theta* combined with the TSP. The next
step foresees the introduction of an energy consumption
model and mass estimation to account for the delivery of
PPP during the mission. These aspects will improve the
algorithm in terms of energy minimization and accuracy of
the control. The idea is to extend the TSP solver to produce
lowest-energy trajectories, therefore shifting the optimised
variable from the length of the tour to the energy expense,

which are not necessarily bound by a univocal relation. The
energy model will enable UAS endurance estimations to plan
missions as well as recharge times.

As stated in section III-A, the selected solver can handle
variations of the problem such as the Capacitated Vehicle
Routing Problem (CVRP) and the Multiple Traveling Sales-
men Problem (MTSP). The first allows to optimise the route
accounting for the amount of product contained in the tank
and the amount that must be delivered at each plant, in case
warning the user that the tank will not be sufficient to cover
the field in a single tour; the second one enables the use of
multiple drones to cooperate in covering larger fields. The
two algorithms can be combined with a little further effort,
deploying a CVRP with multiple vehicles.

Another important aspect will be to introduce and simulate
external disturbances, such as wind, to produce a more robust
control system and to define a wind speed limit for our
application. This study would also enable heading angle
control, which besides improving on the trajectory will be of
paramount importance in the spray accuracy over the target
location.

As work progresses, experiments will be performed via
laboratory testing at first, and then in actual vineyards to
validate the proposed algorithm.

ACKNOWLEDGMENT

This research was funded by the project “New technical
and operative solutions for the use of drones in Agriculture
4.0” (Italian Ministry of University and Research - Progetti
di Ricerca di Rilevante Interesse Nazionale – PRIN 2017,
Prot. 2017S559BB).

REFERENCES

[1] M. De Clercq, A. Vats, and A. Biel, “Agriculture 4.0: The future of
farming technology,” Proceedings of the World Government Summit,
Dubai, UAE, pp. 11–13, 2018.

[2] D. C. Tsouros, S. Bibi, and P. G. Sarigiannidis, “A review on uav-based
applications for precision agriculture,” Information, vol. 10, no. 11, p.
349, 2019.

[3] P. Radoglou-Grammatikis, P. Sarigiannidis, T. Lagkas, and I. Moscho-
lios, “A compilation of uav applications for precision agriculture,”
Computer Networks, vol. 172, p. 107148, 2020.

[4] M. Mammarella, L. Comba, A. Biglia, F. Dabbene, and P. Gay,
“Cooperative agricultural operations of aerial and ground unmanned
vehicles,” in 2020 IEEE International Workshop on Metrology for
Agriculture and Forestry (MetroAgriFor). IEEE, 2020, pp. 224–229.

[5] E. Bassi, N. Bloise, J. Dirutigliano, G. P. Fici, U. Pagallo, S. Pri-
matesta, and F. Quagliotti, “The design of gdpr-abiding drones
through flight operation maps: A win–win approach to data protection,
aerospace engineering, and risk management,” Minds and Machines,
vol. 29, no. 4, pp. 579–601, 2019.

[6] E. A. S. Agency, “Introduction of a regulatory framework for the oper-
ation of drones,” https://www.easa.europa.eu/sites/default/files/dfu/A-
NPA%202015-10.pdf, accessed: 2021-01-13.

[7] N. Bloise, S. Primatesta, R. Antonini, G. P. Fici, M. Gaspardone,
G. Guglieri, and A. Rizzo, “A survey of unmanned aircraft system
technologies to enable safe operations in urban areas,” in 2019
International Conference on Unmanned Aircraft Systems (ICUAS).
IEEE, 2019, pp. 433–442.

[8] M. Asim, D. Ehsan, and K. Rafique, “Probable causal factors in uav
accidents based on human factor analysis and classification system,”
history, vol. 1905, p. 5, 2005.

https://www.easa.europa.eu/sites/default/files/dfu/A-NPA%202015-10.pdf
https://www.easa.europa.eu/sites/default/files/dfu/A-NPA%202015-10.pdf

[9] Ministero dell’Ambiente e della Tutela del Territorio e del Mare,
“Piano di azione nazionale per l’uso sostenibile dei prodotti fitosan-
itari,” https://www.minambiente.it/sites/default/files/archivio/allegati/
vari/pubbl PAN.pdf, accessed: 2021-01-13.

[10] N. Bloise, M. C. Ruiz, D. D’Ambrosio, and G. Guglieri, “Preliminary
design of a remotely piloted aircraft system for crop-spraying on
vineyards,” in 2020 IEEE International Workshop on Metrology for
Agriculture and Forestry (MetroAgriFor). IEEE, 2020, pp. 1–6.

[11] L. Comba, A. Biglia, D. R. Aimonino, and P. Gay, “Unsupervised
detection of vineyards by 3d point-cloud uav photogrammetry for
precision agriculture,” Computers and Electronics in Agriculture, vol.
155, pp. 84–95, 2018.

[12] Y. Le Cun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, L. Jacket, and H. S. Baird, “Handwritten zip
code recognition with multilayer networks,” in [1990] Proceedings.
10th International Conference on Pattern Recognition, vol. 2. IEEE,
1990, pp. 35–40.

[13] M. Kerkech, A. Hafiane, and R. Canals, “Deep leaning approach with
colorimetric spaces and vegetation indices for vine diseases detection
in uav images,” Computers and electronics in agriculture, vol. 155,
pp. 237–243, 2018.

[14] D. S. Johnson and L. A. McGeoch, “The traveling salesman problem:
A case study in local optimization,” Local search in combinatorial
optimization, vol. 1, no. 1, pp. 215–310, 1997.

[15] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not
be greedy: domination analysis of greedy-type heuristics for the tsp,”
Discrete Applied Mathematics, vol. 117, no. 1-3, pp. 81–86, 2002.

[16] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle
path planning on grids,” Journal of Artificial Intelligence Research,
vol. 39, pp. 533–579.

[17] L. De Filippis, G. Guglieri, and F. Quagliotti, “Path planning strategies
for uavs in 3d environments,” Journal of Intelligent & Robotic Systems,
vol. 65, no. 1-4, pp. 247–264, 2012.

[18] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[19] P. Váňa and J. Faigl, “The dubins traveling salesman problem with
constrained collecting maneuvers,” Acta Polytechnica CTU Proceed-
ings, vol. 6, pp. 34–39, 2016.

[20] P. Váňa, J. Sláma, and J. Faigl, “The dubins traveling salesman
problem with neighborhoods in the three-dimensional space,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 374–379.

[21] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 2520–2525.

[22] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C.
Soong, and J. C. Zhang, “What will 5g be?” IEEE Journal on selected
areas in communications, vol. 32, no. 6, pp. 1065–1082, 2014.

[23] B. T. Clough, “Metrics, schmetrics! how the heck do you determine
a uav’s autonomy anyway,” Air Force Research Lab Wright-Patterson
AFB OH, Tech. Rep., 2002.

[24] MAVTech s.r.l., “Drone q4t,” https://www.mavtech.eu/it/prodotti/q4t-
drone/, accessed: 2021-01-08.

[25] W. Selby, “Arducopter,” https://www.wilselby.com/research/
arducopter/, accessed: 2021-01-13.

[26] J. Kirk, “Traveling salesman problem (tsp) genetic algorithm
toolbox,” https://www.github.com/rubikscubeguy/matlab-tsp-ga, ac-
cessed: 2021-01-08.

[27] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[29] A. Chrabieh, “A star search algorithm,” https://www.mathworks.com/
matlabcentral/fileexchange/64978-a-star-search-algorithm, accessed:
2021-01-08.

[30] “Three dimensional line algorithm,” https://web.archive.org/web/
20110708171823/http://www.cobrabytes.com/index.php?topic=
1150.0, accessed: 2021-01-08.

[31] I. B. Shabat, “Voxelplotter,” https://www.mathworks.com/
matlabcentral/fileexchange/50802-voxelplotter, accessed: 2021-01-05.

https://www.minambiente.it/sites/default/files/archivio/allegati/vari/pubbl_PAN.pdf
https://www.minambiente.it/sites/default/files/archivio/allegati/vari/pubbl_PAN.pdf
https://www.mavtech.eu/it/prodotti/q4t-drone/
https://www.mavtech.eu/it/prodotti/q4t-drone/
https://www.wilselby.com/research/arducopter/
https://www.wilselby.com/research/arducopter/
https://www.github.com/rubikscubeguy/matlab-tsp-ga
https://www.mathworks.com/matlabcentral/fileexchange/64978-a-star-search-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/64978-a-star-search-algorithm
https://web.archive.org/web/20110708171823/http://www.cobrabytes.com/index.php?topic=1150.0
https://web.archive.org/web/20110708171823/http://www.cobrabytes.com/index.php?topic=1150.0
https://web.archive.org/web/20110708171823/http://www.cobrabytes.com/index.php?topic=1150.0
https://www.mathworks.com/matlabcentral/fileexchange/50802-voxelplotter
https://www.mathworks.com/matlabcentral/fileexchange/50802-voxelplotter

	Introduction
	Problem statement
	UAS design
	Quadrotor dynamics model

	Path Planning
	Traveling Salesman Problem
	Theta* algorithm

	Control system
	Position control loop
	Attitude control
	Altitude control
	Angular rates loop

	Results
	Grid Pattern
	Random waypoint-based path

	Conclusions
	References

