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An integrative approach to assess environmental and economic 

sustainability in multi-tier supply chains 

Multi-tier supply chain sustainability is paramount to achieve corporate 

sustainability, due to the significant impacts from organisations beyond the focal 

firm boundaries and its direct suppliers. However, including environmental 

considerations within the dominant profit-centric logic of supply chain related 

decisions is prone to generate sustainability tensions.  

This work aims to support organisations address tensions between sustainability 

dimensions by adopting an integrative approach for sustainable supply chain 

management performance assessment thanks to an innovative eco-intensity based 

performance assessment method, which achieves a balanced consideration of 

environmental and economic performance in a weak sustainability perspective. 

The method, using primary data sourced from actual practice and featuring an 

indirect multi-tier approach with decentralised responsibilities across 

organisations, is applied to a case study of a machinery supply chain.  

The proposed integrative approach can support addressing sustainability tensions 

in the area of sustainable supply chain management, facilitate sustainable 

supplier evaluation and identify supply chain hotspots for operational 

improvement.  

 

Keywords: sustainability performance assessment; multi-tier supply chain; eco-

intensity; integrative approach; tensions; 

 

 

 

 

 

 



Introduction 

Organisations are facing mounting pressure from multiple stakeholders to consider 

sustainability concerns within their operations, due to the substantial impact industrial 

activities have on both the environment and the society (Bask et al. 2013; Frota Neto et 

al. 2008; Björklund, Martinsen, and Abrahamsson 2012; Montoya-Torres, Gutierrez-

Franco, and Blanco 2015). This pressure initially targeted single organisations, however 

it later expanded to include the wider supply chain, as it was recognised that the 

majority of the environmental impacts in a typical supply chain arises beyond the 

boundaries of the focal firm (Beavis 2015; Veleva et al. 2003). While sustainability 

challenges have become a supply chain-wide issue (Varsei et al. 2014; Sigala 2008; 

Marshall et al. 2014), focal companies are still largely considered liable for the 

unsustainable behaviours of the supply chain by stakeholders (Gimenez and Tachizawa 

2012; Hartmann and Moeller 2014; Savino, Manzini, and Mazza 2015). Focal 

companies typically have a prominent and powerful position within the supply chain, 

since they hold the contacts with the final customers or are responsible for designing the 

final product offered to the market (Seuring and Müller 2008). Moreover, they make 

sourcing decisions and manage relationships to supply chain actors, whom they are 

often able to influence (Brennan and Tennant 2018). 

However, focal companies still encounter difficulties to monitor the 

sustainability performance of their supply chains due to limited visibility and 

traceability of lower-tier suppliers (Acquaye et al. 2014; Michelsen and Fet 2010; 

Egilmez et al. 2014). The efforts of focal companies are further hampered by the 

increasing length and complexity of contemporary global supply chains (Mena, 

Humphries, and Choi 2013), calling for effective methods to holistically evaluate the 

wider supply chain performance (Fabbe-Costes, Roussat, and Colin 2011).  



Nevertheless, existing supply chain sustainability performance assessment 

methods available in the literature have largely limited the assessment scope to focal 

companies, first tier suppliers and first tier customers only, potentially underestimating 

the impact of the entire supply chain (Ahi and Searcy 2015; Tuni, Rentizelas, and Duffy 

2018). On the other hand, methods aiming to extend the performance assessment to 

lower-tier upstream suppliers either do not consider the multiple-organisations nature of 

the majority of the supply chains, assuming the existence of a central administration of 

the supply chain, or adopt environmental values based on database sources, thus not 

capturing at an adequate level of granularity the potentially different environmental 

performance of similarly structured supply chains (Tuni and Rentizelas 2018).  

This work thus first introduces an empirical application of a multi-tier supply 

chain sustainability performance assessment method adopting primary data sourced 

from actual practice. The application scope includes environmental and economic 

aspects. The method extends the assessment to include lower-tier suppliers, while still 

respecting the multiple-organisation nature and non-collaborative characteristics of the 

majority of real life supply chains. This is performed thanks to a decentralised indirect 

approach, establishing contact with lower-tier suppliers through 1st tier suppliers, and 

materialised through a recursive mechanism to pass sustainability information from one 

tier to the next, which does not require the full visibility of the extended supply chain by 

any member of the supply chain. The assessment is carried out through a set of eco-

intensity indicators that relate the environmental performance of the supply chain to its 

economic output. The adoption of eco-intensity to assess the sustainability performance 

of the supply chain is embedded in the concept of weak sustainability, which implies a 

perfect substitutability between the manufactured capital and the natural capital (Ness et 

al. 2007; Ukidwe and Bakshi 2005). As such, eco-intensity features an integrative 



approach to address tensions between sustainability dimensions, thus moving beyond 

the dominant instrumental approach to implement strategy in the existing sustainable 

supply chain management literature (Van der Byl and Slawinski 2015).   

By adopting an integrative approach to assess the sustainability performance of 

multi-tier supply chains, this work thus aims to support organisations addressing 

tensions between sustainability dimensions by achieving a balanced integration of the 

environmental and economic dimensions of sustainability. This is demonstrated through 

a case study application in the machinery industry. Thereby, the work directly 

contributes to tackle the “lack of empirical studies examining how firms effectively 

integrate the dimensions of sustainability without focusing on win-wins, trade-offs, and 

more generally, profits” (Van der Byl and Slawinski 2015). 

The remaining part of the paper is organised as follows. ‘Background and 

Literature Review’ provides details about multi-tier sustainable supply chain 

management (SSCM), eco-efficiency and eco-intensity based models in SSCM as well 

as on tensions arising in SSCM. ‘Materials and methods’ introduces the case study and 

briefly overviews the method adopted to assess the sustainability performance of the 

supply chain. The outputs of the application of the method are displayed in the ‘Results’ 

section. Finally, implications for practitioners and theory along with the limitations of 

the research are illustrated in the ‘Discussion’ section, before the final remarks in the 

‘Conclusion’ section.  

Background and Literature Review 

This work is interdisciplinary in nature, lying at the intersection of SSCM and 

performance assessment fields, focusing specifically on multi-tier SSCM. The method 

applied is interpreted through the lens of tensions in corporate sustainability via a case 

study application, focusing on the strategy implementation aspect within the supply 



chain. Accordingly, background information is provided for three key areas: multi-tier 

SSCM, performance assessment in SSCM with a focus on eco-efficiency and eco-

intensity models, and tensions in SSCM.  

Multi-tier SSCM 

Organisations are required to understand not only their first-tier suppliers environmental 

performance but also to capture the environmental profiles of the lower-tier suppliers in 

order to avoid underestimating the actual environmental impact of the supply chain 

(Genovese et al. 2013; Miemczyk, Johnsen, and Macquet 2012). This is particularly 

critical in the contemporary competitive environment, characterised by long and 

complex supply chains due to increasing outsourcing and offshoring practices (Mena, 

Humphries, and Choi 2013; Dey and Cheffi 2013). A number of large multinational 

groups, including Nike, Unilever and Nestlé, were confronted with social and 

environmental scandals caused by unsustainable behaviours of their lower-tier suppliers 

leading to corporate reputation damage and economic losses (Miemczyk, Johnsen, and 

Macquet 2012; Vachon and Mao 2008; Jabbour, de Sousa Jabbour, and Sarkis 2018).  

Focal companies may embrace a number of approaches to deal with lower-tier 

suppliers. In their work focused on a three-tiers supply chain, Mena, Humphries, and 

Choi (2013) identified open, transitional and closed triads as the options faced by focal 

firms to interact with each supplier’s supplier, depending on the existence and nature of 

the contact between focal company and 2nd tier suppliers. A similar framework is 

proposed by Tachizawa and Wong (2014), who focused specifically on multi-tier 

sustainable supply chains and extend their focus to any lower-tier supplier beyond 

triadic supply chains. Focal companies can select from four potential approaches to deal 

with lower-tier suppliers regarding sustainability, as illustrated in Figure 1: ‘Don’t 

bother’, ‘Working with third party’, ‘Direct’ and ‘Indirect’. These approaches are 



typically implemented separately, although hybrid approaches have emerged recently as 

a combination of ‘Direct’ and ‘Indirect’ approach (Dou, Zhu, and Sarkis 2017) or as in 

the cascaded approach proposed by Sauer and Seuring (2018), which prescribes two 

focal companies managing separately the upstream and downstream supply chain 

according to one of the approaches illustrated in Figure 1. While the ‘Don’t bother’ 

approach entails either focal companies having no information about the sustainability 

of lower-tier suppliers or a substantial inability to influence them, the ‘Direct’ approach 

implies a stringent control of focal companies over lower-tier suppliers (Meinlschmidt, 

Schleper, and Foerstl 2018; Tachizawa and Wong 2014). The ‘Direct’ approach can be 

holistic, thus being applied to all lower-tier suppliers, or be selectively applied to 

specific products or geographical region (Meinlschmidt, Schleper, and Foerstl 2018). 

Finally, two intermediate options are faced by focal firms that can reach indirectly the 

lower-tier suppliers either through third parties, such as non-governmental 

organisations, industry associations or governmental bodies, or through their 1st tier 

suppliers. The ‘Third party’ approach, also referred as alliance-based indirect approach, 

rely on external entities to elaborate sustainability standards and monitor lower-tier 

suppliers (Meinlschmidt, Schleper, and Foerstl 2018; Tachizawa and Wong 2014). The 

‘Indirect’ approach instead implies that the focal company establishes a contact with 

sub-suppliers through a tier-1 supplier (Tachizawa and Wong 2014), coherently with the 

dynamic of typical supply chains that are made up by interconnected autonomous 

entities (Mena, Humphries, and Choi 2013). The approach can be applied consistently 

through all 1st tier suppliers, thus being a compliance-based indirect approach, or to a 

sub-set of 1st tier suppliers, which is referred as multiplier-based indirect approach 

(Meinlschmidt, Schleper, and Foerstl 2018). This logic can be replicated in the upstream 

supply chain until the n-th tier supplier is reached (Tachizawa and Wong 2014). 



 

Figure 1. Multi-tier SSCM approaches (adapted from Tachizawa and Wong, 2014) 

 

Wilhelm et al. (2016) built up on the ‘Indirect’ approach highlighting the 

challenges associated with other approaches due to the limited control and power of 

focal companies on lower-tier suppliers and calling for an active role of 1st tier suppliers 

in disseminating sustainability requirements of focal companies further upstream in the 

supply chain. The limited applicability of the ‘Direct’ approach is also reinforced by 

recent surveys highlighting that companies are less knowledgeable about their upstream 

supply chain with the majority of supply chain executives admitting that the visibility of 

their supply chain is limited to 1st tier suppliers (Egilmez et al. 2014; O’Rourke 2014; 

Acquaye et al. 2014). In light of the above, this work adopts an ‘Indirect’ multi-tier 

supply chain approach to reach lower-tier suppliers. 

Performance assessment in multi-tier SSCM 

The involvement of multiple organisations in the assessment of the sustainability 

performance of the supply chain leads to a number of challenges, such as lack of trust, 

cultural differences, conflicting objectives and inclination towards local optimisation 



rather than systemic approaches (Hervani, Helms, and Sarkis 2005; Taticchi, Tonelli, 

and Pasqualino 2013; Hassini, Surti, and Searcy 2012). On top of the challenges 

associated with the relationships among different organisations building the supply 

chain, there is also a lack of consensus on the metrics to be adopted to assess the 

sustainability performance due to a low degree of standardisation of indicators (Ahi and 

Searcy 2015; Tuni, Rentizelas, and Duffy 2018). Quantitative metrics dominate the 

spectrum of environmental sustainability assessment of supply chains, as they are 

considered more objective, however both absolute and relative indicators are found in 

the literature (Ahi and Searcy 2015; Mintcheva 2005; Tsoulfas and Pappis 2008). 

Absolute indicators are able to capture the overall environmental performance of 

the system under analysis, but are prone to fluctuations due to changes in the produced 

outputs and are not suitable for benchmarking of different systems (Michelsen, Fet, and 

Dahlsrud 2006; Wiedmann, Lenzen, and Barrett 2009). On the other hand, relative 

indicators harmonise the environmental impact through reference values such as units 

produced, weight of products, volume of products or monetary value of products, 

overcoming such limitations (Mintcheva 2005; Koh et al. 2012). Differently from other 

reference values, the inclusion of the monetary value of products is applicable with the 

same logic to any type of product independently of its physical features.  

The relationship between the environmental and economic dimensions of 

sustainability can be expressed as eco-efficiency, which is the ratio of the economic 

value created and the sum of environmental impacts caused by an economic activity, or 

as eco-intensity, which is the reverse ratio and is expressed as the environmental impact 

divided by the economic benefit generated by an activity (WBCSD 2000; Huppes and 

Ishikawa 2005; Schmidt and Schwegler 2008). Both eco-efficiency and eco-intensity 

allow integrating in a unique indicator the environmental dimension and the economic 



dimension of sustainability, thus adopting an integrative approach between the 

dimensions of sustainability.  

A number of models using either eco-efficiency or eco-intensity were developed 

in the SSCM literature, however only few of them adopted a multi-tier perspective 

going beyond the 1st tier suppliers and direct customers of the focal company, as 

evidenced in Table 1. Among the works taking a multi-tier perspective, some works, 

like Michelsen, Fet, and Dahlsrud (2006) and Michelsen and Fet (2010), rely on generic 

data  to model the supply chain sustainability performance but do not consider the 

actual behaviour of the supply chain, ultimately adopting a focal firm-centric stance. 

Hence, they are classified as ‘Don’t bother’ in Table 1. A direct approach was instead 

taken by Quariguasi Frota Neto et al. (2009), who developed a model to calculate eco-

efficiency of a reverse chain in the electrical and electronics industry. Empirical data 

were adopted, but limited to specific production processes within the supply chain. 

Even the few authors who have developed an indirect multi-tier supply chain approach 

either did not present applications with empirical data, like Schmidt and Schwegler 

(2008), or adopted them only for a portion of the supply chain, as in Joa et al. (2014). In 

contrast to the above, this work uses empirical values also for lower-tier suppliers to 

assess the eco-intensity of the supply chain.  

 

Table 1. Summary of eco-efficiency and eco-intensity models in SSCM 

Source Indicators 

Supply 

chain 

extent 

Multi-tier 

approach 
Data 

(Charmondusit, 

Phatarachaisakul, and 

Prasertpong 2014) 

Eco-efficiency Dyad / Empirical data 

(Colicchia et al. 

2015) 
Eco-efficiency Dyad / Empirical data 



(Joa et al. 2014) Eco-intensity Multi-tier Indirect 
Empirical and 

generic data 

(Mahdiloo, Saen, and 

Lee 2015) 
Eco-efficiency Dyad / Empirical data 

(Michelsen, Fet, and 

Dahlsrud 2006) 
Eco-efficiency Multi-tier 

Don’t 

bother 

Generic data 

(LCA based) 

(Michelsen and Fet 

2010) 
Eco-efficiency Multi-tier 

Don’t 

bother 

Generic data 

(LCA based) 

(Quariguasi Frota 

Neto et al. 2009) 
Eco-efficiency Multi-tier Direct 

Empirical and 

generic data 

(Schmidt and 

Schwegler 2008) 
Eco-intensity Multi-tier Indirect No data 

(Tseng et al. 2013) Eco-efficiency Dyad / 
Based on  

experts’ opinion 

(Wu and Barnes 

2016) 
Eco-efficiency Triad / No data 

This work Eco-intensity Multi-tier Indirect Empirical data 

 

Tensions in SSCM 

Corporate sustainability tensions can surface when at least two dimensions of triple-

bottom-line sustainability are conflicting (Daddi et al. 2019). There are four approaches 

identified to manage tensions arising between the dimensions of sustainability: win-win, 

trade-off, integrative and paradox (Van der Byl and Slawinski 2015; Brix-Asala et al. 

2018).  

Win-win and trade-off approaches are classified as instrumental approaches as 

they primarily focus on the economic dimension in order to maximise profits (Van der 

Byl and Slawinski 2015). Win-win approach aims to align the environmental and/or 

social goals to the economic ones avoiding tensions, while trade-off approach accepts the 



impossibility to achieve simultaneously goals in different dimensions of sustainability 

thus requiring a choice between conflicting goals and dimensions (Van der Byl and 

Slawinski 2015; Brix-Asala et al. 2018). In this case, the priority is typically given to the 

economic dimension in order to meet expectations from shareholders and tensions are 

eliminated by the choice between dimensions of sustainability (Van der Byl and 

Slawinski 2015).  

On the other hand, the integrative approach aims to move beyond instrumental 

approaches by bringing together the dimensions of sustainability “without favoring any 

one element” and balancing divergent sustainability objectives (Van der Byl and 

Slawinski 2015; Hahn et al. 2015). According to the integrative approach, tensions are 

thus embraced rather than being dismissed and organisations should have different 

sustainability objectives, even if those are contradictory (Hahn et al. 2015). By integrating 

in a single indicator the economic and environmental dimensions of sustainability, the 

eco-intensity concept naturally adopts an integrative approach to the sustainability 

tensions, as equal importance is given to both dimensions of sustainability. Finally, the 

paradox approach further expands the integrative approach “acknowledging the 

coexistence of contradictory elements or tensions” and focusing on understanding their 

nature and how actors deal with them over time (Van der Byl and Slawinski 2015; Brix-

Asala et al. 2018). 

Tensions in the specific area of sustainable supply chain management have been 

considered detrimental to the execution of an effective sustainable strategy (Van der Byl 

and Slawinski 2015). However within SSCM, the integrative and paradox approaches to 

deal with triple-bottom-line tensions have been largely overlooked in favour of the 

instrumental approach (Van der Byl and Slawinski 2015). Moreover, studies moving 

beyond the instrumental approach remained largely conceptual in nature so far, without 



an adequate consideration of how firms can empirically integrate the dimensions of 

sustainability without having a profit-centric view (Van der Byl and Slawinski 2015). 

This work thus bridges this gap and provides new insights on the issue of addressing 

tensions between sustainability dimensions within a multi-tier supply chain context. 

This is demonstrated by applying an eco-intensity based integrative performance 

assessment method featuring an indirect multi-tier supply chain approach to an 

operating supply chain through a case study in the machinery industry.  

Materials and methods 

Single case study research is adopted in this work to empirically investigate a 

contemporary phenomenon within its real-life context (Krikke 2011; Yin 2003), that is 

in this case the sustainability performance of an operating multi-tier supply chain over a 

timespan of a year. As the phenomenon of interest is contemporary and is not affected 

by behavioural events or variables, case study is considered an appropriate research 

method to investigate the phenomenon (Yin 2003).  

Case studies are functional to explore and showcase the applicability of models 

in specific and real situations (Yin 2003; Genovese et al. 2013). In this work, the case 

study thus serves the purpose of validating the method in an operating context with 

primary data and evaluating its applicability. From a practical viewpoint, the case study 

is helpful in enhancing the understanding of the usefulness of the results obtained in 

terms of performance improvement for both the focal company and other supply chain 

tiers, being based on a real context. Finally, the case study is also demonstrating how 

the proposed integrative approach can contribute to manage tensions between 

sustainability dimensions in a multi-tier supply chain context, through theoretical 

reflection on the implementation process and on the results.  



Case study selection 

A holistic single case study was selected on the basis of representativeness (Yin 2003), 

as the supply chain under analysis is representative of contemporary manufacturing 

supply chains. Representative features of the supply chain include being spread across 

several countries as well as a complex structure due to the presence of outsourcing 

activities. Moreover, the case study was deemed of interest from an environmental 

perspective, because of the presence of several industrial activities typically associated 

with high levels of pollution, such as forging, casting and steelmaking (Van Caneghem 

et al. 2010).  

Case study overview 

The investigated case study is an international supply chain operating in the 

‘Machinery’ industry, according to the Global Industry Classification Standard (MSCI 

2015), and the final product delivered to the customer is an engine. The supply chain 

operates in a B2B environment, delivering the product to several customers worldwide.  

The three-tiers supply chain is depicted in Figure 2 and in Figure 3. The figures 

provide different types of information: Figure 2 captures the material flow along the 

supply chain, providing information about the intermediate products moved between the 

supply chain members as well as on the selected means of transport, which is truck for 

every supply chain link. On the other hand, Figure 3Figure 2 illustrates the supply chain 

links based on monetary flow and indicates the yearly quantities produced and the 

unitary prices of the intermediate products and the final product. Figure 3 also provides 

the basis for the implementation of the recursive mechanism moving downstream along 

the chain as well as for the identification of the environmental hotspots moving 

upstream along the chain, which are both based on the monetary flow between 



organisations, as detailed in Tuni and Rentizelas (2018). Finally, the boxes representing 

the organisations in both figures detail which is the core activity of each organisation 

within the supply chain. Due to the request of the focal company for the supply chain 

members to remain anonymous for commercial confidentiality purposes, organisations 

are anonymised through a coding system.  

The visual comparison of Figure 2 and Figure 3 highlights a different 

positioning in the case of companies 2.1 and 2.2. While from the material flow point of 

view they account as 2nd tier suppliers, they are considered 1st tier suppliers from a 

monetary flow point of view. The reason for this misalignment lies in the fact that 

company 2 is actually an outsourcer for the focal company (FC). Therefore, FC has 

direct business relations with 2, 2.1 and 2.2 and the payments take place directly from 

FC to each of these organisations. However, the material is shipped from suppliers 2.1 

and 2.2 directly to 2 in order to optimise the logistics and minimise the distance 

travelled by intermediate products. Regardless of this misalignment, the presence of 

supplier 3.1 defines the multi-tier structure of the supply chain even from the monetary 

flow perspective.  

 

 

Figure 2. Supply chain material flow 



 

Overall, seven organisations across three tiers built up the supply chain in its 

final format under analysis, while an eighth organisation pulled out from the study due 

to unwillingness of the company to share environmental data of its lower-tier suppliers:   

 Focal company (FC): The core business of the organisation is the production of 

engines and post-sale servicing of engines, which are used both for fixed and 

mobile applications. The company assembles the components obtained from its 

suppliers and produces the final product, which is the engine. 

 1st tier suppliers: 

o 1: the core business of the organisation is the manufacturing of forged 

steel products. The company produces the crankshaft for the engine.  

o 2: the organisation is specialised in subcontracting machining services, 

with a special focus on heavy-duty precision machining; the company 

acts as an outsourcer in the supply chain, receiving the engine block from 

suppliers 2.1 and 2.2 and machining the engine block. The machined 

engine block is then transported to FC.  

o 3: the company is specialised in heavy equipment and steel fabrications; 

it produces the engine frame and the wet sump for the engine that are 

then shipped to FC. 

o 2.1 and 2.2: the core business of both organisations is casting; they both 

produce the engine block for the final product. The engine block does not 

reach directly FC but is moved first to supplier 2 for machining.  

 2nd tier supplier: 3.1 is a steel company that is specialised in processing raw 

materials to steel. The steel plate engine frame and the steel plate oil sump are 

produced by 3.1 and then sold to organisation 3.  



 

 

Figure 3. Supply chain monetary flow 

 

According to the European Union enterprises classification, the focal company 

and the majority of organisations part of the supply chain could be defined as a large 

enterprises, as they employ more than 250 people and their annual turnover exceeds 

EUR 50 million (European Union 2003). The only exceptions are suppliers 3 and 2, 

which can be defined as a medium enterprise and a small enterprise respectively 

according to the same classification scheme. 

Given the complexity of the final product, which includes around 1,000 

components sourced from 350 core 1st tier suppliers, this work focused on a critical sub-

system of the engine to explore the applicability of the method. The investigated sub-

system accounts for one third of the final value of the engine. While this does not allow 

generalisation about the overall supply chain sustainability performance of the full 

product, it provides an adequate coverage of a significant share of the final product and 

some of its most critical component supply chain, including some critical manufacturing 



processes from an environmental perspective. Moreover, the considered sub-system 

accounts also for one third of the final product weight, which gives significant 

information in terms of the environmental impact of transport, which is assumed in this 

work to be proportional with the weight and the distance travelled, in line with 

Brandenburg (2015).  

Data collection 

Data was collected between January 2018 and September 2018. Both environmental and 

economic data refer to year 2017. The supply chain manager of FC was the only point 

of contact for the researchers. A standardised spreadsheet for data collection, available 

in Appendix 3, was sent to FC. The focal company then circulated the spreadsheet to 1st 

tier suppliers that subsequently reached out the 2nd tier suppliers, passing the 

environmental pressure information upstream along the chain, coherently with the 

indirect multi-tier supply chain management approach adopted.  

The key environmental information on the organisations part of the supply chain 

are presented in Table 2. These are represented by six environmental indicators based 

on Tuni and Rentizelas (2018), which were finalised with the supply chain manager of 

FC and deemed adequate to represent the performance against the key environmental 

impact areas of the supply chain. The indicators cover both environmental inputs 

withdrawn from natural capital as well as environmental outputs released to the 

environment. The indicators are material consumption, land occupation, water 

consumption, energy consumption, emissions to air and solid waste. Energy 

consumption includes both electricity consumption and primary energy consumption 

due to fuel consumption, while emissions to air captures scope 1 and scope 2 

greenhouse gas (GHG) emissions, which are converted to the common unit of 



measurement of kg CO2e. The key economic indicators are presented in Table 3. All 

figures are on a yearly basis and refer to year 2017.  

 

Table 2. Environmental profile of the organisations 
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The turnover generated by the investigated supply chain for FC refers to the 

entire product ‘Engine’, while only a sub-system of the product is analysed in the case 

study. This value thus required further adjustment to take this aspect into consideration, 

as next section details. Other values in the same row do not require any further 

adjustment as the turnover generated by intermediate products fully contribute to the 

supply chain of the sub-system of the product under analysis.  

 

Table 3. Economic profile of the organisations 

Indicator 1 2.1 2.2 2 3.1 3 FC 

Turnover 

[€/year] 

509,834,500 75,000,000 30,000,000 8,325,000 348,400,000 17,670,000 346,575,342 

Share of 

turnover 

generated by 

the supply 

chain [%] 

0.8 % 6.2 % 15.5 % 7.6 % 0.3 % 20.0 % 73.0 %* 

* Value refers to the share of turnover generated by the entire product and not only by 

the sub-system of the product under analysis in the case study; the sub-system under 

analysis accounts for one-third of this value;  

 



Finally, a last round of data collection was performed once the application of the 

method in the supply chain was complete. A semi-structured interview with the supply 

chain manager of FC served the purpose to evaluate the numerical results arising from 

the case study and assess the method.   

Data processing 

The decision to focus on a specific sub-system of the final product combined with a 

partial accessibility to the upstream supply chain for the selected sub-system required 

some adjustment of raw data obtained from companies in order to achieve a meaningful 

implementation of the method. These adjustments were required for two reasons. 

Sub-system of the final product. The supply chain of a sub-system of the final 

product is assessed: the economic data of the focal company need to be processed to 

consider this in order to avoid an over-allocation of the focal company’s environmental 

impact to the product supply chain under analysis in the case study. The sub-system 

investigated in this work accounts for one third of the value and of the weight of the 

final product according to the information provided by the focal company, therefore it 

was necessary to divide the monetary values provided by a factor of 3. The turnover 

generated by the sub-system under analysis at FC is thus one third of the turnover 

generated at FC by the entire engine. 

Incomplete upstream supply chain availability for the sub-system. The focal 

company adopts a parallel- or multiple-sourcing procurement strategy. Only for the 

engine block intermediate product, two alternative suppliers were accessed, whereas for 

all other intermediate products a single supplier was accessed for the study. Figure 3 

detailed the yearly quantities of the intermediate products and the final product of the 

supply chain, showing that the yearly quantities differ among the different supply chain 

links. FC produced yearly 100 units of the ‘Engine’, while its 1st tier suppliers shipped 



to FC during the same time period intermediate products in the range of 18 (supplier 1 

to FC) to 47 units (supplier 3 to FC). Since all intermediate products in the part of the 

supply chain under analysis are supplied to the focal firm in a 1:1 ratio to the final 

product according to the bill of materials, adopting raw data without any further 

adjustment would have led to a misalignment between different supply chain members 

due to different quantities of intermediate products produced, with implications on the 

environmental performance results. This urged the development of a fictitious supply 

chain along the real supply chain depicted in Figure 2 and Figure 3 in order to define a 

common 100-units reference base across the entire supply chain. The development of a 

supply chain with a common reference base enables to obtain results that are not 

affected by the yearly quantities produced and facilitates comparisons across different 

supply chain members. The 100-units reference base was selected, to match the yearly 

production of the final product by the focal company. The 100-units reference base 

supply chain was built through system expansion (Bloemhof and Walther 2016), which 

allows maintaining the absolute and relative performance of each supply chain member 

unchanged and does not affect the recursive mechanism logic. 

 



 

Figure 4. Example of building the 100-units reference base supply chain 

 

System expansion is realised by adding a fictitious supply chain member to 

cover the remaining amount of supply of the intermediate products. As an example, 

supplier 1 ships 18 crankshaft units to FC, therefore supplier 1fictitious is introduced to 

cover the remaining 82 crankshaft units necessary to produce 100 units of the final 

product, as shown in Figure 4. The features of supplier 1fictitious are proportional to those 

of supplier 1, both in terms of the environmental performance 𝐸𝑃𝑒,𝑖 of company 𝑖 for 

each specific environmental indicator 𝑒 (Equation 1) and in terms of the economic 

performance, represented by the turnover 𝑇𝑖 of organisation 𝑖 (Equation 2), where 𝑢 is 

the number of yearly units produced by company 𝑖. Same applies to environmental 

impact of transport 𝐸𝑃𝑒,𝑖,𝑗
𝑡𝑟  from supplier 𝑗 to customer 𝑖 for each environmental 

indicator 𝑒 (Equation 3, 4, 5), as the weight is assumed proportional with the units, 

while the distance is assumed to be the same in the actual and in the fictitious supply 

chain. This applies both in the case that supplier and customer of each dyad are 



fictitious and in the case where only one of the two organisations is fictitious whereas 

the other is an actual one. 

 

𝐸𝑃𝑒,𝑖−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠  =  
𝐸𝑃𝑒,𝑖

𝑢
 (100 − 𝑢)   (1) 

𝑇𝑖−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠  =  
𝑇𝑖

𝑢
 (100 − 𝑢)    (2) 

𝐸𝑃𝑒,𝑗−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠,𝑖
𝑡𝑟 =  

𝐸𝑃𝑒,𝑗,𝑖
𝑡𝑟

𝑢
 (100 − 𝑢)   (3) 

𝐸𝑃𝑒 ,𝑗,𝑖−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠
𝑡𝑟 =  

𝐸𝑃𝑒,𝑗,𝑖
𝑡𝑟

𝑢
 (100 − 𝑢)   (4) 

𝐸𝑃𝑒,𝑗−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠,𝑖−𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠
𝑡𝑟 =  

𝐸𝑃𝑒,𝑗,𝑖
𝑡𝑟

𝑢
 (100 − 𝑢) (5) 

 

Once the process was concluded, the 100-units reference base supply chain was 

complete (Figure 5). Rectangles in blue colour represent the supply chain members, as 

shown in Figure 2, whereas the yellow rectangles represent the fictitious supply chain 

members. The numbers next to each arrow represent the units of intermediate products 

moved within each dyad in the developed supply chain.   

 



 

Figure 5. Supply chain including fictitious organisations 

 

Summary of the sustainability performance assessment method 

The performance assessment method adopted in the case study is based on the method 

presented in Tuni and Rentizelas (2018), which is shaped around five conceptual pillars 

to model the sustainability performance of the supply chain as well as its structure and 

dynamics: eco-intensity; cradle-to-gate and transformed resources system boundaries; 

black-box approach; indirect multi-tier supply chain management approach; transport. 

 Eco-intensity: sustainability performance is conceptualised in the method based 

on eco-intensity, which is defined as the “environmental impact per unit of 

production value” (Huppes and Ishikawa 2005), thus being the ‘use of nature’ 

divided by the economic benefit generated by an economic activity and the 

reverse of the eco-efficiency concept (Schmidt and Schwegler 2008; European 

Environment Agency 1999). The social dimension of sustainability is thus 

outside the scope of this work. Six environmental indicators are adopted at the 



numerator of the ratio.  Eco-intensity adopts the economic dimension of 

sustainability to relate the environmental performance to a single reference unit, 

integrating two dimensions of sustainability in a single indicator.  

 Cradle-to-gate and transformed resources system boundaries: the definition of 

system boundaries is required to assess the performance of any system 

(Wiedmann, Lenzen, and Barrett 2009). System boundaries are here defined 

according to two complementary approaches. Cradle-to-gate approach defines 

the base boundaries of the supply chain, which includes all activities of the 

supply chain from raw material extraction (cradle) up to the point where the 

finished product leaves the organisation (gate)  to reach the final customer (Mele 

et al. 2011; Vasan, Sood, and Pecht 2014; Nasir et al. 2017). The method can be 

adapted also to gate-to-gate system boundaries, a sub-set of cradle-to-gate 

approach, in the case of limitations in the access to lower upstream suppliers, as 

in the case study illustrated in this work. Transformed resources approach 

defines the side boundaries of the supply chain, taking into consideration only 

“product-related suppliers” dealing with resources that will be treated, 

transformed or converted during the production processes and end up into the 

final product (Kovács 2008; Slack, Brandon-Jones, and Johnston 2013). As 

such, the domain of use of the method is limited to supply chains offering a 

physical product as the final product. 

 Black-box approach: on top of conceptualising the boundaries of the system 

under analysis, the definition of the level of granularity, i.e. the elementary sub-

system into which the system is decomposed, is also required to conceptualise 

the system and understand its complexity (Low et al. 2015). The connected and 

independent organisations part of the supply chain are considered in this work as 



the elementary sub-systems (Mena, Humphries, and Choi 2013; Christopher 

2011; Koh, Gunasekaran, and Tseng 2012). As such, each organisation is treated 

as black box and the only aspect considered is the “global relationship between 

the inputs and the outputs of the system”, while the internal dynamics of each 

company remain outside the scope of the work (Oberkampf and Roy 2010). The 

black box approach is applied consistently to the environmental and economic 

dimension of each organisation part of the supply chain, thus limiting the 

information required to be collected at each company to a limited set of 

environmental and economic inputs and outputs.  

 Indirect multi-tier supply chain management approach: the indirect approach is 

formalised in the method into an information-sharing mechanism (Tachizawa 

and Wong 2014), which works along two directions, going upstream and 

downstream. On one hand, focal firms require their 1st tier suppliers to spread 

sustainability requirements to lower-tier suppliers and to obtain relevant 

information about their sustainable behaviour (Tachizawa and Wong 2014). On 

the other hand, the requested requirements are forwarded downstream to the 

focal company thanks to an iterative process, materialised through a recursive 

mechanism.   

 Transport: the inclusion of the environmental performance of the transport 

between the different supply chain tiers is an addition of the current work to the 

method presented in Tuni and Rentizelas (2018). Products being transported are 

only spatially transformed, but do not undergo any further transformation in 

their physical nature. As a result, transport is not treated according to the black 

box approach as a separate tier within the supply chain, because there are no 

transformed resources entering the supply chain at the transport stage. However, 



the environmental impact of the spatial transformation cannot be neglected in a 

SSCM perspective (Azadi et al. 2015) and needs to be incorporated within the 

method. This is conceptually modelled by capturing the point of origin and the 

point of destination in each dyadic transport link, expressed as geographical 

locations. Moreover, the key features of this spatial transformation affecting the 

environmental impact of transport are also captured, which are the mode of 

transport and the weight of goods moved, as the environmental impact of 

transport “depend on ton-miles and the mode of transportation” (Bouchery et al. 

2012; Sundarakani et al. 2010; Kannegiesser and Günther 2013). Only two 

environmental categories are impacted by transport activities, which are ‘Energy 

consumption’ and ‘Emissions to air’, in line with Harris et al. (2011). The 

environmental impact of transport activities with respect to these two indicators 

is calculated using EcoTransIT online tool, which has already been used in the 

SSCM literature, like in Brandenburg (2015). EcoTransIT follows the 

“Methodology for calculation and declaration of energy consumption and GHG 

emissions of transport services (freight and passengers)”, adopting factors per 

distance unit and weight unit to estimate the environmental impact of transport 

(EcoTransIT World Initiative 2016; Soysal, Bloemhof-Ruwaard, and Van Der 

Vorst 2014). The indicators are calculated according to the tank-to-wheel option 

(TTW) in accordance with the transformed resources system boundary adopted 

in this work and a separate calculation is performed for each transport activity 

taking place between any two supply chain organisations.  

The five conceptual pillars were transformed into relevant mathematical 

formulations to allow the calculations of the eco-intensity results at the company level 

and at the supply chain level, as well as to calculate the absolute environmental impact 



associated to the final product, here referred to as the environmental backpack. 

Calculations are performed in accordance with the mathematical model presented in 

Tuni and Rentizelas (2018) and follow the steps identified in the flowchart represented 

in Figure 6. 

 

 

Figure 6. Method flowchart 

Results 

The application of the method in the case study generated three main outputs, which are 

presented in this section: the eco-intensity indicators at the company level (Table 4), the 

eco-intensity indicators at the supply chain level (Table 5) and the environmental 

impact allocated to the final product (Table 6), which is calculated starting from the 

eco-intensity indicators at the supply chain level, and is here referred as the 

environmental backpack associated to one unit of engine. Additionally, two applications 

of the method arising from the outputs are also outlined in this section, which are the 



supplier selection and evaluation and the hotspot identification.  

Single company eco-intensity indicators 

Table 4 introduces the eco-intensity indicators at the company level. Since the fictitious 

supply chain members’ environmental and economic performances are proportional to 

those of the equivalent supply chain members, the relative indicators, such as eco-

intensity indicators, are the same for both the fictitious and the actual organisations. 

Therefore, only the eco-intensity indicators of the actual companies are presented.  

Although companies’ core businesses differ, an initial analysis of the values 

presented in Table 4 demonstrates that the 2nd tier supplier 3.1 shows the worst eco-

intensity in three out of six environmental impact areas (material consumption, land 

occupation and water consumption). Particularly in the case of material consumption, 

the eco-intensity of supplier 3.1 is several orders of magnitude greater compared to that 

of other companies belonging to the supply chain. As supplier 3.1 converts raw material 

into steel, the consumption of raw materials is naturally very significant, as depicted by 

the findings. The 1st tier supplier 1 performs worst in two environmental categories 

(energy consumption and emissions to air), whereas FC is imputable for the worst 

performance in terms of solid waste. The findings of the case study confirm the need to 

extend the assessment of the supply chain beyond 1st tier suppliers to achieve a holistic 

view of the supply chain sustainability performance, as the biggest environmental 

impact per unit of value generated is found at the 2nd tier supplier for half of the 

environmental categories. Finally, it is interesting to notice that supplier 2 performs best 

in all four environmental input categories, which reflects its role as an outsourcing 

organisation at the edge between manufacturing and servicing, with limited inputs 

incoming into the company. 

 



Table 4. Single company eco-intensity indicators 

Eco-intensity indicators 

Eco-intensity performance 

1 2.1 2.2 2 3.1 3 FC 

Material 

consumption  
[kg/€] 2.595 0.906 0.030 0.000 14.551 0.508 0.081 

Land 

occupation 
[m2/€] 0.005 0.001 0.001 0.001 0.015 0.005 0.002 

Water 

consumption 
[m3/€] 0.002 0.001 0.001 0.000 0.490 0.000 0.001 

Energy 

consumption 
[kWh/€] 2.748 0.897 1.081 0.175 1.565 0.651 0.391 

Emissions  

to air 
[kg CO2e/€] 3.103 0.897 1.125 0.162 0.712 0.344 0.141 

Solid  

waste  
[kg/€] 0.382 0.000 0.062 0.065 0.312 0.150 2.866 

 

Supply chain eco-intensity indicators 

The supply chain results, listed in Table 5, numerate the eco-intensity indicators for the 

100-units reference base supply chain that includes fictitious supply chain members.  

This choice avoids potential bias in the results due to different values in the number of 

produced units at different supply chain members. 

The values in Table 5 represent the eco-intensity of the multi-tier supply chain 

with respect to each environmental impact and are the main output of the assessment of 

the supply chain sustainability performance. A comparison between the values of 

different eco-intensity indicators is not meaningful as different units of measurement are 

used to calculate the environmental numerator of the indicator. However, the last 

column of the table points out the difference between the eco-intensity values at the 

supply chain level compared to the focal company eco-intensity values as an 



autonomous entity without the environmental impact associated with the supply chain. 

The values demonstrate that the eco-intensity would be significantly underestimated had 

the supply chain not been considered, potentially misleading managers on the 

environmental impact areas to tackle. The values show that the supply chain eco-

intensity can be over ten times higher than the focal company’s eco-intensity in some 

instances, like in the case of material consumption and water consumption 

environmental categories. The raw material and water required to produce steel at 2nd 

tier supplier 3.1 contribute significantly to these results, which are then cascaded along 

the supply chain. The only indicator that is not affected by adopting a supply chain 

perspective is the solid waste eco-intensity, with a very limited variation between the 

supply chain eco-intensity and the focal company eco-intensity. As observed already in 

Table 4, FC was identified as the worst performing organisation in this category, 

anticipating the limited deviation of the supply chain score from the focal firm’s one.  

 

Table 5. Supply chain eco-intensity indicators 

Product:  

‘Engine’ 

Supply chain  

eco-intensity 

Difference compared to the 

focal company  

eco-intensity without  

environmental backpack 

Material consumption [kg/€] 1.292 1,487 % 

Land occupation [m2/€] 0.004  156 % 

Water consumption [m3/€] 0.016  1,443 % 

Energy consumption [kWh/€] 1.449  270 % 

Emissions to air [kg CO2 e/€] 1.197  747 % 

Solid waste  [kg/€] 2.994  4 % 

Environmental backpack of products 

Finally, the environmental backpack associated to the product was calculated (Table 6). 



Once again, the values refer to the 100-units reference base supply chain. The 

environmental backpack was calculated both for the entire yearly production of the final 

product and for one unit of the engine, which is the typical unit the final product is 

priced at, thus introducing an alternative reference unit for the environmental impact.  

 

Table 6. Environmental backpack associated to the final product 

Product:  

‘Engine’ 

Overall environmental 

backpack per year 

Environmental backpack  

per engine unit 

Material  

consumption  
[kg/year] 108,987,007 [kg/unit] 1,089,870 

Land  

occupation 
[m2/year] 348,190 [m2/unit] 3,482 

Water  

consumption 
[m3/year] 1,321,281 [m3/unit] 13,213 

Energy  

consumption 
[kWh/year] 122,226,841 [kWh/unit] 1,222,268 

Emissions  

to air 
[kg CO2 e/year] 100,947,048 [kg CO2 e/unit] 1,009,470 

Solid  

waste  
[kg/year] 252,495,060 [kg/unit] 2,524,951 

 

A quota of the overall energy consumption and emissions to air is due to the 

impact of transport. However, the contribution of transport towards the overall 

environmental backpack in the case study, i.e. the sum of the environmental impacts 

associated to all dyadic transport activities within the supply chain, is limited compared 

to the impact of supply chain members. Transport accounts for 51,964 kWh/unit and 

13,142 kg CO2 e/unit, which represent 4% and 1% of the overall environmental impact 

imputable to the supply chain respectively. Despite being an international supply chain 

with long distance transport required, the supply chain under analysis includes some 

very energy-intensive and carbon-intensive production activities, such as forging, 



casting and steelmaking, which take on the biggest share of the environmental impact in 

these categories.   

Figure 7 details the environmental backpack by identifying the relative 

contribution of each supply chain member towards the supply chain total. Given the 

minimal contribution of transport towards the overall supply chain environmental 

impact, impacts arising from each transportation link were merged with the impacts of 

the upstream tier involved in each transportation link in the figure.  

 

 

Figure 7. Environmental backpack breakdown by supply chain member 

 

The environmental backpack of some environmental categories is completely 

dominated by one company: FC is responsible for the over 90% of the overall waste 

generated throughout the product supply chain, whereas 3.1 is responsible for the 

majority of water consumption. In addition, emissions to air environmental backpack is 

largely imputable to a single organisation, with supplier 1 being accountable for over 

60% of them. On the other hand, other environmental categories show a more balanced 



pattern in terms of absolute environmental impact through the supply chain members. 

This is the case especially for land occupation, where no single organisation contributes 

for more than 40% of the supply chain environmental backpack.  

While the eco-intensity results show the relative performance of each supply 

chain member, the environmental backpack breakdown (Figure 7) highlights the 

absolute environmental impact contribution allocated to each supply chain member for 

the product under analysis, thus providing an additional piece of information. The 

absolute values are affected by the annual turnover each company generates through the 

supply chain. This is particularly evident in the case of material consumption, where 

supplier 1 contributes to almost 50% of the overall absolute consumption while 3.1 is 

accountable for 32% in absolute values, despite their eco-intensity indicators being 

respectively 2.595 kg/€ and 14.551 kg/€.  

Supplier evaluation 

The method is able to support supply chain managers in the evaluation of alternative 

suppliers. This is performed in the case study by evaluating two active parallel suppliers 

(2.1 and 2.2), however the application can be potentially extended to tentative suppliers 

as part of the supplier selection process. Both organisations 2.1 and 2.2 supply the 

engine block to the focal company, which is machined by outsourcer 2 before reaching 

the focal company. The core business of both companies is casting, and the products 

offered to the market are also comparable.   

The numerical results of the two parallel suppliers were originally presented in 

Table 4 and are recalled for benchmarking purposes in Table 7. The scores only take 

into account the internal performance of the suppliers and do not consider any 

contribution from the supply chain, as no suppliers of 2.1 and 2.2 were involved in the 

case study. The two companies show comparable performance in terms of two eco-



intensity indicators (land occupation and water consumption), which however take on 

limited importance for companies involved in casting operations. On the other hand, 

since casting is an energy-intensive industry, a greater attention is paid to energy 

consumption eco-intensity and emissions to air eco-intensity with the latter largely 

emanating from energy consumption. For both eco-intensity indicators, 2.1 performs 

better than 2.2, with an improved performance of 17% and 20% respectively. Supplier 

2.1 also scores significantly better in terms of solid waste eco-intensity, as the company 

barely generates any waste. The situation flips over if the material consumption eco-

intensity is considered: in this case, the consumption of 2.2 is very limited which is 

reflected in a lower eco-intensity score.   

However, in order to effectively compare the overall performance of the two 

parallel suppliers, an aggregated index is required to provide comprehensive 

information about the behaviour of the suppliers (Zhou et al. 2012).  Therefore, 

normalisation, weighting and aggregation of the indicators are required to obtain an 

aggregated eco-intensity index (Salvado et al. 2015; Zhou et al. 2012).  

Normalisation can be performed by comparing different “alternatives with 

respect to specific aspects” (Tugnoli, Santarelli, and Cozzani 2008), which are in this 

case the eco-intensity indicators. This approach, also known as internal normalisation, is 

suitable when the alternatives are comparable in nature (Tugnoli, Santarelli, and 

Cozzani 2008), a requisite met in this instance as the parallel suppliers belong to the 

same industry with comparable products offered to the market. Normalisation is 

achieved by dividing the eco-intensity indicator 𝐸𝐼𝑒,𝑖 of each supplier 𝑖 with respect to 

environmental category 𝑒 by the sum of the eco-intensity indicators of the 𝑧 suppliers 

being benchmarked for each environmental indicator 𝑒 (Tsoulfas and Pappis 2008; 



Mahdiloo, Saen, and Lee 2015), thus respecting the unit-invariance of indicators 

(Equation 6).  

 

𝐸𝐼𝑒,𝑖,𝑛 =  
𝐸𝐼𝑒,𝑖

∑ 𝐸𝐼𝑒,𝑖
𝑧
𝑖

      (6) 

 

The normalised eco-intensity indicators of suppliers 2.1 and 2.2 are also 

displayed in Table 7, highlighting in green the more environmentally sustainable 

supplier and in red the more eco-intense supplier for each environmental category. 

The weighting step was accomplished through equal weighting as it generates 

“results nearly as good as those optimal weighting methods” (Wang et al. 2009), while 

requiring limited knowledge and input from decision makers. Finally, the normalised 

eco-intensity indicators are aggregated according to linear aggregation (Salvado et al. 

2015). The total eco-intensity of the parallel suppliers is calculated by adding the 

normalised score in an aggregated index as it appears at the bottom line of Table 7. The 

aggregated eco-intensity scores show that the suppliers are very close in terms of overall 

sustainability performance; however, supplier 2.2 has a small edge, performing 5% 

better than supplier 2.1, with an overall eco-intensity score of 2.934.  

The follow-up interview with the supply chain manager of FC confirmed the 

validity of the comparative results of parallel suppliers 2.1 and 2.2, as the outcomes 

accurately represent the different technological solutions and production processes 

adopted. The different preparation of moulding boxes allows 2.2 to internally recycle a 

high share of the metal sward and to use lower quantities of material to produce the 

same products, resulting in reduced material consumption, a result that is confirmed by 

the findings of the case study. On the other hand, 2.1 outscores supplier 2.2 in the key 

environmental indicator for casting industry, which is the energy consumption. 



Organisation 2.2 adopts a more energy-intensive production process due to the adopted 

casting technologies, which requires more time in the foundry for the produced casts, 

also leading to a higher value of emissions to air eco-intensity, due to the less 

technologically advanced production process. 

 

Table 7. Normalised eco-intensity scores of parallel suppliers 

Eco-intensity 

indicator  

(at the 

company 

level) 

2.1 2.2 

Eco-intensity 
Normalised 

eco-intensity  
Eco-intensity 

Normalised 

eco-intensity 

Material 

consumption 
0.906  kg/€ 0.968 0.030 kg/€ 0.032 

Land  

occupation 
0.001 m2/€ 0.550 0.001 m2/€ 0.450 

Water 

consumption 
0.001 m3/€ 0.645 0.001 m3/€ 0.355 

Energy 

consumption 
0.897 kWh/€ 0.454 1.081 kWh/€ 0.546 

Emissions  

to air 
0.897 kgCO2 e/€ 0.444 1.125 kgCO2 e/€ 0.556 

Solid  

waste 
0.000 kg/€ 0.006 0.062 kg/€ 0.994 

Total 
  

3.066  
 

2.934 

 

Hotspot identification 

The recursive mechanism adopted by the method is functional to identify eco-intensity 

hotspots along the supply chain. This is performed through an iterative process that 

aims to identify the supply chain branches and organisations with the highest eco-

intensity in order to prioritise action through internal operational improvement at the 

companies where the environmental impact per value generated is the highest. While 

the eco-intensity indicators are cascaded downstream along the supply chain, the 



recognition of the hotspots follows a recursive logic going in the opposite direction, 

moving upstream from the focal company and tracing back the least environmentally 

sustainable company per each indicator. A different number of iterations is required to 

reach the hotspot, as the focal company does not have visibility of suppliers beyond tier-

1, as detailed in Figure 8, Figure 9 and Figure 10, where the hotspot identification path 

is highlighted in a blue dotted line. In the same figures, companies are represented in a 

relative colour scale. At each iteration, the organisation involved in the process 

(depicted with bold outline), is represented according to its internal eco-intensity 

without environmental backpack, whereas its suppliers are represented according to 

their eco-intensity including the environmental backpack associated to their upstream 

supply chain, which is the actual value that is passed by each supply chain member to 

the next one. The eco-intensity is recalculated in a similar manner for each subsequent 

iteration at lower tier levels, as per the example of Figure 8. 

The case study highlights three different examples of positioning of the hotspots, 

with a different number of iteration stages required to identify the supply chain 

hotspots. Two iterations are required to identify the hotspots of material consumption, 

land occupation and water consumption eco-intensity. In all these instances the hotspot 

is located at the 2nd tier supplier 3.1. However, in all these cases, the focal company 

does not have a direct visibility of the poor environmental performance of supplier 3.1, 

but recognises instead supplier 3 as the most eco-intense organisation among its 1st tier 

suppliers, as the example for water consumption shows in Figure 8. This is achieved at 

the first iteration by comparing its internal eco-intensity excluding backpack with the 

eco-intensity values including backpack passed on by its 1st tier suppliers (Figure 8a) 

and identifying supplier 3 as the focus for reducing water consumption. Then, it is 

company 3 that, repeating a similar analysis, performs the second iteration, by 



comparing its own internal water consumption eco-intensity excluding backpack with 

the eco-intensity value passed on by its supplier 3.1 (Figure 8b).  From the second 

iteration, it is recognised that the hotspot is located at the 2nd tier supplier 3.1 and that 

the operational improvement for water consumption in the supply chain has thus to be 

prioritised at 2nd tier supplier 3.1. This constitutes an example of indirect supply chain 

management approach, as the hotspot is identified at the 2nd tier of the supply chain 

without FC having direct visibility of its supply chain beyond its direct suppliers. 

A similar mechanism is applied for the other environmental categories where the 

hotspot is located at the 2nd tier supplier 3.1, such as material consumption and land 

occupation. 

 

 



 

Figure 8. Hotspot identification iterations for water consumption eco-intensity: iteration 

at the focal company (a) and iteration at 1st tier supplier 3 (b) 

 

On the other hand, only one iteration is required to identify the hotspot for the 

energy consumption and emissions to air eco-intensity indicators, which are both 

located at the 1st tier supplier 1. The example for energy consumption is depicted in 

Figure 9. In this case, the focal company identifies supplier 1 as the most eco-intense by 

comparing its internal eco-intensity excluding backpack with the eco-intensity 

indicators of all its 1st tier suppliers including backpack. The process is not repeated at 

supplier 1 as there are no lower tier suppliers upstream in that specific supply chain 

branch. Therefore, hotspot is localised at 1 and operational improvement for energy 

consumption and emissions to air has to be prioritised at this company.  

 



 

Figure 9. Hotspot identification iteration for energy consumption eco-intensity 

 

Finally, no iteration is required for the solid waste eco-intensity, as the focal 

company recognizes itself as the hotspot for this environmental impact by comparing its 

internal eco-intensity performance excluding backpack with the eco-intensity indicators 

including backpack that are passed on by the 1st tier suppliers (Figure 10). Therefore, 

operational improvement for solid waste has to be prioritised at the focal company. 

 

 

 



Figure 10. Hotspot identification for solid waste eco-intensity 

 

Discussion 

The application of the eco-intensity method in an operative machinery supply chain 

highlights a number of implications for practitioners and academics. The former ones 

are associated with the applicability of the method and its results to support managerial 

decision-making as well as to the management of sustainability tensions. Additionally, 

the application of the method provides also insights for theory, both in the area of 

SSCM tensions and in the area of SSCM performance assessment. 

Implications for theory 

Implications for SSCM tensions 

The adoption of an eco-intensity method to assess the sustainability performance of the 

supply chain constitutes an integrative approach towards environmental and economic 

sustainability, without prioritising any of the two dimensions (Hahn et al. 2015). The 

identification of hotspots and the benchmarking of alternative suppliers can serve as the 

starting point to direct operational improvement actions within the supply chain. The 

values of the eco-intensity indicators can be lowered and therefore improved through 

four paths that fall within the instrumental logic, as outlined in Figure 11: 

(A) Improvement of the environmental performance, which means maintaining a 

stable economic performance while lowering the environmental impact for one 

or more environmental indicators; this improvement path moves along the 

environmental performance axes at the intersection between the ‘win-win’ and 

the ‘trade-off with environmental preference’ quadrants; 



(B) Improvement of the economic performance, which means maintaining a stable 

environmental performance while increasing the generated turnover; this 

improvement path moves along the economic performance axes at the 

intersection between the ‘win-win’ and the ‘trade-off with economic preference’ 

quadrants; 

(C) Simultaneous improvement of the environmental and economic performance: a 

combination of the two previous strategies, which implies an improvement path 

anywhere in the ‘win-win’ quadrant;  

(D) Improvement of the economic performance proportionally greater than the 

worsening of the environmental performance; this improvement path lies 

anywhere in the orange area within the ‘trade-off with economic preference’ 

quadrant;  

 

However, an additional improvement path is offered according to the integrative 

method proposed in this work, which does not fall within the instrumental logic: 

(E) Improvement of the environmental performance proportionally greater than the 

worsening of the economic performance; this improvement path lies anywhere 

in the orange area within the ‘trade-off with environmental preference’ quadrant;  

 

This last option, which is embedded in the concept of weak sustainability and 

substitutability between the sustainability dimensions, allows clearly distinguishing 

between the instrumental logic and the integrative logic to address sustainability 

tensions. While the instrumental perspective prescribes that sustainability should not 

affect the economic performance (Xiao et al. 2019; Van der Byl and Slawinski 2015), 

thus limiting the improvement area to the green-bounded rectangle in Figure 11, the 



integrative approach adopted in the method rotates the improvement area by 45° 

clockwise, as defined by the red triangle in the figure, without prioritising any 

sustainability dimension over the other. Therefore, the approach proposed in this work 

offers an alternative lens through which addressing sustainability tensions can be 

managed. 

Although the weak sustainability perspective has been targeted with criticism 

due to its substantial anthropocentric perspective towards the environment and its 

assumptions of virtually infinite natural capital (Mebratu 1998; Costanza and Daly 

1992; Hopwood, Mellor, and O’Brien 2005), the eco-intensity application of weak 

sustainability adopted in this method is functional to overcome tensions between 

sustainability dimensions by obtaining a balanced evaluation of the environmental and 

economic dimensions of sustainability. As a result, the method offsets the asymmetry 

power between the economic element and other elements of sustainability – the 

environmental dimension in this specific case, avoiding the traditional profit-centric 

approach currently adopted in sustainable supply chain management (Van der Byl and 

Slawinski 2015; Montabon, Pagell, and Wu 2016; Matthews et al. 2016). 

 



 

Figure 11. Eco-intensity improvement paths 

 

The application of the method can lead to the development of inter-

organisational tensions within the supply chain (Brix-Asala et al. 2018), due to the 

modifications of existing supply chain practices (Van der Byl and Slawinski 2015). 

Structural, psychological and behavioural supply chain tensions can arise, which can 

affect the relational dynamics between supply chain members (Tura, Keränen, and 

Patala 2019). Although these types of tensions were not within the core aim of this 

work, they may affect the applicability of the method; hence, some initial findings from 

the case study application are discussed. 

The structural tensions are related to the increased monitoring and controlling 

needs at the focal company and the potential reduced power positions of suppliers, 

either real or perceived, in each supplier-buyer dyad along the supply chain due to the 

lower bargaining power. This is usually linked to suppliers being smaller in size than 

buyers or substituted by buyers, a case that was valid in the majority of dyads within the 



case study, although some counterexamples, like dyads supplier 3.1-buyer 3 and 

supplier 1-focal company, exist and were not affected by such structural tensions. While 

the indirect multi-tier approach facilitates the duties of the focal company in terms of 

data collection and control over its supply chain, a certain degree of monitoring is still 

required as a new additional task is required to the suppliers and the focal company is 

naturally responsible for the control activities as the environmental requirements stem 

from it. 

On the other hand, psychological tensions refer to the potentially reduced 

motivation of suppliers to adhere to codes of conduct if they do not consider the 

environmental sustainability indicators critical to their business (Tura, Keränen, and 

Patala 2019).  

Finally, behavioural tensions can arise due to the indirect multi-tier supply chain 

approach adopted by the method. As detailed in the case study overview, an additional 

1st tier supplier was initially involved in the study but decided to pull out to avoid 

sharing the data about its lower-tier suppliers. The willingness of 1st tier suppliers to 

collect and share information about the lower-tier suppliers with the focal company has 

been identified as key enabler to achieve effective multi-tier SSCM (Dou, Zhu, and 

Sarkis 2017; Grimm, Hofstetter, and Sarkis 2014). However, it can determine inter-

organisational tensions due to additional pressure on suppliers to collect and share 

environmental data with their customers (Tura, Keränen, and Patala 2019). This 

pressure would especially target 1st tier suppliers that would be asked not only to meet 

the sustainability requirements of the focal company but also to forward these 

requirements to 2nd tier suppliers in order to engage them into the assessment according 

to the recursive mechanism logic (Tura, Keränen, and Patala 2019). In the absence of 

legislation requirements to force suppliers to assess the sustainability performance of 



their own suppliers, companies need to seek alternative options to overcome such 

tensions. While the power asymmetry in each buyer-supplier dyad has been identified as 

a key factor affecting the successful implementation of multi-tier SSCM (Grimm, 

Hofstetter, and Sarkis 2014; Dou, Zhu, and Sarkis 2017), this can also trigger additional 

structural tensions, potentially generating a poisonous escalation of tensions and needs 

to be carefully managed by powerful players in the supply chain.   

Implications for multi-tier SSCM performance assessment 

The case study presented in this work expands also the body of literature in the 

emerging field of multi-tier supply chain management for sustainability, focusing 

specifically in the area of multi-tier SSCM performance assessment. While the research 

on multi-tier supply chain management has stayed mostly at a conceptual level, the case 

study provided an empirical application of the multi-tier indirect approach theorised by 

Tachizawa and Wong (2014). The case study demonstrated a successful implementation 

of cross-tier collaboration in the area of SSCM performance assessment (Mueller, dos 

Santos, and Seuring 2009; Koh, Gunasekaran, and Tseng 2012; Tachizawa and Wong 

2014), with the focal company able to assess the sustainability performance up to the 2nd 

tier upstream despite not having visibility beyond its 1st tier suppliers. The application 

of the method thus opens interesting opportunities to effectively achieve a supply chain-

wide sustainability assessment adopting a cascading assessment of suppliers’ 

sustainability performance (Schöggl, Fritz, and Baumgartner 2016).  

The multi-tier indirect approach was implemented in the case study through a bi-

directional information-sharing mechanism. On one hand, the information-sharing 

mechanism moved upstream, as the focal company pressured its suppliers to adopt a 

simplified standardised data collection tool to gather sustainability-related information 

and to forward this tool to lower-tier suppliers in order to obtain information about their 



sustainability performance (Tachizawa and Wong 2014). The standardised data 

collection tool thus supported supply chain coordination as well (Tachizawa and Wong 

2014; Ciliberti et al. 2009). 

On the other hand, the downstream information-sharing mechanism involved the 

actual forwarding of the requested requirements downstream to the focal company. 

These information-sharing mechanisms require a certain degree of standardisation to 

allow direct suppliers to obtain sustainability information from the focal firm’s indirect 

suppliers (Ciliberti et al. 2009). This was achieved in this research by simplifying the 

data collection process thanks to the black box approach, in order to “reduce the effort 

of both the information gatherer/assessor and that of the information provider in order to 

foster supply chain-wide sustainability assessment” (Schöggl, Fritz, and Baumgartner 

2016). The data collection at the company level limits the burden of data collection for 

upstream suppliers and requires limited effort from the focal company thanks to the 

indirect approach. The data collection tool used in this case study could inform any 

potential future standard development to apply the specific method for sustainability 

assessment in supply chains. 

Finally, the assessment features the adoption of primary data sourced from 

actual practice along the entire supply chain, managing to achieve a more detailed 

understanding of the supply chain sustainability performance. The level of granularity 

reached is much more detailed compared to methods adopting generic data, such as 

LCA, offering an increased support to decision makers to differentiate between 

alternative suppliers and supply chain branches with similar design, but potentially 

significantly different performance.  

Implications for practitioners 

The outputs obtained through the application of the method can directly support supply 



chain managers, both in the supplier selection and evaluation process and in the 

identification of hotspots to guide operational improvement, as highlighted in the 

‘Results’ section. Moreover, the application of the method offered insights on how the 

method and its outputs could support practitioners in addressing SSCM tensions.  

Such tensions are inherently resulting from the combination of multi-

dimensional sustainability issue with the pressure originating from multiple 

stakeholders (Fayezi, Zomorrodi, and Bals 2018). These tensions primarily target 

procurement professionals within focal companies, as they are the main interface 

between the organisation and its supply chain, generating procurement sustainability 

tensions (Fayezi, Zomorrodi, and Bals 2018). From a focal company perspective, the 

indirect supply chain management approach can practically help to distribute tensions 

across organisations part of the supply chain by transferring part of sustainability 

responsibilities and associated risks to suppliers and sub-suppliers (Fayezi, Zomorrodi, 

and Bals 2018). This is achieved at a first stage by sharing the responsibilities of data 

collection with suppliers, maintaining focal company directly in charge of the data 

collection only within its organisational boundaries, as the case study demonstrated.  

Furthermore, the identification of hotspots contributes towards the goal of 

tensions distribution by clearly identifying the impact pathway along the supply chain 

and having a data-driven support to implement operational changes within the supply 

chain to improve sustainability performance. The objective way of quantifying 

environmental impacts along the supply chain offered by the method applied using 

primary data sourced from actual practice, allows a better understanding of the 

sustainability issues within the supply chain, and facilitates discussions on 

improvements based on hard evidence, which could help alleviating tensions arising 

from different (or lack of) understanding or measuring methods adopted by different 



organisations along the supply chain. However, the implementation on a large scale of 

an indirect multi-tier approach needs to be supported by contractual agreements 

between organisations to achieve a mutual understanding of sustainability requirements, 

otherwise there is a risk to simply transfer pressure and associated tensions along the 

supply chain exploiting asymmetrical power distribution (Fayezi, Zomorrodi, and Bals 

2018).  

The integrative approach proposed and applied in this work can also support 

changing the dominant perspective in supply chain management practice moving away 

from an instrumental approach in managing tensions between sustainability dimensions. 

In a context where sustainability becomes increasingly important for customers and 

stakeholders, practitioners can benefit from understanding that they can adopt 

approaches, such as the one proposed in this work, where there is no direct priority on 

the economic dimension, but rather environmental impact reduction could be pursued 

even at the expense of economic performance, as in path E of Figure 11.  

Limitations of the research 

As every piece of research, this work is not immune from limitations. First, given the 

exploratory nature of the study, this was limited to a holistic single case study in an 

international machinery supply chain. As such, the case study presented in this work 

shares limitations of this case study design. Operational details within the supply chain 

were not examined (Yin 2003) and the results of the application of the method were 

affected by the data fed into the mathematical model as inputs. Since each organisation 

was responsible for its internal self-assessment, a reliable mechanism to verify the 

quality of environmental data provided by suppliers needs to be identified in the future. 

Moreover, the majority of organisations were quite structured with dedicated managers 

to cover sustainability issues because of their size. Future research is required to 



investigate the applicability of the method in supply chains dominated by small and 

medium enterprises or in different industries in order to generalise the findings and to 

strengthen the external validity of the case study through replication logic (Meredith et 

al. 1989; Yin 2003). Second, the case study was limited to a portion of the supply chain 

of the product under analysis, therefore an application of the method to the entire supply 

chain is still to be performed. This would allow verifying the applicability of the method 

on a larger scale and to understand the impact on sustainability associated to the 

plethora of small suppliers present in the majority of manufacturing supply chains. The 

extension of the research in this direction would also aim to explore the issue of 

inaccessibility of suppliers, whose participation to the assessment is currently voluntary, 

in order to investigate behavioural tensions arising in the supply chain. As the previous 

section detailed, in the absence of legislative requirements, focal companies need to find 

an effective way to make the recursive mechanism roll along the upstream supply chain. 

Finally, this study addressed the tensions between different dimensions of sustainability 

but did not fully explore other types of tensions potentially arising between different 

supply chain members as a result of the implementation of the proposed method, such 

as structural, psychological and behavioural supply chain tensions, which can affect the 

relational dynamics between supply chain members (Tura, Keränen, and Patala 2019). 

These tensions can arise due to the modifications of existing supply chain practices 

(Van der Byl and Slawinski 2015). A longitudinal study with additional qualitative data 

would serve this purpose in the future.  

Conclusions 

This work evaluated an indirect approach to assess the sustainability performance of a 

multi-tier supply chain through an eco-intensity method that features an integrative 

approach to address tensions between environmental and economic dimensions. The 



method was applied to an international machinery supply chain adopting single case 

study research. Six eco-intensity indicators were calculated for each organisation part of 

the supply chain, as well as for the supply chain under analysis. Moreover, the 

environmental backpack associated to the final product was calculated, which is the 

absolute environmental impact allocated to one unit of the final product.  

The outputs of the method were functional to compare alternative parallel 

suppliers and to identify the eco-intensity hotspots along the supply chain in order to 

direct operational improvement, thus supporting decision making of supply chain 

managers to make the supply chain more sustainable. The selection of eco-intensity 

indicators to assess the sustainability performance of supply chains determines a shift 

from the traditional instrumental logic adopted in SSCM literature towards an 

integrative approach to address tensions between sustainability dimensions. Eco-

intensity performance improvements can be achieved even in the case of deterioration 

of the economic performance if this is accompanied by a disproportionally higher 

improvement in the environmental performance. Therefore, it offers a different lens on 

how tensions between the environmental and economic sustainability dimensions can be 

addressed compared to the instrumental logic.  

As a result, this work contributes to the existing SSCM literature in two ways. 

First, it advances the SSCM performance assessment field. This is obtained by adding 

an exploratory application of a successful implementation of an indirect multi-tier 

supply chain approach for the assessment of the sustainability performance of the 

supply chain, demonstrating its suitability in achieving a decentralised assessment in a 

supply chain even without visibility of the entire network. Moreover, the assessment is 

performed adopting empirical quantitative environmental data and thus capturing the 

specificity of each supply chain member, which is not achievable adopting generic data 



from databases. The case study thus acts as a forerunner demonstrating the applicability 

of the method in an operative multi-tier supply chain and paving the way for the 

sustainability assessment of extended supply chains.  

Second, it contributes to the SSCM tensions literature, by presenting a novel 

method that allows moving from the dominant instrumental logic to an integrative 

approach between the environmental and economic dimensions of sustainability in 

multi-tier supply chains, by assessing different dimensions simultaneously without an a 

priori predominance of any of them. The eco-intensity indicators adopted do not entail a 

profit-oriented priority between sustainability dimensions, but on the contrary manage 

to obtain a balanced evaluation of the environmental and economic dimensions of 

sustainability, coherently with the perfect substitutability of natural and economic 

capital theorised by weak sustainability. Therefore, this method could be used as a tool 

to support managing the tensions between the environmental and economic 

sustainability dimensions.  

Finally, having implemented the method within an operative supply chain, the 

case study also serves as empirical evidence of how tensions can be addressed at the 

stage of sustainable strategy implementation, where the performance assessment 

method stands as the first step to guide operational improvements to enhance the 

sustainability of the supply chain.  
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Appendixes 

Appendix 1: Nomenclature 

 

Abbreviation Meaning 

𝑒 Environmental indicator 

𝐸𝐵𝑃 Environmental backpack 

𝐸𝐵𝑃𝑒𝑖𝑘 Environmental backpack with respect to environmental indicator 𝑒 of 

organisation 𝑖 associated to its output product 𝑘 

𝐸𝐼 Eco-intensity 

𝐸𝐼𝑒𝑖𝑘 Eco-intensity with respect to environmental indicator 𝑒 of organisation 𝑖 

associated to its output product 𝑘 

𝐸𝐼𝑒𝑗𝑘 Eco-intensity with respect to environmental indicator 𝑒 of supplier 𝑗 

associated to its output product 𝑘 

𝐸𝑃 Environmental performance 



𝐸𝑃𝑒𝑖 Environmental performance with respect to environmental indicator 𝑒 of 

organisation 𝑖 

𝐸𝑃𝑒𝑗𝑖
𝑡𝑟  Environmental performance of transport from supplier 𝑗 to customer 𝑖 

with respect to the environmental indicator 𝑒 

𝑖 Customer of each dyad for each iteration of the recursive mechanism 

𝑗 Supplier of each dyad for each iteration of the recursive mechanism 

𝑘 Products offered from an organisation 𝑖 to its customer for each iteration 

of the recursive mechanism 

𝑛 Intermediate products purchased by organisation 𝑖 from supplier 𝑗 for its 

output product 𝑘 for each iteration of the recursive mechanism 

𝑄 Quantity 

𝑄𝑖𝑗𝑘𝑛 Quantity of product 𝑛 purchased by organisation 𝑖 from supplier 𝑗 for its 

output product 𝑘 

𝑃 Price 

𝑃𝑖𝑗𝑘𝑛 Price of product 𝑛 purchased by organisation 𝑖 from supplier 𝑗 for its 

output product 𝑘 

𝑇 Turnover 

𝑇𝑖 Turnover of organisation 𝑖 

𝑇𝑖𝑘 Turnover of organisation 𝑖 generated by product 𝑘  

𝑇𝑖𝑗𝑘 Turnover of supplier 𝑗 generated by organisation 𝑖 through the purchase 

of product 𝑘 

𝑇𝑗 Turnover of supplier 𝑗 

𝑡𝑟 Transport 

Appendix 2: Equations to integrate the environmental impact of transport 

Equations A1.1, A1.2 and A1.3 introduce three alternative formulations to calculate the 

supply chain eco-intensity for the ‘energy consumption’ and ‘emissions to air’ 

environmental category, including transport activities, whereas Equations A2.1, A2.2 

and A2.3 introduce three alternative formulations to calculate the environmental 

backpack for the ‘energy consumption’ and ‘emissions to air’ environmental category, 

including transport activities. The following equations add the ∑ 𝑬𝑷𝒆𝒋𝒊
𝒕𝒓

𝒋  term to the 

equations introduced in Tuni and Rentizelas (2018), which is the environmental 

performance of transport from supplier 𝑗 to customer 𝑖 with respect to the environmental 

indicator 𝑒 and is derived from the EcoTransIT tool for each dyadic transport link.  

 



𝐸𝐼𝑒𝑖𝑘 =  
1

𝑇𝑖𝑘
 [ 

𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑ 𝑬𝑷𝒆𝒋𝒊

𝒕𝒓

𝒋

+ ∑(𝐸𝐼𝑒𝑗𝑘

𝑗

∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛)]

𝑛

 (A1.1) 

𝐸𝐼𝑒𝑖𝑘 =  
1

𝑇𝑖𝑘
 ( 

𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑ 𝑬𝑷𝒆𝒋𝒊

𝒕𝒓

𝒋

+  ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘 ) (A1.2) 
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1
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𝑗
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𝐸𝐵𝑃𝑒𝑖𝑘 =
𝑇𝑖𝑘

𝑇𝑖
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𝒋
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𝐸𝐵𝑃𝑒𝑖𝑘 =  
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𝒋
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+  ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘

𝑇𝑗
 𝑇𝑗 (A2.3) 

 



Appendix 3: Data collection standardised spreadsheet 

 


