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An innovative eco-intensity based method for assessing 

extended supply chain environmental sustainability 

 

Abstract  

Organisations currently face increasing pressure from multiple stakeholders to improve their 

environmental performance. The majority of environmental impacts in a typical supply chain usually 

arise beyond the focal firm boundaries or even its direct suppliers. However, no method to assess 

the extended supply chain environmental performance that is designed to use real-life data 

currently exists. 

The aim of this work is to facilitate quantitative assessment of the environmental performance of 

extended supply chains by introducing an innovative eco-intensity based method that relates the 

environmental performance of the supply chain to its economic output. The method is the first to 

allow assessing the environmental sustainability performance of extended supply chains based on real 

life data, while respecting the multiple-organisation nature and non-collaborative characteristics of 

the majority of real life supply chains. This is achieved through the adopted decentralised approach, 

materialised through a recursive mechanism to pass eco-intensity values from one tier to the next, 

https://doi.org/10.1016/j.ijpe.2018.08.028
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which does not require visibility of the extended supply chain by any single member, thus enhancing 

the applicability of the method. 

 

The method is demonstrated through a numerical example with secondary data for four 

representative supply chains with different design features, to showcase its applicability. The CO2 

emissions and water eco-intensities are calculated. The findings enable both benchmarking the eco-

intensity performance of the extended supply chains and comparison of the eco-intensity indicators 

of the individual organisations, offering a basis to guide operational improvement and to support 

external reporting. The method has the potential to change the way organisations approach their 

environmental sustainability by facilitating understanding of the wider supply chain impact. 

 

Keywords: eco-intensity; environmental performance; multi-tier supply chain; extended supply 

chain; sustainability assessment; environmental benchmarking; 

 

1. Introduction 

Climate change, global warming and depletion of scarce natural resources have emerged as central 

themes in the agenda of the international community due to the impacts they have both on the 

society and the economy (Bloemhof et al., 2015; Montoya-Torres et al., 2015). Consequently, 

regulatory bodies have been posing increasing pressures to organisations to limit their 

environmental impact (Bask et al., 2013). Companies are also facing pressure from the market due 

to an increased green awareness of customers that are asking for more sustainable products and 

services (Frota Neto et al., 2008). Finally, other stakeholders such as non-governmental 

organisations and  local  communities  are also demanding increased transparency of companies’ 
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practices and adequate reporting about the environmental and social impact caused by production 

activities (Björklund et al., 2012; Gerbens-Leenes et al., 2003).  

 

Pressures to include environmental concerns within management and decision making were initially 

targeted to single organisations, mostly focal companies, which are those companies that have a 

leading role within the network as they “rule or govern the supply chain, provide the direct contact 

to the customer, and design the product or service offered” (Seuring and Müller, 2008). However, 

these pressures later expanded further to include more organisations part of the supply chain for 

two reasons.  

 

Firstly, competition shifted from a company-versus-company to a supply chain-versus-supply chain 

form (Cabral et al., 2012; Hashemi et al., 2015), leading to increased specialisation of companies and 

outsourcing other tasks to different companies (Santibanez-Gonzalez and Diabat, 2013). Outsourcing 

practices have been often linked with offshoring practices, relocating parts of the supply chain to 

countries with low production cost, often coupled with less strict environmental regulations and 

standards (Harris et al., 2011; Hutchins and Sutherland, 2008; Silvestre, 2015). Environmental 

challenges thus expanded outside of the boundaries of the company as well, becoming a supply 

chain issue that encompasses the extended upstream and downstream players (Sigala, 2008; Varsei 

et al., 2014).  

 

Secondly, there is significant evidence that the majority of the environmental impacts arise outside 

of the focal firm boundaries, being caused by other companies in the supply chain. The contribution 

of the extended supply chain beyond the focal company has been estimated to  contribute up to 

90% of the overall impact of the supply chain  (Beavis, 2015; Veleva et al., 2003; WBCSD and WRI, 

2009). 
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Consequently, a holistic approach encompassing the wider supply chain environmental performance 

is needed (Fabbe-Costes et al., 2011; McIntyre et al., 1998). However, existing supply chain 

environmental performance assessment methods have rarely expanded beyond first tier suppliers 

and customers, with a large body of the literature focusing on the focal firm performance in a supply 

chain perspective rather than addressing multiple tiers along the supply chain (Ahi and Searcy, 2015; 

Tuni et al., 2018). This narrow scope overlooks the fact that a poor environmental performance of a 

single tier upstream in the supply chain may result in an overall environmentally unsustainable 

behaviour of the entire supply chain. Companies therefore need to understand not only their first-

tier suppliers environmental performance but also their extended supply chain environmental 

profile (Genovese et al., 2013; Miemczyk et al., 2012). 

 

This work aims to introduce an innovative quantitative method to assess the environmental 

performance of extended supply chains, by using eco-intensity indicators that relate the 

environmental performance of the supply chain to its economic output. The method first assesses 

the environmental sustainability performance of extended supply chains based on real life data, 

extending the assessment beyond direct suppliers and customers, while still respecting the multiple-

organisation nature and non-collaborative characteristics of the majority of real life supply chains. In 

contrast to existing approaches for extended supply chains performance measurement, this work 

does not assume the existence of a central administration of the supply chain. On the contrary, the 

method requires each organisation to access only its direct suppliers and customers thanks to the 

decentralised approach and recursive mechanism adopted, thus not requiring visibility of the 

extended supply chain by any member of the supply chain. 

 

2. Background and literature review 

 

2.1 Performance measurement and assessment in green supply chain management  
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Green supply chain management (GSCM) added the environmental dimension to the traditional 

economic dimension of supply chain management within all processes ranging from the material 

sourcing and selection stage down to the end-of-life management of products (Srivastava, 2007). As 

a result, companies recognised the need to track their environmental performance outside their 

organisational boundaries adopting a supply chain perspective to achieve an accurate evaluation of 

their environmental footprint (Varsei et al., 2014).  The urge to develop tools for monitoring GSCM 

performance has appeared evident not only to the academia but to the industry as well. The SCOR 

framework, a widely adopted framework to measure performance of supply chain processes at the 

organisation level, included a pilot section dedicated to environmental performance in version 11 of 

the model to tackle this emerging issue (APICS, 2014).  

Performance measurement is described as the process of evaluating the effectiveness and/or the 

efficiency of an action, either qualitatively or quantitatively (Neely et al., 1995). Qualitative metrics 

are in use to measure the social sustainability of the supply chain (Hutchins and Sutherland, 2008), 

but are less common to address the environmental dimension of sustainability (Ahi and Searcy, 

2015), as quantitative indicators are recognised to be more reliable and unbiased in evaluating the 

environmental supply chain behaviour (Tsoulfas and Pappis, 2008).  

Despite recurring interest for certain environmental impacts, no agreement exists on the exact 

metrics to be adopted to measure the GSCM performance. Scholars developed a high number of 

indicators with a low degree of standardisation, which is affecting the comparability of results across 

different studies (Ahi and Searcy, 2015). Moreover, indicators could be divided among absolute 

indicators that are expressed according to a fixed measurement scale and relative indicators that 

relate the impact value to a reference value (Mintcheva, 2005). Absolute values are helpful to 

understand the overall environmental impact associated with an activity of the system under 

analysis; however they are prone to fluctuation as a result of changes in the produced outputs thus 

hiding the real changes in the environmental performance (Michelsen et al., 2006). Additionally, 
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they lose validity when comparing different systems, such as companies or supply chains, that 

naturally present different features and are not strictly comparable using absolute indicators 

(Wiedmann et al., 2009). Adopting relative indicators is thus an option to overcome these 

limitations; however, multiple reference values have been adopted in the literature to obtain 

relative indicators.  

Life cycle analysis (LCA) is a widely recognised technique to evaluate the environmental performance 

of products in a lifecycle perspective. LCA adopts as reference value the concept of functional unit, 

closely associated to the benefit given to the final user by a product. A typical example is the 

comparison of paper towel against electric hand dryer, both providing the benefit to dry hands of 

the user.  However, the selection of the functional unit is based on the design stage of the LCA study 

and thus is heavily affected by assumptions. Additionally, LCA studies embody assumptions also in 

the data adopted which typically are not real life data but are collected from dedicated databases 

increasing the uncertainty of results and ultimately compromising even the comparability of similar 

studies assessing the environmental performance of the same type of products (Guldbrandsson and 

Bergmark, 2012; Kravanja and Čuček, 2013). Alternative reference units include the units produced 

(Koh et al., 2012), the weight of product output or the volume of the product output (Mintcheva, 

2005). These reference units are suitable to compare physically homogenous products, but unlike 

the functional units are not able to benchmark alternative products providing the same benefit to 

the user. The economic output associated with the activities generating the environmental impact 

can serve as an alternative reference value to overcome these limitations, as it allows comparing 

both products having the same functional unit as well as physically homogenous products.  

The adoption of the economic output as the reference unit for the environmental indicator leads to 

the concepts of eco-efficiency and eco-intensity that combine the environmental and economic 

dimensions of sustainability in a unique indicator, offering a relative indicator to effectively 

benchmark alternative products without the constraints of functional unit or physical reference 
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values. Eco-efficiency is described as “the efficiency with which ecological resources are used to 

meet human needs” by the Organisation for Economic Co-Operation and Development (OECD) and is 

a ratio of the economic value created and the sum of environmental pressures generated by an 

economic activity (WBCSD, 2000). Eco-intensity reverses the ratio, being the environmental impact 

divided by the economic benefit generated by an economic activity (Huppes and Ishikawa, 2005; 

Schmidt and Schwegler, 2008).  

2.2 Eco-efficiency and eco-intensity in GSCM  

 

Despite eco-intensity being identified as more easily applicable than eco-efficiency to the supply chain 

context from a mathematical perspective (Schmidt and Schwegler, 2008), there are only few examples 

of its application in this context. Joa et al. (2014) calculated the water consumption eco-intensity of 

the supply network of a company, taking into account the geographical differences of supply network 

players. The authors adopted a recursive indicator building up on a previous contribution from 

Schmidt and Schwegler (2008), whose work however does not identify the environmental aspects that 

are required to be measured. Both pieces of work adopt a decentralised approach to assess the eco-

intensity of wider supply networks, rather than supply chains, making the approaches complex and 

unpractical for operating organisations due to the high number of companies required to be part of 

the analysis, including organisations that are not sub-suppliers of the focal firm. 

 

Eco-efficiency models are applied with an increased frequency in the GSCM literature. Eco-efficiency 

was adopted to support different managerial decisions, thus offering coverage of different supply 

chain extent. Eco-efficiency scores were adopted to rank 1st tier suppliers to provide support to the 

green supplier selection and evaluation problem: Tseng et al. (2013) adopted linguistic variables to 

include uncertainties in the evaluation of decision makers within a set of twenty eco-efficiency criteria 

using TODIM method, whereas the eco-efficiency score of direct suppliers from Mahdiloo et al. (2015) 

is based on data envelopment analysis. Other scholars focused on the supply chain configuration 
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problem in triadic supply chains, such as Colicchia et al. (2015), who developed a bi-objective 

optimisation function of cost and CO2 emissions in distribution networks. A similar problem is 

addressed by Wu and Barnes (2016), who adopt analytical network process to select suppliers and 

distribution centres based on an eco-efficiency ratio as an intermediate step to solve the green lot-

sizing problem. Finally, an eco-efficient frontier is calculated for the waste electrical and electronic 

reverse chain by Quariguasi Frota Neto et al. (2009): the environmental indicators adopted are the 

cumulative energy demand and the landfilled waste, whereas the profit is used as the single economic 

indicator. 

 

Other authors tried to expand the supply chain extent coverage beyond the dyadic and triadic supply 

chains in their application of eco-efficiency models, adopting a lifecycle perspective. Examples include 

Saling et al. (2002), who developed an aggregated eco-efficiency index to compare five alternative 

dyeing supply chains of blue jeans, and the works of Michelsen et al. (2006) and Michelsen and Fet 

(2010) on the furnishing sector. In both papers, LCA and life cycle costing are used to calculate the 

eco-efficiency of different chair models taking into account their extended supply chain. Finally, 

Charmondusit et al. (2014) expand the eco-efficiency concept to include the social dimension of 

sustainability in a socio-eco-efficiency index developed specifically for the toy industry and boosting 

an increased applicability for small medium enterprises (SMEs). However, despite adopting a lifecycle 

perspective and aiming to measure the extended supply chain eco-efficiency performance, these 

authors completely overlook the multi-organisation nature of the supply chain, assuming a centralised 

entity coordinating the different stages from raw material to the end-of-life management. This 

approach is in contrast with the nature of operating supply chains which are built up by interconnected 

autonomous entities (Mena et al., 2013). Therefore, no method to assess the eco-intensity or eco-

efficiency of extended supply chains, respecting their multi-organisation nature currently exists.  

 

2.3 Multi-tier and extended supply chains 
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Measuring environmental performance at the supply chain level poses a number of challenges, due 

to the increased complexity caused by the involvement of multiple organisations (Hassini et al., 

2012; Hervani et al., 2005; Shaw et al., 2010; Yakovleva et al., 2012).  Lack of trust, conflicting 

objectives, cultural differences, lack of standardised data and metrics and inclination towards local 

optimisation rather than systemic approaches were identified as the major challenges arising when 

multiple organisations are involved in the broader performance measurement process (Hervani et 

al., 2005; Taticchi et al., 2013). 

The challenges identified to assess performance in the green supply chain context have been further 

enhanced by the recent development of the competitive environment. Globalisation led to 

increasing specialisation of companies that are outsourcing various processes to other organisations, 

thus creating more complex supply chains, which are built by an increased number of tiers (Mena et 

al., 2013). However, including additional tiers to the supply chains affected the visibility and 

traceability over the supply chain as well, as companies are less knowledgeable about their 

upstream activities (Acquaye et al., 2014; Michelsen and Fet, 2010). Recent surveys revealed that 

half of supply chain executives recognised that the visibility of their supply chain is limited to the 1st 

tier suppliers, thus not having a complete understanding of their upstream network (Egilmez et al., 

2014; O’Rourke, 2014). A result of the lack of information about the sub-suppliers caused a number 

of both social and environmental scandals involving different multinational groups. Examples include 

Nike, whose sub-suppliers were found to employ children in their facilities, as well as other 

organisations, such as Unilever or Nestlé that were involved in deforestation and unsustainable 

forestry practices in their extended supply chain leading to corporate reputation damage and 

economic losses (Miemczyk et al., 2012; Vachon and Mao, 2008). Despite not being directly involved 

in any unsustainable practice, the focal companies were held responsible for the misconduct by 

consumers, as their prominent role within the supply chain was recognised (Gimenez and Tachizawa, 

2012).  
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A number of approaches for the focal companies to deal with the sub-suppliers located beyond the 

1st tier suppliers have been identified in the literature. Mena et al. (2013) distinguished between 

closed and open triad structures based on the existence of a direct contact between the focal 

company and the 2nd tier supplier, suggesting that a direct contact is necessary to influence key 

product characteristics. Tachizawa and Wong (2014) adopted a clear sustainability perspective in 

their multi-tier supply chain study and identify four potential approaches in the management of sub-

suppliers by the focal organisation: “don’t bother”, “working with third party”, “direct” or “indirect”. 

The latest approach is also addressed in the work by Wilhelm et al. (2016) that recognise the 

complexity and substantial inapplicability of other approaches for the biggest part of supply chain 

sub-suppliers due to limited control of the focal company on them. A pivotal role is thus played by 

suppliers at any level of the supply chain in disseminating sustainability in their upstream supply 

chain, a perspective that is adopted in this work as well. 

The research on multi-tier and extended supply chain sustainability however stayed mostly on a 

conceptual level, coherently with the recent development of the field. As Brandenburg et al. (2014) 

highlighted in their review on sustainable supply chain management models, quantitative work on 

“the extended supply chain still require considerably more attention”. This work thus tries to bridge 

this gap and quantitatively assess the environmental performance of extended supply chains by 

introducing an innovative eco-intensity method based on real life data. The method is innovative as 

it not only addresses the extended supply chain, but it also respects the multiple-organisation nature 

and non-collaborative characteristics of the majority of real life supply chains as well as limiting the 

visibility required to direct suppliers and customers only.  

3. Description of the method 

Based on the gaps emerged from the literature analysis, an innovative method to assess the 

eco-intensity performance of extended supply chains is introduced in this section. The method 
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consists of four methodological steps performed in cascade: definition of system boundaries, 

selection of environmental indicators, inclusion of economic dimension and application of 

recursive mechanism. A sub-section dedicated to each methodological step follows. The method 

provides three major outputs, as highlighted in figure 1: single company eco-intensities specific 

to each environmental indicator, supply chain eco-intensities specific to each environmental 

indicator and environmental backpack of products, which is the absolute environmental impact 

allocated to products for each environmental indicator. Each output of the method is associated 

to the corresponding equations, which are later presented in the mathematical eco-intensity 

based model included throughout the section.  

 

Figure 1: Methodological steps 
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3.1 Definition of system boundaries 

The definition of the system boundaries is a necessary preliminary step to assess the performance of 

any system and to provide comparability of results (Wiedmann et al., 2009). The method to assess 

eco-intensity introduced in this section is developed for forward supply chains and adopts a cradle-

to-gate approach.  

Each company part of the supply chain is considered as a black box, with a certain number of 

environmental and economic inputs and outputs taken into account. The internal dynamics of each 

organisation are beyond the scope of the study and data are thus collected at the company level for 

each player of the supply chain. 

 

Adopting a cradle-to-gate approach means that the usage and end-of-life management phases of 

product lifecycle are omitted due to the significant uncertainties in the collection of primary data for 

these lifecycle stages and the limited control over them by any player of the supply chain, potentially 

affecting the applicability of the method and its usefulness for organisational decision making 

(Michelsen et al., 2006). The cradle-to-gate approach defines specifically the downstream boundary 

of the supply chain, which is reached when the product crosses the gate between the most 

downstream player of the supply chain and the final customer or consumer to whom the product is 

sold. This player could be typically identified as a retailer or a distributor in a business-to-consumer 

context, whereas it could be the manufacturer in a business-to-business context. Moreover, this 

work assumes that the assessment is carried out only for products reaching the market as the 

method is not applicable if no material flows across the downstream boundary and no economic 

gain is generated by the supply chain within the one-year time horizon. 

 

The remaining boundaries of the supply chain are defined according to the transformation model by 

Slack et al. (2009), who defines two types of resources. Transformed resources are resources that 

will be treated, transformed or converted during the production processes and are sourced from 
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“product-related suppliers” (Kovács, 2008; Slack et al., 2009), whereas transforming resources are 

resources that facilitate the processes, including the facilities, the equipment and the machineries 

necessary to transform the products and involve the supporting members of the supply chain 

(Kovács, 2008; Slack et al., 2009).  

 

The boundaries of the supply chain in this work are strictly defined according to the transformed 

resources of the transformation model. The upstream boundary is the raw material extraction stage 

coherently with the cradle-to-gate approach. The boundaries of the supply chains are thus including 

the material flow from the raw material stage down to the gate between the most downstream tier 

on the chain and the final user, as depicted in figure 2. The material flow moves downstream from 

the raw materials to the focal firm and the user and is associated to a monetary flow in the opposite 

direction as customers pay to receive the materials or semi-finished products from their suppliers.  

 

Figure 2: System boundaries 
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The supply chain of the transforming resources is not included within the system boundaries, as 

these products have already reached the usage phase and their impacts refer to a different supply 

chain.  

 

3.2 Selection of environmental indicators 

A balanced accounting of inputs withdrawn from the natural system and outputs environmental 

impacts needs to be represented in the environmental indicators selected, to reflect the limited 

capability of a thermodynamically closed system like planet Earth to supply resources and absorb 

pollution (Ayres and Kneese, 1969; Dimian et al., 2014; Kravanja and Čuček, 2013). A balanced 

assessment of inputs’ and outputs’ environmental impacts is also required in a future perspective to 

improve environmental sustainability performance. End-of-pipe solutions to reduce environmental 

outputs need to be integrated with solutions aiming to reduce the inputs to diminish the pressure on 

the natural capital (De Soete et al., 2013; McIntyre et al., 1998; Ritthof et al., 2002). As a result, the 

selected categories of environmental indicators in this work cover both environmental inputs to 

supply chain operations as well as environmental outputs arising from production activities of the 

supply chain. Environmental indicators are calculated at the company level on a yearly basis, 

coherently with the black box approach identified in section 3.1.  Seven environmental categories 

identified as the most widely adopted environmental impacts tackled by performance measurement 

for GSCM are considered preferable to be included in the assessment (Tuni et al., 2018): 

 Inputs: use of materials, water consumption, energy consumption, land occupation; 

 Outputs: emissions to air, emissions to water, solid waste. 

 

The identified impacts mirror the identified categories for inputs by Kravanja and Čuček (2013) and 

outputs by Brent and Visser (2005). The indicators are generally applicable to any industry, without 

being sector-specific and thus being relevant to determine the environmental performance of any 
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supply chain. However, the method is flexible in its applicability and allows managers and 

stakeholders to introduce additional environmental indicators to address the needs of specific 

supply chains if required. 

 

3.3 Inclusion of economic dimension  

Comparing the environmental performance of systems through absolute environmental values is 

potentially misleading. Impacts “need to be expressed in relative units” to be effectively compared 

instead (Brent and Visser, 2005; Michelsen et al., 2006; Schaltegger et al., 2008; Wiedmann et al., 

2009). 

The economic dimension of sustainability is used in this work to relate the environmental 

performance to a single reference unit. Monetary unit was selected as the reference unit for the 

environmental dimension as it is applicable to any profit oriented company belonging to any 

industry. Alternative reference units commonly used as reference factors, such as the number of 

units produced, volume or weight of products are not universally applicable to any industry unlike 

the economic output.  

The single economic indicator adopted in the model is the yearly turnover of a company, which is 

defined in this work as the sum of sales revenues generated by the sale of products, without 

considering any other source of income, as it typically appears at the top of the income statement of 

organisations. Turnover of the i-th company can be calculated through equation 1: 

𝑇𝑖 =  ∑ 𝑄𝑖𝑘

𝑘

𝑃𝑖𝑘 (1) 

 

Where 𝑘 are the different products sold by company 𝑖. Each product is sold at a unitary price 𝑃𝑖𝑘 in a 

quantity equal to 𝑄𝑖𝑘. 
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Despite the turnover not providing a full picture of the economic performance of an organisation, 

this indicator suits the supply chain environment. The turnover is typically publicly available and 

does not pose questions about data confidentiality, especially in the case of non-collaborative supply 

chains, which represent the biggest share of operating supply chains (Parker and Kapuscinski, 2011; 

Schmidt and Schwegler, 2008). Costs or net present value, which are found as alternative economic 

indicators in the supply chain literature, require confidential data to be shared with other players in 

the chain, potentially affecting the competitive advantage of companies (Brandenburg, 2015; Caro et 

al., 2013).   

 

The first output of the method is obtained at this stage. The single company eco-intensity 𝐸𝐼𝑒𝑖 for 

each individual environmental indicator 𝑒 outlined in section 3.2 can be calculated according to 

equation 2, by simply dividing the environmental performance at the company level 𝐸𝑃𝑒𝑖  by the 

turnover of the company 𝑇𝑖. Multiple eco-intensity indicators are thus generated for each company 

depending on the environmental impacts considered in the analysis. 

𝐸𝐼𝑒𝑖 =  
𝐸𝑃𝑒𝑖

𝑇𝑖

 (2) 

 

Equation 2 shows the organisation-wide eco-intensity values, which provide an indication on the 

performance of each company 𝑖 for each specific environmental indicator 𝑒, without including any 

environmental impact arising in the supply chain.   

 

3.4 Moving to the supply chain level: the recursive mechanism 

The recursive mechanism enabling to move from the single company level to the supply chain level is 

illustrated in this section. Each organisation needs to add the environmental performance and 

economic output of its upstream suppliers to its internal eco-intensity to calculate the cumulative 

environmental impact up to that point in the supply chain. Each company thus requires to obtain 
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relevant eco-intensity indicators upstream from its direct suppliers only, which themselves need to 

access their own direct suppliers to calculate their eco-intensity indicators, with the process being 

completed once the raw material extraction stage is reached. At the same time, each company is 

also passing its eco-intensity information to its customer, enabling the eco-intensity indicator to 

move downstream from one tier of the supply chain to the next one, until the system boundary is 

reached (Figure 3). The following subsections gradually build the mathematical formulation of the 

model developed. 

 

Figure 3: Recursive mechanism 

 

3.4.1 Numerator: Environmental impact  

 

Moving from the single company level to the supply chain level, the environmental performance 

needs to encompass not only the internal environmental performance of each organisation but also 

the environmental performance of the whole upstream supply chain up to that tier. Each company is 
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however part of several supply chains based on its product mix, which defines the different supply 

chains the company belongs to. 

The internal environmental performance at the company level needs to be first allocated to the 

various product supply chains the company is part of (Ahi and Searcy, 2014). The allocation is based, 

consistently with the eco-intensity concept, on the economic output generated by each product 𝑘, 

which is the company turnover generated by each product expressed in monetary units 𝑇𝑖𝑘, as 

shown in equation 3, leading to 𝐸𝑃𝑖𝑘: 

 

𝐸𝑃𝑒𝑖𝑘 =  
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖  

 

(3) 

 

 

The environmental impact of the upstream supply chain needs to be then added to this value. The 

share of the environmental impact of suppliers that is passed on to the customers follows the same 

principle, being proportional to the share of turnover of supplier 𝑗 generated by customer 𝑖 thanks 

to deliveries of intermediate products 𝑛 for output product 𝑘. This value can be easily calculated by 

the customer once the supplier communicates downstream its internal company wide eco-intensity. 

The eco-intensity of supplier 𝑗 is multiplied by the quantity and the price of purchases of 

intermediate products 𝑛 for output product 𝑘, leading to equation 4: 

 

𝐸𝑃𝑒𝑖𝑘 =  
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 +  𝐸𝐼𝑒𝑗 ∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛

𝑛

 

 

(4) 

 

Where 𝐸𝐼𝑒𝑗 is the eco-intensity of the supplier 𝑗 for the environmental indicator 𝑒, 𝑄𝑖𝑗𝑘𝑛 and 𝑃𝑖𝑗𝑘𝑛  

are respectively the quantity and the price of intermediate products 𝑛 shipped from supplier 𝑗 to 
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customer 𝑖 for the output product 𝑘. This formulation however is valid only if supplier 𝑗 is at the 

most upstream end of the supply chain. Otherwise, its contribution will need to include a 

contribution of its upstream supply tiers as well, similarly to the calculation of 𝐸𝑃𝑒𝑖𝑘 in equation 4. 

Therefore, supplier 𝑗, alike its customer 𝑖, will have an eco-intensity value 𝐸𝐼𝑒𝑗𝑘 for each of the 

output products 𝑘 encompassing the contribution of the upstream supply chains of all intermediate 

products 𝑛. This process is repeated recursively along the supply chain.  Supplier 𝑗 passes the 

product supply chain-specific eco-intensity 𝐸𝐼𝑒𝑗𝑘 to the next tier, therefore the equation to calculate 

the numerator of the eco-intensity of company 𝑖 for output product 𝑘 including the contribution of 

supplier 𝑗 and its upstream supply chain environmental impact is shown in equation 5: 

 

𝐸𝑃𝑒𝑖𝑘 =  
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 +  𝐸𝐼𝑒𝑗𝑘 ∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛

𝑛

 

 

(5) 

 

If company 𝑖 purchases precursor products from more than one supplier j, the environmental impact 

of each supplier needs to be added, leading to equation 6, which is the final formulation for the 

environmental numerator: 

 

 

𝐸𝑃𝑒𝑖𝑘 =  
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑(𝐸𝐼𝑒𝑗𝑘

𝑗

∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛)

𝑛

 

 

(6) 

 

3.4.2 Economic denominator  

The recursive mechanism applies to the economic denominator too. First, similarly to what 

happened for the environmental nominator, the economic output at the company level needs to be 
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allocated to the product mix. Each product 𝑘 generates a quota of the overall turnover 𝑇𝑖𝑘 , which is 

equal to the product of the quantity produced 𝑄𝑖𝑘  times the price of a single unit 𝑃𝑖𝑘. 

Secondly, the economic benefit of the extended supply chain is not simply the sum of the turnover 

generated at each tier of the supply chain by the product output 𝑘 and the precursor products 𝑛 

necessary to obtain 𝑘, but is reduced by the expenses made by each organisation to acquire the 

precursor products and transformed resources necessary to produce its output product.  

In a dyadic chain where a single product is exchanged between supply chain partners and no supply 

chain exists upstream from supplier 𝑗 (Figure 4), the economic output of the supply chain is the sum 

of the economic output from supplier 𝑗 (𝑄𝑂𝑈𝑇−𝑗  × 𝑃𝑂𝑈𝑇−𝑗) and the economic output from 

customer 𝑖. The latter is given by the earnings of company 𝑖 (𝑄𝑂𝑈𝑇−𝑖  ×  𝑃𝑂𝑈𝑇−𝑖), minus the costs 

faced to acquire relevant supplies from supplier 𝑗 (𝑄𝐼𝑁−𝑖  ×  𝑃𝐼𝑁−𝑖).  Moreover, this work assumes 

that the quantities 𝑄𝑂𝑈𝑇−𝑗 and 𝑄𝐼𝑁−𝑖 are equal, as are 𝑃𝑂𝑈𝑇−𝑗 and 𝑃𝐼𝑁−𝑖. Thus, the expenses faced 

by customer 𝑖 match the economic output obtained by supplier 𝑗, which can therefore be omitted. 

The overall economic output of the dyadic supply chain represented in figure 4 is thus equal to 𝑇𝑖𝑘 =

 𝑄𝑖𝑘𝑃 𝑖𝑘. If this mechanism is replicated along the supply chain, the ultimate economic indicator 

representing the economic benefit of the supply chain is eventually the turnover generated by the 

product at the most downstream player considered.  

 

Figure 4: Economic dimension recursive mechanism 

 

If the assumption about a single product delivered from supplier 𝑗 to customer 𝑖 is relaxed or 

multiple suppliers 𝑗 are involved, the mechanism to calculate the overall economic output of the 
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supply chain is not affected. The economic output of the supply chain still corresponds to the 

turnover 𝑇𝑖𝑘 generated by the most downstream company 𝑖 in the supply chain thanks to product 𝑘. 

 

3.4.3 Final formulation  

 

Combining the recursive mechanisms illustrated in sections 3.4.1 and 3.4.2, the eco-intensity 𝐸𝐼𝑒𝑖𝑘 

of company 𝑖 including its environmental impact from the supply chain of product 𝑘 is thus 

calculated according to equation 7 for each environmental indicator 𝑒: 

 

𝐸𝐼𝑒𝑖𝑘 =  
1

𝑇𝑖𝑘
 [ 

𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑(𝐸𝐼𝑒𝑗𝑘

𝑗

∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛)]

𝑛

 

 

(7) 

 

Where 𝑇𝑖𝑘 is the turnover of company 𝑖 generated by its output product 𝑘, 𝑇𝑖 is the overall turnover 

of company 𝑖, 𝐸𝑃𝑒𝑖  is the internal environmental performance of company 𝑖 at the company level for 

the environmental indicator 𝑒, 𝐸𝐼𝑒𝑗𝑘 is the eco-intensity of the 1st tier supplier 𝑗 for the output 

product 𝑘 with respect to environmental indicator 𝑒 including the environmental impact of its 

upstream product specific supply chain. Finally, 𝑄𝑖𝑗𝑘𝑛 is the quantity of intermediate product 𝑛 

shipped from supplier 𝑗 to customer 𝑖 for the output product 𝑘, whereas 𝑃𝑖𝑗𝑘𝑛 is its price. This 

equation is the most practical to be adopted in an operating supply chain context, where the 

information about 𝑄𝑖𝑗𝑘𝑛 and 𝑃𝑖𝑗𝑘𝑛 are available to the customer 𝑖 as part of the economic 

transaction associated to the purchase of the precursor products or materials from supplier 𝑗. The 

customer 𝑖 requires to obtain from each of its 1st tier suppliers 𝑗 for product 𝑘 only the value of 𝐸𝐼𝑒𝑗𝑘 

to calculate the value of 𝐸𝐼𝑒𝑖𝑘, as all remaining data is available at the company level. 

Two alternative versions of equation 7 are also presented in this work to simplify the illustration of 

the model in the numerical example. The summation of the 𝑛 intermediate products can be 
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substituted by the turnover of supplier 𝑗 generated by deliveries to customer 𝑖 for the output 

product 𝑘, labelled as 𝑇𝑖𝑗𝑘, leading to the formulation of equation 8a and 8b. In this case, the second 

summation of equation 7 disappears as all supplies from supplier 𝑗 to customer 𝑖 for the output 

product 𝑘 are aggregated in a unique economic value. 

 

𝐸𝐼𝑒𝑖𝑘 =  
1

𝑇𝑖𝑘
 ( 

𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 +  ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘  ) 

 

(8a) 

 

 

𝐸𝐼𝑒𝑖𝑘 =  
1

𝑇𝑖𝑘
 ( 

𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 +  ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘

𝑇𝑗
 𝑇𝑗 ) 

 

(8b) 

 

The simplified expression of the recursive mechanism equation can be presented either by adopting 

𝑇𝑖𝑗𝑘 or by analysing this value as a ratio of the overall turnover of supplier 𝑗 as in equation 8b. The 

latter is adopted in the numerical example of this work.  

Once the calculation of 𝐸𝐼𝑒𝑖𝑘 is completed, the mechanism can be repeated moving downstream 

along the supply chain: output product 𝑘 of company 𝑖 becomes an intermediate product 𝑛 for the 

next downstream stage of the supply chain and thus becomes part of the environmental backpack of 

the upstream supply chain for the supply chain member located right downstream along the chain. 

The recursive mechanism is repeated moving downstream along the supply chain until the most 

downstream player is reached and its internal environmental performance is included, according to 

the system boundaries defined in section 3.1.  

Finally, the environmental backpack 𝐸𝐵𝑃𝑒𝑖𝑘  associated with the entire volume of every product 𝑘 

produced by company 𝑖 can be easily calculated starting from either equation 7, 8a or 8b for each 
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environmental indicator 𝑒. It is actually the numerator of the eco-intensity ratio, which can be 

expressed through any of the alternative formulation of equation 9: 

 

𝐸𝐵𝑃𝑒𝑖𝑘 =   
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑(𝐸𝐼𝑒𝑗𝑘

𝑗

∑ 𝑄𝑖𝑗𝑘𝑛𝑃𝑖𝑗𝑘𝑛)

𝑛

 

(9a) 

 

 

𝐸𝐵𝑃𝑒𝑖𝑘 =   
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 +  ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘   

(9b) 

 

 

𝐸𝐵𝑃𝑒𝑖𝑘 =     
𝑇𝑖𝑘

𝑇𝑖
 𝐸𝑃𝑒𝑖 + ∑ 𝐸𝐼𝑒𝑗𝑘

𝑗

𝑇𝑖𝑗𝑘

𝑇𝑗
 𝑇𝑗  

 

(9c) 

 

3.5 Method outputs   

Once the recursive mechanism is applied until the most downstream tier of the supply chain and the 

environmental backpack associated to the product is calculated, all outputs of the method are 

available. The three outputs provide different information about the environmental performance at 

the single company level and at the supply chain level and can be adopted to support various 

managerial decisions: 

 Single company eco-intensity indicators: these values indicate the eco-intensity of each 

organisation with respect to each specific environmental indicator 𝑒, giving indications about 

the internal environmental performance of each company belonging to the supply chain. 

The indicators can be used internally by the companies to set environmental targets, to 

perform longitudinal benchmarking and to support the supplier selection and evaluation 

processes.  

 Supply chain eco-intensity indicators: these values reveal the eco-intensity of the extended 

supply chain of a product with respect to each specific environmental indicator 𝑒, giving 
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indications about the cradle-to-gate environmental performance of the supply chain. These 

offer a primary application to benchmark the environmental performance of products by 

considering their extended supply chain. Additional applications include use for external 

reporting of environmental performance of products as well as adoption as a reference for 

operational improvement towards a more sustainable supply chain behaviour. Finally, these 

outputs can be also used for identification of eco-intense hotspots along the supply chain, a 

necessary step to prioritise action (Lake et al., 2015). 

 Environmental backpack of products: these values quantify the absolute environmental 

impact that is assigned to the produced volume of each product with respect to each specific 

environmental indicator, allowing to further allocate the environmental backpack on 

different basis for reporting purposes. For example, the CO2 emissions per unit of product or 

the water consumed per kilogram of final product can be calculated. 

 

4. Numerical example  

The developed model is demonstrated through a numerical example with secondary data, in order 

to prove its mathematical validity and demonstrate its applicability to supply chains with different 

levels of complexity. A simplified version of the model is applied in this work for illustrative purposes 

with two environmental indicators included, covering both environmental input and environmental 

output categories: water consumption (m3/year) and emissions to air (metric tonnes CO2e/year) are 

the two indicators adopted. The model is applied over four different representative supply chains in 

an attempt to recreate the complexity of operating supply chains, which are often interconnected 

creating a supply network. In this example, the entire supply network is represented in figure 5.  

 

Each box in the figure represents an organisation. The colour of the box identifies which focal firm 

each company is serving: blue boxes belong only to supply chains of focal firm 1 (FF1), whereas 
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yellow boxes represent companies part of the supply chains of focal firm 2 (FF2). Finally, the yellow-

blue striped boxes are those companies that are part of both FF1 and FF2 supply chains. However, 

each focal firm produces multiple products: FF1 is producing product 1.1 and product 1.2, whereas 

FF2 produces product 2.1 and product 2.2. Each product supply chain is thus associated to a specific 

coloured geometrical shape. The geometrical shape next to each box helps to understand to which 

specific product supply chain each organisation is contributing to. As an example, S1 and S2 are both 

serving only focal firm 1, however S1 is contributing only to the supply chain of product 1.1 (green 

trapezoid), whereas S2 is supplying FF1 for both supply chain of product 1.1 (green trapezoid) and 

1.2 (purple rhombus). Finally, the arrows identify the links between different organisations. The 

value next to each arrow is the ratio of turnover of each supplier that is generated by that specific 

customer. As an example, 90% of the turnover of S2 is obtained thanks to deliveries to FF1: the value 

in Figure 5 is the overall turnover, which is broken down by product supply chains in Figures 6-9. S2 

generates 50% of its turnover through supplies to FF1 for Product 1.1 (Figure 6) and 40% of its 

turnover thanks to deliveries to FF1 for Product 1.2 (Figure 7), summing up to 90%.  
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Figure 5: The entire supply network 

The network illustrated in Figure 5 can be broken down in its building blocks, which are the four 

product supply chains, each of whom presents unique features. Supply chain of product 1.1, which is 

depicted in figure 6, is the only one including a 3rd tier supplier. Company B is acting both as a 2nd tier 

supplier, supplying S1 and S2, and as a 3rd tier supplier by delivering to company C, which is a 2nd tier 

supplier itself.  The second supply chain, presented in figure 7 and referring to product 1.2, also 

includes a company belonging to two different tiers, as D is a direct supplier of Focal Firm 1 (FF1), 

thus being a 1st tier supplier, but acts also as a 2nd tier supplier. Company D serves both S2 and S4, 

that are themselves suppliers of FF1, thus making D  a 2nd tier supplier. D shows an additional 

interesting feature, being at the origin of a divergent-convergent network: the material path exiting 

from D is divergent to S2 and S4, but later converges to FF1 again.  

 

 

Figure 6: Supply chain of product 1.1 
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Figure 7: Supply chain of product 1.2 

Supply chain of product 2.1, represented in figure 8, does not show any peculiar characteristic, 

featuring a simple linear supply chain. Finally, supply chain of product 2.2, pictured in figure 9, 

includes an outsourcing loop, as company S3 assigns certain production processes to organisation 

OUT. This specific case is solved by considering OUT as a normal supplier that is getting paid by S3 

for the products delivered to the customer. Although the material path might include a physical 

shipping from S3 to OUT, there is no monetary flow connected to this link. The monetary flow is 

associated to the reverse link: S3 is the outsourcer and hires a third party (OUT) for certain services, 

therefore the monetary transaction flows from S3 to OUT. The lack of an economic transaction 

associated to the material path going from S3 to OUT justifies the choice of treating OUT as a 

supplier. Additionally, this mechanism avoids to double count the environmental impact of company 

S3.  
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Figure 8: Supply chain of product 2.1 

 

 

 

Figure 9: Supply chain of product 2.2 
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The model is demonstrated in a numerical example, adopting secondary data, as illustrated in Table 

1. All data represent the yearly performance of the entire organisations, which belong to different 

sectors. Turnover ($M/year) and CO2 emissions (metric tonnes CO2e/year) values are obtained from 

publicly available databases of Fortune Global 500 companies: the data of the turnover and CO2 

emissions correspond to the same real organisation, despite in different calendar years (CDP, 2013; 

Fortune, 2016). On the other hand, water consumption data (m3/year) were based on a dedicated 

work by Joa et al. (2014) and randomly allocated to the various organisations building the 

representative network, thus not corresponding to the same real company. Finally, all supply chain 

links as well as the economic values associated to them are fictitious as real organisations, whose 

turnover and emissions are included in the model, may belong to different industries and business 

relations between them may not exist. The above assumptions do not affect the purpose of 

illustrating the model with a numerical example. 

 

Tier Company 
Turnover 

[$M/year] 
EP 1 – CO2 emissions  
 [metric t CO2 e/year] 

EP 2 – Water 
consumption  

[m3/year] 

2nd tier 

  B* 22126 53587 159000 

C 23208 1263773 365000 

  D* 24861 894206 262800 

E 38143 17918 310000 

F 44294 2551626 1168000 

G 122948 83433 3985 

H 20969 213089 1482 

OUT 23065 144298 5467 

1st tier 

S1 29636 1075761 74795 

S2 23633 4211808 93045 

S3 36604 322000 177250 

S4 33196 40996 524000 

Focal firms 
FF1 482130 851495 578267 

FF2 236592 2727000 1478000 
* Companies B and D belong to multiple supply chain tiers as explained in section 4, however are clustered in Table 1 according to their 
main tier position in the supply network. 

Table 1: key figures about the companies 
 

5. Results  
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The outputs of the numerical example are presented in this section, which is divided in three sub-

sections. Each sub-sections is dedicated to a specific output of the model, coherently with the 

methodological steps identified in Figure 1.  

5.1 Single company eco-intensities  

An eco-intensity indicator is calculated at the company level for each environmental indicator 𝐸𝑃𝑒𝑖, 

according to equation 2, by dividing the yearly environmental performance indicator of the 

organisation by its yearly turnover. These indicators do not consider any environmental impact from 

the supply chain. In this numerical example, for illustration purposes a subset of the indicators 

presented in section 3.2 is adopted: the CO2 emissions eco-intensity and the water consumption 

eco-intensity of all companies part of the supply network are calculated. The figures in Table 2 

illustrate the internal eco-intensity performance of each organisation.  

Results show a high variety in values for both eco-intensity indicators, spanning from a minimum of 

0.470 tonnes CO2e per $M for company E up to a maximum of 178.217 for S2, which is 37819% 

higher than the best performing organisations E. Company G is the best performing organisation in 

terms of water consumption eco-intensity with 0.032 m3 per $M, whereas F is at the opposite end of 

the spectrum with a value of 26.369 m3/$M.  A comparison between the CO2 emissions eco-intensity 

values and the water consumption eco-intensity figures is not meaningful as the ratios adopt 

different units of measurement at the numerator. 

Company 
EI 1 – CO2 emissions  

eco-intensity  
[metric t CO2 e/$M] 

EI 2 – Water consumption 
eco-intensity  

[m3/$M] 

B 2.422 7.186 

C 54.454 15.727 

D 35.968 10.571 

E 0.470 8.127 

F 57.607 26.369 

G 0.679 0.032 

H 10.162 0.071 

OUT 6.256 0.237 

S1 36.299 2.524 
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S2 178.217 3.937 

S3 8.797 4.842 

S4 1.235 15.785 

FF1 1.766 1.199 

FF2 11.526 6.247 

Table 2: single company eco-intensities 

The results illustrated in Table 2 help to understand the validity of eco-intensity concept, 

demonstrating the importance of having a monetary unit of reference to effectively compare figures 

of companies’ environmental performances. As an example, organisations S4 and FF1 have relatively 

similar absolute water consumption, as FF1 uses 578267 m3 of water per year compared to 524000 

m3 of water per year of S4, showing just a 10% higher water consumption volume. However, the 

economic output generated by FF1 is over 14 times bigger than the economic output obtained by S4. 

This makes the water consumption eco-intensity comparison favourable to FF1, whose EI2 equals to 

1.199 m3/$M compared to 15.785 m3/$M of company S4. Absolute indicators are effective in 

measuring the overall environmental impact of an organisation but are unsuitable for any 

comparative study, thus the benefit of using a relative indicator such as eco-intensities indicators.  

5.2 Supply chain eco-intensities  

An eco-intensity indicator is calculated at the supply chain level for each environmental indicator 

𝐸𝑃𝑒𝑖, according to equation 8b, by dividing the sum of the environmental impact of the extended 

supply chain of each product 𝑘 and the allocated contribution of the most downstream company 𝑖 in 

the supply chain, by the turnover 𝑇𝑖𝑘 of company 𝑖 generated by product 𝑘. Table 3 shows the eco-

intensity performance of four product supply chains and their ranking according to CO2 emissions 

eco-intensity and water consumption eco-intensity. 

Supply chain of product 1.1 performs best according to both eco-intensity indicators, recording 

10.461 t CO2 e/$M and 2.056 m3/$M, as illustrated in Table 3. The results show contrasting values 

among the other three supply chains. Considering CO2 emissions eco-intensity, product 2.1 ranks 

second with 11.609 metric t CO2 e/$M, followed by 14.751 metric t CO2 e/$M of product 2.2. Finally, 
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product 1.2 is the most CO2 emissions eco-intense product considering the entire supply chain, 

accounting for 22.637 t CO2 e/$M, which makes this product supply chain 116% more eco-intense 

than the best performing product 1.1.  

On the other hand, the most CO2 emissions eco-intense product 1.2 ranks second best in terms of 

water consumption with a value of 4.901 m3/$M. Product 2.1 follows in the ranking with 6.524 m3 of 

water consumed per $M. Finally, product 2.2 is the most water-intense product supply chain 

requiring 395% more water per monetary unit compared to the best performing product 1.1 when 

the extended supply chain is taken into account, with an overall value of 10.176 m3/$M.  

 

Supply chain  
EI 1 – CO2 emissions 

eco-intensity 
[metric t CO2 e/$M] 

Ranking 
EI 2 – Water consumption 

eco-intensity 
[m3/$M] 

Ranking 

Product 1.1 10.461 1 2.056 1 

Product 1.2 22.637 4 4.901 2 

Product 2.1 11.609 2 6.524 3 

Product 2.2 14.751 3 10.176 4 

Table 3: product supply chains eco-intensities 

The results clearly show the most environmentally sustainable product being product 1.1, however 

do not give an overall final indication about other products due to conflicting results between the 

CO2 emissions eco-intensity and the water consumption eco-intensity. An aggregation of indicators 

in a single eco-intensity index about performance of a product supply chain would help to come to a 

unique ranking of product supply chains based on their overall eco-intensity, resolving the issue of 

contrasting results between different indicators. However, eco-intensity indicators provide 

information about different environmental impacts to the decision makers, who can use it for 

focused interventions and operational improvement. As an example, focal firm 1, producing both 

products 1.1 and 1.2, can have a better understanding on which product is responsible for a high 
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environmental impact per unit of value: they obtain clear information to tackle the supply chain 

members of the product 1.2 to lower the CO2 emissions and the water consumption.  

 

The CO2 emissions eco-intensity scores of both products by focal firm 1 are heavily affected by the 

supply chain contribution due to the inclusion in the extended supply chain of some of the most CO2 

emissions eco-intense organisations (C, D, F and S2) that carry a much higher environmental 

backpack compared to the focal company. Within this scenario, product supply chain 1.2 is further 

penalised in its eco-intensity score by a low economic output at the supply chain level, leading to the 

bottom position in the ranking. Product supply chain 1.2 exemplifies that hotspots might be located 

among 1st tier suppliers, like S2, or further upstream, like F. In both cases however, the focal firm will 

in real life have visibility of its 1st tier suppliers only, thus not being aware of the poor performance 

of company F directly. The focal firm has only the ability to engage with its direct suppliers that 

themselves have the visibility of the 2nd tier suppliers. In the case of S2, its internal CO2 emissions 

eco-intensity performance is worse than the performance of its suppliers, thus improvement efforts 

are to be put in place within its internal boundaries. On the other hand, S3, that is the 1st tier 

supplier for the branch of supply chain including company F, can realise that the hotspot is located 

further upstream thus passing the environmental improvement effort requirements from the focal 

firm onto 2nd tier supplier F. Therefore, it can be concluded that the combined comparison of the 

internal eco-intensity performance and the eco-intensity information provided by suppliers allows 

the identification of hotspots along the supply chain.  

 

5.3 Environmental backpack of products  

The environmental backpack of products can be traced back from the eco-intensity of the supply 

chain, as illustrated in equation 9. The environmental backpacks associated to the entire yearly 

produced volume of each product 𝑘, both in terms of CO2 emissions and water consumption, are 

shown in Table 4. These values represent the environmental backpack that is allocated to each 
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product based on the economic output generated, considering the extended supply chain and 

represent the absolute values associated to each product. Product 1.1 has the overall highest CO2 

emissions, as 70% of the environmental impact of FF1 is allocated to it on top of the environmental 

backpack of the upstream supply chain, however it was proved in section 5.2 that it is the best 

performing product in terms of CO2 emissions eco-intensity. This demonstrates the need to use 

relative indicators for comparative studies.  

Product  
EBPTOT-1 - CO2 emissions 

[metric t CO2 e/year] 
 

EBPTOT-2 - Water consumption 

[m3/year] 
 

Product 1.1 3530475 693724 

Product 1.2 3274237 708845 

Product 2.1 2197188 1234914 

Product 2.2 697982 481526 

Table 4: environmental backpack of products 

The data illustrated in Table 4 can be thus considered an intermediate step to provide alternative 

environmental reporting schemes that adopt different reference units to obtain alternative relative 

environmental indicators to present to relevant stakeholders. Despite the advantage of eco-intensity 

for benchmarking purposes, alternative indicators could be more appropriate for specific reporting 

or external communication. As an example, the CO2 emissions or water consumption per unit of 

product can be easily obtained by dividing the figures presented in Table 4 by the number of units of 

the final product that are produced. In this case, only the final allocation of the environmental 

backpack to the single unit of a product needs to be ‘translated’ to a different relative unit, whereas 

upstream methodological steps would still be based on the eco-intensity principle and the relative 

recursive mechanism presented. 

6. Discussion 
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The innovative eco-intensity based method presented offers a number of advantageous features. 

Firstly, it is able to assess the eco-intensity of multi-tier supply chains by adopting a decentralised 

approach thanks to a recursive mechanism to pass the eco-intensity values from one tier of the 

supply chain to the next. The method has the advantage of respecting the multiple-organisation 

nature of supply chains considering organisations as independent entities with potential conflict of 

interest arising between them. The decentralised approach adopted in this work differentiates it 

from approaches developed in the literature so far, which largely assume the existence of a 

centralised superior coordination of the supply chain or a collaborative relationship between 

different tiers of the supply chain. The proposed method not only facilitates application in non-

collaborative contexts thanks to a limited exchange of information required between different tiers 

of the supply chain, but it also facilitates the evaluation of the supply chain in contexts where 

organisations have a limited visibility and traceability of their extended supply chain. 

The limited information focal companies have about their own supply chain has implications also on 

the level of control and influence these organisations are able to achieve throughout their supply 

chain. It is difficult for a company to manage directly the extended supply chain, therefore suppliers 

play a pivotal role to reach further upstream supply chain tiers (Wilhelm et al., 2016). This approach 

has been described as indirect approach in multi-tier supply chains by Tachizawa and Wong (2014). 

Sustainability issues are no exception to this. In this work, the capability of the supplier to involve 

the sub-supplier in the calculation of the supply chain environmental impact is a key aspect to the 

successful application of the method. The ability of a company to “measure and manage 

sustainability performance of a supply chain depends largely on the level of influence it has on the 

other partners in the chain” (Beske-Janssen et al., 2015). A developed relationship, such as a 

partnership, between a supplier and a customer might facilitate the participation of the supplier to 

the assessment and the inclusion of its upstream suppliers. On the other hand, if the relationship 

between the supplier and the customer is transactional, the success of pressure from each supply 

chain tier to its upstream supplier will depend on the relative supplier and buyer power as defined 
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by Porter (1979). Companies are able to significantly influence their direct suppliers when they have 

a high relative power balance to their suppliers due to relative utility, the share of the suppliers’ 

turnover they generate, the relative scarcity of resources that are exchanged between the two 

parties and the easiness of substitutability of the suppliers (Cox et al., 2007; Michelsen and Fet, 

2010; Scott and Westbrook, 1991). The recursive mechanism does not adopt the traditional 

approach of the focal firm managing the extended supply chain, but rather the indirect approach, as 

the focal company is expected to manage the relationship with the direct suppliers only, relying on 

them to access to sub-suppliers data and to manage the dependent relationship. 

Moving to the methodological aspects, the suggested environmental indicators are generic on 

purpose in order to be widely applicable in different sectors and to enhance the benchmarking 

potential of the method. The set of indicators needs to be manageable in size for practical 

applications, but at the same time broad in scope. The indicators indicatively should tackle both 

environmental inputs withdrawn from the natural capitals as well environmental outputs released to 

the environment, in order to achieve a holistic evaluation of the supply chain environmental 

performance. A sub-set of the indicators was presented in the numerical example for explanatory 

purposes. Moreover, additional environmental indicators can be included in eco-intensity ratios to 

represent industry-specific environmental impacts or particular priorities of the supply chains.  

The wide applicability of the selected indicators to the majority of sectors offers the possibility to 

compare the eco-intensity of products taking into account their extended supply chain. The absence 

of a specific functional unit and of subjective assumptions in the definition of the system boundaries 

favours the application for external comparability of the environmental performance of the supply 

chain. This is particularly useful in instances where the definition of the functional unit is ambiguous. 

As an example, the interpretation of the environmental impact of white bread and wholemeal bread 

supply chains through relative indicators could be based on the environmental impact per weight of 

bread or per nutrient intake, with results varying as much as 300% based on the selected functional 
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unit (USDA, 2016). The eco-intensity concept adopted in this work uses a unique reference unit, 

which is the economic output generated, and thus allows comparing even products not linked to the 

same benefit for the user, supporting more informed and sustainable decisions by customers. 

Finally, the method is designed to use primary data that are already readily available in most 

organisations to improve applicability in real life, differentiating from methods adopting consistently 

secondary data from database sources such as LCA-based approaches. The method blends collection 

of environmental data at the company level with an assessment of the supply chain at the product 

level. Data collection at the company level significantly lowers the effort required by companies and 

is suitable for SMEs as well, which are typically lagging behind in the path towards sustainability 

(Yusuf et al., 2013). Data already available at companies such as documents from the purchasing 

department  for  the  use  of  materials  or  utility  bills  for  water consumption, energy consumption 

and waste can be used, facilitating the data collection process. Moreover, data collection at the 

company level aims to highlight unsustainable behaviours of any player in the chain should this 

happen. This aspect, along with the absence of the functional unit definition, significantly 

differentiates this method from the LCA methodology. Environmental impacts at the company level 

are allocated to products based on the economic output generated by each product, guaranteeing 

that all internal environmental impacts are taken into account and transparently assigned to the 

product mix. This allocation method avoids greenwashing, which may occur when a selected product 

is analysed through LCA: production processes for that specific product might prove to be 

environmentally friendly, but taking place in companies that are globally not environmentally 

sustainable. This would ultimately expose to reputational risk the focal companies against their 

customer, as the organisations are held responsible for their selection of the upstream suppliers as a 

whole rather than at a product level (Gimenez and Tachizawa, 2012).  

6.1 Theoretical implications 
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The method introduced in this work expands the body of the literature in the emerging area of 

multi-tier supply chain management for sustainability. The research in this field has either focused 

on governance mechanisms to manage sustainability for multi-tier sustainable supply chains, such as 

in Mena et al., (2013), Tachizawa and Wong (2014) and Wilhelm et al. (2016) or adopted a strictly 

technical perspective, following the stream of research on LCA, but “without consideration of the 

dynamics arising from the multitiered structure and the interactions along the supply chain”(Adhitya 

et al., 2011). This work merges these streams of research and sets the grounds in the specific area of 

multi-tier GSCM performance assessment. This is realised by moving away from the more theoretical 

approaches of governance mechanism-focused works towards developing a practically oriented 

method, while at the same time respecting the multiple-organisation nature of the supply chain.  

The developed method expands the number of tiers typically assessed in the GSCM literature 

beyond the traditional tier-1 level and obtains an effective cradle-to-gate assessment of the eco-

intensity of products. The method also expands the number of environmental aspects considered in 

the GSCM literature for multi-tier supply chains by including multiple environmental impacts. This 

choice tries to balance the current tendency in the literature to decrease the spectrum of the 

measures adopted when the level of analysis increases beyond the dyadic supply chain (Miemczyk et 

al., 2012) as the focus on a single environmental performance limits an accurate evaluation of the 

supply chain and might provide an incomplete assessment of the overall environmental 

performance. The method is thus innovative as it achieves a holistic environmental performance 

assessment of multi-tier supply chain, by simultaneously addressing the extended supply chain in a 

cradle-to-gate approach while covering multiple environmental aspects, leading the way for an 

effective supply chain-wide environmental assessment. 

6.2 Implications for practitioners  

The outputs presented in this work offer a wide set of applications for organisations. The single 

company eco-intensity indicators measure the yearly performance of a company by considering 
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different environmental impacts and offer an overall snapshot of the organisation-wide 

environmental performance, providing a balanced consideration of environmental inputs and 

outputs. These indicators find potential applications for external reporting in an organisational 

context, but can be most noticeably be adopted for longitudinal benchmarking of the environmental 

performance at the company level. As the data is collected on a yearly basis, single company eco-

intensity indicators can be used to draw upon the historical environmental profile of an organisation. 

However, they have also future oriented applications, as managers can define environmental targets 

to be reached adopting the eco-intensity indicators as relevant KPIs.  

The single company eco-intensity indicators could also find a supply chain-oriented application as 

part of the green supplier selection and evaluation process. The figures provide quantitative support 

to the procurement decisions and can be integrated in vendor ratings or other tools requiring 

quantitative values. The quantitative values limit the subjectivity and uncertainty introduced by 

supplier selection and evaluation methods based on judgements of experts or decision makers 

(Shokravi and Kurnia, 2014; Tsoulfas and Pappis, 2008). However, the eco-intensity values would 

need to be integrated with traditional green supplier selection and evaluation methods, as they do 

not inform decision makers about environmental practices in place at suppliers’ facilities and other 

key requirements such as environmental management systems or certifications.  

The eco-intensity indicators at the supply chain level offer several additional applications to 

practitioners and stakeholders. First, indicators help practitioners to understand the environmental 

impact of the supply chain, given the limited knowledge of managers of what happens beyond 1st 

tier suppliers. When the recursive mechanism is applied until the upstream end of the supply chain, 

it reveals precious information about each branch of the supply chain. Since pressure from green 

customers moves upstream along the supply chain, focal firms might press their 1st tier suppliers 

that are found to be environmentally unsustainable to improve the environmental performance of 

their supply chain branch. 1st tier suppliers however have access to additional information compared 
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to focal firms, as they are knowledgeable about the eco-intensity performance of 2nd tier suppliers as 

well. Thus, 1st tier suppliers could evaluate whether the origin of the poor environmental 

performance of the supply chain branch is due to their internal environmental performance or their 

upstream supply chain. On these grounds, the method can assist them to decide whether to 

implement environmental actions to improve their performance or extend the pressure from green 

customers to their upstream business partners. The recursive mechanism allows in this way to 

recognise the environmental hotspots along the supply chain and to prioritise actions to improve the 

environmental performance. 

Decision makers in the focal firm are likely to be the most interested to track the environmental 

performance of the supply chain as customers hold these organisation responsible for the behaviour 

of the extended supply chain. Focal firm managers may want to pay attention to a specific eco-

intensity indicator or a subset of indicators to improve the environmental performance of the supply 

chain, a process that is facilitated by the level of granularity offered by the proposed method. Every 

industry has different features and challenges, thus posing different pressures on the natural capital: 

chemical industry is typically considered a water-intensive sector, therefore water consumption eco-

intensity might be the most relevant indicator to tackle, whereas land occupation might be more 

critical in the food supply chain. 

Moreover, the eco-intensity indicators show a potential application also in green marketing. The 

eco-intensity outputs are easy to understand by non-experts and can be adopted for external 

reporting of the environmental performance of products, potentially being incorporated into 

labelling schemes of products combined with a colour scale. The indicators are likely to be an 

effective way to influence the purchasing decisions in the lucrative business segment of sustainable 

consumers (Ormond and Goodman, 2015). The simplicity of the indicators, combined with their 

applicability to virtually any type of product, offer additional benefits to benchmark different 
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products, removing the constraints to comparative studies typical of methods based on functional 

unit definition, as highlighted in section 2.1.  

6.3 Limitations and future research directions 

While the method presented in this work offers several advantages and applications, our research is 

not without limitations.  

Some of the methodological limitations are embodied in the concept of eco-intensity. An 

improvement in the eco-intensity performance may be achieved by reducing the environmental 

impacts while maintaining the same economic output, by improving the economic output with the 

same environmental impact or by reducing the environmental impact and increasing the economic 

output simultaneously. However, improvements in the economic output might be the effect of an 

actual better economic performance or the effect of market forces. The use of the turnover as the 

economic indicator is prone to be influenced by the volatility of prices and might affect the final results 

(Bernardi et al., 2012).  

Secondly, the allocation of environmental impacts based on the economic output risks to 

overestimate or underestimate the actual environmental impact associated with each product 

supply chain. Although the overall evaluation of the product mix of each organisation part of the 

supply chain is fair, products contributing to a higher share of the turnover are allocated a higher 

environmental backpack despite not necessarily carrying a proportional polluting contribution in 

terms of production processes. This is a challenge faced commonly by allocation rules for products 

made sharing the same processes or facilities. 

 

Additionally, the method does not currently offer synthesised information about the overall 

environmental performance of the supply chain. A unique index aggregating the environmental 

impacts caused by the supply chain would be an additional layer of information for decision makers 
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to compare different product supply chains, particularly in the case of eco-intensity indicators 

providing conflicting results. However, the introduction of a composite metric would also affect the 

objectivity of the method as “composite metrics are too subjective, as their results undesirably are 

dependent on the specific weighting system employed alongside the aggregation method used for 

combining the various factors involved” (Ahi and Searcy, 2014).  

Finally, the black box approach adopted in this work determines which organisations are recognised 

as hotspots for each environmental indicator providing guidance for operational improvement but 

does not offer indication regarding the performance within the black box. The method aims to serve 

as a starting point towards operational improvement. An interesting future research direction would 

be to identify how organisations deploy the insights provided by the method in actual improvement 

plans within their organisational boundaries.  

A number of challenges to the practical application of the method also exist. The numerical example 

of the model with secondary data demonstrated a promising applicability; however, the utilisation of 

the model in an operating supply chain context has still to be performed. A case study including the 

full set of indicators is currently underway in order to validate the model with primary data. Despite 

the method does not require a collaborative supply chain to be applied, a minimal information 

exchange between the supply chain players is still required. Certain supply chain players might be 

unwilling to cooperate to the assessment, while other organisations might be unsuccessful in involving 

their own suppliers in the application of the recursive mechanism due to unfavourable balance of 

power along the supply chain.  

As a result, environmental data might not be available or collected for all supply chain tiers leading 

to an incomplete evaluation of the eco-intensity of the extended supply chain. This might be 

particularly the case of global supply chains, where a high number of intermediaries are involved and 

upstream tiers located in remote geographical areas might be difficult to be accessed (Wilhelm et al., 

2016). Moreover, since each organisation is responsible for its internal self-assessment, a 
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mechanism to verify the environmental data provided by suppliers needs to be identified in the 

future, potentially through an audit scheme or including a third party platform external to supply 

chain members. 

 

7. Conclusion  

This work aimed to quantitatively assess the environmental performance of extended supply chains 

by using an innovative eco-intensity based method that relates the environmental performance of 

the supply chain to its economic output, allowing effective multi-tier environmental sustainability 

assessment of the supply chain and expanding the number of tiers assessed compared to the 

existing GSCM literature.  

 

The method assesses the environmental sustainability performance of extended supply chains, while 

respecting the non-collaborative and multiple-organisation nature of the majority of supply chains. 

Supply chain decisions in operating contexts are typically decentralised (Caro et al., 2013); therefore, 

assuming a centralised entity taking control of the full chain is not usually applicable in practice. 

Moreover, the increasing length and complexity of global supply chains have reduced the control of 

logistical issues by focal companies, decreasing the traceability of the upstream network (Hutchins 

and Sutherland, 2008). Subsequently, supply chain management for sustainability and 

environmental performance measurement systems at the supply chain level need to be suitable for 

non-collaborative and multi-tier supply chains. The developed model mirrors the operating 

conditions of existing supply chains adopting a decentralised approach, which is implemented thanks 

to the recursive mechanism to pass the eco-intensity values from one tier of the supply chain to the 

next. The limited information exchange required by the method makes it applicable to non-

collaborative supply chains as well, as there is no need for a developed relationship between supply 

chain members. Moreover, the method enables assessment of the eco-intensity performance of 
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extended supply chains, but has the advantage of requiring every supply chain player to access only 

to its direct suppliers and customers, simplifying the assessment of the supply chain. This facilitates 

the implementation of the method in contexts where organisations have limited visibility of their 

supply chain.  

 

The model is applied to a numerical example with secondary data. Four representative product 

supply chains are compared according to their extended supply chain environmental performance. A 

subset of the proposed indicators is adopted in the numerical example, including the CO2 emissions 

and water consumption eco-intensities.  

 

Results provide a wide range of practical applications based on the different outputs of the method, 

as highlighted by the numerical example. Eco-intensity indicators at the company level may be 

internally used to determine environmental targets and to guide operational improvement. 

Moreover, they are potentially applicable to the supplier selection and evaluation process: 

organisations can compare the eco-intensities performance of suppliers at the company level to 

assess their 1st tier suppliers internal performance and integrate these values in their supplier 

selection and evaluation methods currently into practice to include an environmental perspective. 

Eco-intensity indicators at the supply chain level are useful to identify the environmental hotspots in 

the supply chain thanks to the recursive mechanism adopted and can be further used to benchmark 

the environmental performance of products considering their extended supply chain. The definition 

of clear system boundaries matching the material flow of transformed resources combined with the 

allocation of environmental impact based on the economic dimension of sustainability and the 

absence of a specific functional unit avoid assumptions that could limit the external comparability of 

environmental performance. The comparison of virtually any product based on the eco-intensity 

performance is possible, supporting more informed and sustainable decisions by customers. Eco-

intensity indicators at the supply chain level are thus potentially applicable also for labelling schemes 
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or for external reporting to communicate the environmental profile of the product supply chains to 

relevant stakeholders.  

 

The method presented in this work expands the body of the literature in the growing field of multi-

tier supply chain management for sustainability and more specifically in the area of multi-tier GSCM 

performance assessment. Its contribution lies in the extension of environmental performance 

assessment beyond 1st tier suppliers to effectively assess multi-tier and extended supply chains, 

while respecting the multiple-organisation nature and non-collaborative characteristics of the 

majority of real life supply chains. Moreover, the adopted decentralised approach does not require 

visibility of the extended supply chain by any single member, as every organisation requires access 

only to its direct suppliers and customers, thus enhancing the applicability of the method. Finally, 

the method is designed to use primarily data that are already available within organisations and has 

a low level of calculation complexity, therefore simplifying the process and allowing SMEs with 

limited resources and skills available to be part of the assessment.  

Nomenclature  

𝑒 Environmental indicator 

𝐸𝐵𝑃 Environmental backpack 

𝐸𝐵𝑃𝑒𝑖𝑘  Environmental backpack with respect to environmental indicator 𝑒 of 
organisation 𝑖 associated to its output product 𝑘 

𝐸𝐼 Eco-intensity 

𝐸𝐼𝑒𝑖 Eco-intensity with respect to environmental indicator 𝑒 of organisation 𝑖 

𝐸𝐼𝑒𝑖𝑘 Eco-intensity with respect to environmental indicator 𝑒 of organisation 𝑖 
associated to its output product 𝑘 

𝐸𝐼𝑒𝑗 Eco-intensity with respect to environmental indicator 𝑒 of supplier 𝑗 

𝐸𝐼𝑒𝑗𝑘 Eco-intensity with respect to environmental indicator 𝑒 of supplier 𝑗 associated 
to its output product 𝑘 

𝐸𝑃 Environmental performance 

𝐸𝑃𝑒𝑖  Environmental performance with respect to environmental indicator 𝑒 of 
organisation 𝑖 

𝐸𝑃𝑒𝑖𝑘  Environmental performance with respect to environmental indicator 𝑒 of 
organisation 𝑖 associated to its output product 𝑘 

𝑖 Customer of each dyad for each iteration of the recursive mechanism 

𝑗 Supplier of each dyad for each iteration of the recursive mechanism 
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𝑘 Products offered from an organisation 𝑖 to its customer for each iteration of 
the recursive mechanism 

𝑛 Intermediate products purchased by organisation 𝑖 from supplier 𝑗 for its 
output product 𝑘 for each iteration of the recursive mechanism 

𝑄 Quantity 

𝑄𝑖𝑘  Quantity of product 𝑘 sold by organisation 𝑖 

𝑄𝑖𝑗𝑘𝑛 Quantity of product 𝑛 purchased by organisation 𝑖 from supplier 𝑗 for its output 
product 𝑘 

𝑃 Price 

𝑃𝑖𝑘 Price of product 𝑘 sold by organisation 𝑖 

𝑃𝑖𝑗𝑘𝑛 Price of product 𝑛 purchased by organisation 𝑖 from supplier 𝑗 for its output 
product 𝑘 

𝑇 Turnover 

𝑇𝑖 Turnover of organisation 𝑖 

𝑇𝑖𝑘 Turnover of organisation 𝑖 generated by product 𝑘  

𝑇𝑖𝑗𝑘 Turnover of supplier 𝑗 generated by organisation 𝑖 through the purchase of 
product 𝑘 

𝑇𝑗 Turnover of supplier 𝑗 

 

References 

  Acquaye, A., Genovese, A., Barrett, J., Koh, S.C.L., 2014. Benchmarking carbon emissions 

performance in supply chains. Supply Chain Manag. An Int. J. 19, 306–321. 

https://doi.org/10.1108/SCM-11-2013-0419 

Adhitya, A., Halim, I., Srinivasan, R., 2011. Decision support for green supply chain operations by 

integrating dynamic simulation and LCA indicators: Diaper case study. Environ. Sci. Technol. 45, 

10178–10185. https://doi.org/10.1021/es201763q 

Ahi, P., Searcy, C., 2015. An Analysis of Metrics Used to Measure Performance in Green and 

Sustainable Supply Chains. J. Clean. Prod. 86, 360–377. 

https://doi.org/10.1016/j.jclepro.2014.08.005 

Ahi, P., Searcy, C., 2014. Assessing sustainability in the supply chain: A triple bottom line approach. 

Appl. Math. Model. 39, 2882–2896. https://doi.org/10.1016/j.apm.2014.10.055 



47 
 

APICS, 2014. SCOR. Chicago. https://doi.org/10.1007/s13398-014-0173-7.2 

Ayres, R.U., Kneese, A. V., 1969. Production , Consumption , and Externalities. Am. Econ. Rev. 59, 

282–297. 

Bask, A., Halme, M., Kallio, M., Kuula, M., 2013. Consumer preferences for sustainability and their 

impact on supply chain managementThe case of mobile phones. Int. J. Phys. Distrib. Logist. 

Manag. 43, 380–406. https://doi.org/10.1108/S1479-3563(2012)000012B005 

Beavis, L., 2015. M&S takes an interest in its suppliers’ green credentials. Guard. 

Bernardi, A., Giarola, S., Bezzo, F., 2012. Optimizing the economics and the carbon and water 

footprints of bioethanol supply chains. Biofuels, Bioprod. Biorefining 6, 656–672. 

https://doi.org/10.1002/bbb 

Beske-Janssen, P., Johnson, M.P., Schaltegger, S., 2015. 20 Years of Performance Measurement in 

Sustainable Supply Chain Management – What Has Been Achieved? Supply Chain Manag. An 

Int. J. 20, 664–680. https://doi.org/10.1108/SCM-06-2015-0216 

Björklund, M., Martinsen, U., Abrahamsson, M., 2012. Performance measurements in the greening 

of supply chains. Supply Chain Manag. An Int. J. 17, 29–39. 

https://doi.org/10.1108/13598541211212186 

Bloemhof, J.M., van der Vorst, J.G. a. J., Bastl, M., Allaoui, H., 2015. Sustainability assessment of food 

chain logistics. Int. J. Logist. Res. Appl. 18, 101–117. 

https://doi.org/10.1080/13675567.2015.1015508 

Brandenburg, M., 2015. Low carbon supply chain configuration for a new product - A goal 

programming approach. Int. J. Prod. Res. 53, 6588–6610. 

https://doi.org/10.1080/00207543.2015.1005761 

Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S., 2014. Quantitative models for sustainable 



48 
 

supply chain management: Developments and directions. Eur. J. Oper. Res. 233, 299–312. 

https://doi.org/10.1016/j.ejor.2013.09.032 

Brent,  a. C., Visser, J.K., 2005. An environmental performance resource impact indicator for life cycle 

management in the manufacturing industry. J. Clean. Prod. 13, 557–565. 

https://doi.org/10.1016/j.jclepro.2003.12.007 

Cabral, I., Grilo, A., Cruz-Machado, V., 2012. A decision-making model for Lean, Agile, Resilient and 

Green supply chain management. Int. J. Prod. Res. 50, 4830–4845. 

https://doi.org/10.1080/00207543.2012.657970 

Caro, F., Corbett, C.J., Tan, T., Zuidwijk, R., 2013. Double Counting in Supply Chain Carbon 

Footprinting. Manuf. Serv. Oper. Manag. 15, 545–558. 

https://doi.org/10.1287/msom.2013.0443 

CDP, 2013. Global 500 Emissions and Response Status - 2012 [WWW Document]. URL 

https://data.cdp.net/GHG-Emissions/Global-500-Emissions-and-Response-Status-2012/4hek-

p74b/data (accessed 4.1.17). 

Charmondusit, K., Phatarachaisakul, S., Prasertpong, P., 2014. The quantitative eco-efficiency 

measurement for small and medium enterprise: A case study of wooden toy industry. Clean 

Technol. Environ. Policy 16, 935–945. https://doi.org/10.1007/s10098-013-0693-4 

Colicchia, C., Creazza, A., Dallari, F., Melacini, M., 2015. Eco-efficient supply chain networks: 

development of a design framework and application to a real case study. Prod. Plan. Control 

7287, 1–12. https://doi.org/10.1080/09537287.2015.1090030 

Cox, A., Chicksand, D., Yang, T., 2007. The proactive alignment of sourcing with marketing and 

branding strategies: a food service case. Supply Chain Manag. An Int. J. 12, 321–333. 

https://doi.org/10.1108/13598540710776908 



49 
 

De Soete, W., Dewulf, J., Cappuyns, P., Van der Vorst, G., Heirman, B., Aelterman, W., Schoeters, K., 

Van Langenhove, H., 2013. Exergetic sustainability assessment of batch versus continuous wet 

granulation based pharmaceutical tablet manufacturing: a cohesive analysis at three different 

levels. Green Chem. 15, 3001–3278. https://doi.org/10.1039/c3gc41185k 

Dimian, A.C., Bildea, C.S., Kiss, A.A., 2014. Integrated Design and Simulation of Chemical Processes. 

Elsevier B.V., Amsterdam. 

Egilmez, G., Kucukvar, M., Tatari, O., Bhutta, M.K.S., 2014. Supply chain sustainability assessment of 

the U.S. food manufacturing sectors: A life cycle-based frontier approach. Resour. Conserv. 

Recycl. 82, 8–20. https://doi.org/10.1016/j.resconrec.2013.10.008 

Fabbe-Costes, N., Roussat, C., Colin, J., 2011. Future sustainable supply chains: what should 

companies scan? Int. J. Phys. Distrib. Logist. Manag. 41, 228–252. 

https://doi.org/10.1108/S1479-3563(2012)000012B007 

Fortune, 2016. Global 500 [WWW Document]. URL http://beta.fortune.com/global500 (accessed 

6.1.17). 

Frota Neto, J.Q., Bloemhof-Ruwaard, J.M., van Nunen, J. a. E.E., van Heck, E., 2008. Designing and 

evaluating sustainable logistics networks. Int. J. Prod. Econ. 111, 195–208. 

https://doi.org/10.1016/j.ijpe.2006.10.014 

Genovese, A., Lenny Koh, S.C., Kumar, N., Tripathi, P.K., 2013. Exploring the challenges in 

implementing supplier environmental performance measurement models: a case study. Prod. 

Plan. Control 25, 1198–1211. https://doi.org/10.1080/09537287.2013.808839 

Gerbens-Leenes, P.W., Moll, H.C., Schoot Uiterkamp,  a. J.M., 2003. Design and development of a 

measuring method for environmental sustainability in food production systems. Ecol. Econ. 46, 

231–248. https://doi.org/10.1016/S0921-8009(03)00140-X 



50 
 

Gimenez, C., Tachizawa, E.M., 2012. Extending sustainability to suppliers: a systematic literature 

review. Supply Chain Manag. An Int. J. 17, 531–543. 

https://doi.org/10.1108/13598541211258591 

Guldbrandsson, F., Bergmark, P., 2012. Opportunities and limitations of using life cycle assessment 

methodology in the ICT sector, in: Electronics Goes Green 2012+ (EGG). Berlin, pp. 1–6. 

Harris, I., Naim, M., Palmer, A., Potter, A., Mumford, C., 2011. Assessing the impact of cost 

optimization based on infrastructure modelling on CO2 emissions. Int. J. Prod. Econ. 131, 313–

321. https://doi.org/10.1016/j.ijpe.2010.03.005 

Hashemi, S.H., Karimi, A., Tavana, M., 2015. An integrated green supplier selection approach with 

analytic network process and improved Grey relational analysis. Int. J. Prod. Econ. 159, 178–

191. https://doi.org/10.1016/j.ijpe.2014.09.027 

Hassini, E., Surti, C., Searcy, C., 2012. A literature review and a case study of sustainable supply 

chains with a focus on metrics. Int. J. Prod. Econ. 140, 69–82. 

https://doi.org/10.1016/j.ijpe.2012.01.042 

Hervani, A.A., Helms, M.M., Sarkis, J., 2005. Performance measurement for green supply chain 

management. Benchmarking An Int. J. 12, 330–353. 

Huppes, G., Ishikawa, M., 2005. Eco-efficiency and Its Terminology. J. Ind. Ecol. 9, 43–46. 

https://doi.org/10.1162/108819805775247891 

Hutchins, M.J., Sutherland, J.W., 2008. An exploration of measures of social sustainability and their 

application to supply chain decisions. J. Clean. Prod. 16, 1688–1698. 

https://doi.org/10.1016/j.jclepro.2008.06.001 

Joa, B., Hottenroth, H., Jungmichel, N., Schmidt, M., 2014. Introduction of a feasible performance 

indicator for corporate water accounting – a case study on the cotton textile chain. J. Clean. 



51 
 

Prod. 82, 143–153. https://doi.org/10.1016/j.jclepro.2014.06.075 

Koh, S.C.L., Genovese, A., Acquaye, A. a., Barratt, P., Rana, N., Kuylenstierna, J., Gibbs, D., 2012. 

Decarbonising product supply chains: design and development of an integrated evidence-based 

decision support system – the supply chain environmental analysis tool (SCEnAT). Int. J. Prod. 

Res. 51, 1–18. https://doi.org/10.1080/00207543.2012.705042 

Kovács, G., 2008. Corporate environmental responsibility in the supply chain. J. Clean. Prod. 16, 

1571–1578. https://doi.org/10.1016/j.jclepro.2008.04.013 

Kravanja, Z., Čuček, L., 2013. Multi-objective optimisation for generating sustainable solutions 

considering total effects on the environment. Appl. Energy 101, 67–80. 

https://doi.org/10.1016/j.apenergy.2012.04.025 

Lake, A., Acquaye, A., Genovese, A., Kumar, N., Koh, S.C.L., 2015. An application of hybrid life cycle 

assessment as a decision support framework for green supply chains. Int. J. Prod. Res. 53, 

6495–6521. https://doi.org/10.1080/00207543.2014.951092 

Mahdiloo, M., Saen, R.F., Lee, K.H., 2015. Technical, environmental and eco-efficiency measurement 

for supplier selection: An extension and application of data envelopment analysis. Int. J. Prod. 

Econ. 168, 279–289. https://doi.org/10.1016/j.ijpe.2015.07.010 

McIntyre, K., Smith, H., Henham,  a, Pretlove, J., 1998. Environmental performance indicators for 

integrated supply chains: The case of Xerox Ltd. Supply Chain Manag. 3, 149–156. 

https://doi.org/10.1108/13598549810230877 

Mena, C., Humphries, A., Choi, T.Y., 2013. Toward a theory of multi-tier supply chain management. J. 

Supply Chain Manag. 49, 58–77. https://doi.org/10.1111/jscm.12003 

Michelsen, O., Fet, A.M., 2010. Using eco-efficiency in sustainable supply chain management; A case 

study of furniture production. Clean Technol. Environ. Policy 12, 561–570. 



52 
 

https://doi.org/10.1007/s10098-009-0266-8 

Michelsen, O., Fet, A.M., Dahlsrud, A., 2006. Eco-efficiency in extended supply chains: A case study 

of furniture production. J. Environ. Manage. 79, 290–297. 

https://doi.org/10.1016/j.jenvman.2005.07.007 

Miemczyk, J., Johnsen, T.E., Macquet, M., 2012. Sustainable purchasing and supply management: a 

structured literature review of definitions and measures at the dyad, chain and network levels. 

Supply Chain Manag. An Int. J. 17, 478–496. https://doi.org/10.1108/13598541211258564 

Mintcheva, V., 2005. Indicators for environmental policy integration in the food supply chain (the 

case of the tomato ketchup supply chain and the integrated product policy). J. Clean. Prod. 13, 

717–731. https://doi.org/10.1016/j.jclepro.2004.01.008 

Montoya-Torres, J.R., Gutierrez-Franco, E., Blanco, E.E., 2015. Conceptual framework for measuring 

carbon footprint in supply chains. Prod. Plan. Control 26, 265–279. 

https://doi.org/10.1080/09537287.2014.894215 

Neely, A., Gregory, M., Platts, K., 1995. Performance measurement system design: A literature 

review and research agenda. Int. J. Oper. Prod. Manag. 15, 80–116. 

O’Rourke, D., 2014. The science of sustainable supply chains. Science (80-. ). 344, 1124–1128. 

Ormond, J., Goodman, M.K., 2015. A new regime of carbon counting : The practices and politics of 

accounting for everyday carbon through CO2e. Glob. Environ. Chang. 34, 1–35. 

https://doi.org/10.1016/j.gloenvcha.2015.04.011 

Parker, R.P., Kapuscinski, R., 2011. Managing a Noncooperative Supply Chain with Limited Capacity. 

Oper. Res. 59, 866–881. 

Porter, M.E., 1979. How Competitive Forces Shape Strategy. Harv. Bus. Rev. 57, 137–145. 



53 
 

Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J.A.E.E., Spengler, T., 2009. A 

methodology for assessing eco-efficiency in logistics networks. Eur. J. Oper. Res. 193, 670–682. 

https://doi.org/10.1016/j.ejor.2007.06.056 

Ritthof, M., Rohn, H., Liedtke, C., Merten, T., 2002. Calculating MIPS Resource productivity of 

products and services. Wuppertal Institut for Climate, Environment and Energy at the Science 

Centre North Rhine-Westphalia, Wuppertal. 

Saling, P., Kicherer, A., Dittrich-Krämer, B., Wittlinger, R., Zombik, W., Schmidt, I., Schrott, W., 

Schmidt, S., 2002. Eco-efficiency analysis by BASF: the method. Int. J. Life Cycle Assess. 7, 203–

218. https://doi.org/10.1007/BF02978875 

Santibanez-Gonzalez, E.D.R., Diabat, A., 2013. Modeling logistics service providers in a non-

cooperative supply chain. Appl. Math. Model. 40, 6340–6358. 

https://doi.org/10.1016/j.apm.2015.09.062 

Schaltegger, S., Martin, B., Burritt, R.L., Jasch, C., 2008. Environmental Management Accounting for 

Cleaner Production. 

Schmidt, M., Schwegler, R., 2008. A recursive ecological indicator system for the supply chain of a 

company. J. Clean. Prod. 16, 1658–1664. https://doi.org/10.1016/j.jclepro.2008.04.006 

Scott, C., Westbrook, R., 1991. New Strategic Tools for Supply Chain Management. Int. J. Phys. 

Distrib. Logist. Manag. 21, 23–33. https://doi.org/10.1108/09600039110002225 

Seuring, S., Müller, M., 2008. From a literature review to a conceptual framework for sustainable 

supply chain management. J. Clean. Prod. 16, 1699–1710. 

https://doi.org/10.1016/j.jclepro.2008.04.020 

Shaw, S., Grant, D.B., Mangan, J., 2010. Developing environmental supply chain performance 

measures. Benchmarking An Int. J. 17, 320–339. 



54 
 

Shokravi, S., Kurnia, S., 2014. A step towards developing a sustainability performance measure 

within industrial networks. Sustainability 6, 2201–2222. https://doi.org/10.3390/su6042201 

Sigala, M., 2008. A supply chain management approach for investigating the role of tour operators 

on sustainable tourism: the case of TUI. J. Clean. Prod. 16, 1589–1599. 

https://doi.org/10.1016/j.jclepro.2008.04.021 

Silvestre, B.S., 2015. Sustainable supply chain management in emerging economies: Environmental 

turbulence, institutional voids and sustainability trajectories. Int. J. Prod. Econ. 167, 156–169. 

https://doi.org/10.1016/j.ijpe.2015.05.025 

Slack, N., Chambers, S., Johnston, R., Betts, A., 2009. Operations and Process Management. Paerson 

Education, Harlow. 

Srivastava, S.K., 2007. Green supply-chain management: A state-of-the-art literature review. Int. J. 

Manag. Rev. 9, 53–80. https://doi.org/10.1111/j.1468-2370.2007.00202.x 

Tachizawa, E.M., Wong, C.Y., 2014. Towards a theory of multi-tier sustainable supply chains: a 

systematic literature review. Supply Chain Manag. An Int. J. 19, 643–663. 

https://doi.org/10.1108/SCM-02-2014-0070 

Taticchi, P., Tonelli, F., Pasqualino, R., 2013. Performance measurement of sustainable supply chains: 

A literature review and a research agenda. Int. J. Product. Perform. Manag. 62, 782–804. 

Tseng, M.-L., Tan, K.-H., Lim, M., Lin, R.-J., Geng, Y., 2013. Benchmarking eco-efficiency in green 

supply chain practices in uncertainty. Prod. Plan. Control 7287, 1–12. 

https://doi.org/10.1080/09537287.2013.808837 

Tsoulfas, G.T., Pappis, C.P., 2008. A model for supply chains environmental performance analysis and 

decision making. J. Clean. Prod. 16, 1647–1657. https://doi.org/10.1016/j.jclepro.2008.04.018 

Tuni, A., Rentizelas, A., Duffy, A., 2018. Environmental performance measurement for green supply 



55 
 

chains. Int. J. Phys. Distrib. Logist. Manag. IJPDLM-02-2017-0062. 

https://doi.org/10.1108/IJPDLM-02-2017-0062 

USDA, 2016. Nutrient Database for Standard Reference. 

Vachon, S., Mao, Z., 2008. Linking supply chain strength to sustainable development: a country-level 

analysis. J. Clean. Prod. 16, 1552–1560. https://doi.org/10.1016/j.jclepro.2008.04.012 

Varsei, M., Soosay, C., Fahimnia, B., Sarkis, J., 2014. Framing sustainability performance of supply 

chains with multidimensional indicators. Supply Chain Manag. An Int. J. 19, 242–257. 

https://doi.org/10.1108/SCM-12-2013-0436 

Veleva, V., Hart, M., Greiner, T., Crumbley, C., 2003. Indicators for measuring environmental 

sustainability: A case study of the pharmaceutical industry. Benchmarking An Int. J. 10, 107–

119. 

WBCSD, 2000. Eco-efficiency. Creating more Value with less Impact, World Business Council for 

Sustainable Development. 

WBCSD and WRI, 2009. The Greenhouse Gas Protocol Initiative: Scope 3 Accounting and Reporting 

Standard. Geneva, Switzerland. 

Wiedmann, T.O., Lenzen, M., Barrett, J.R., 2009. Companies on the scale comparing and 

benchmarking the sustainability performance of businesses. J. Ind. Ecol. 13, 361–383. 

https://doi.org/10.1111/j.1530-9290.2009.00125.x 

Wilhelm, M.M., Blome, C., Bhakoo, V., Paulraj, A., 2016. Sustainability in multi-tier supply chains: 

Understanding the double agency role of the first-tier supplier. J. Oper. Manag. 41, 42–60. 

https://doi.org/10.1016/j.jom.2015.11.001 

Wu, C., Barnes, D., 2016. An integrated model for green partner selection and supply chain 

construction. J. Clean. Prod. 112, 2114–2132. https://doi.org/10.1016/j.jclepro.2015.02.023 



56 
 

Yakovleva, N., Sarkis, J., Sloan, T., 2012. Sustainable benchmarking of supply chains: the case of the 

food industry. Int. J. Prod. Res. 50, 1297–1317. 

https://doi.org/10.1080/00207543.2011.571926 

Yusuf, Y.Y., Gunasekaran,  a., Musa, A., El-Berishy, N.M., Abubakar, T., Ambursa, H.M., 2013. The UK 

oil and gas supply chains: An empirical analysis of adoption of sustainable measures and 

performance outcomes. Int. J. Prod. Econ. 146, 501–514. 

https://doi.org/10.1016/j.ijpe.2012.09.021 


