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Abstract: This work assesses the crack propagation at the most critical point of a second stage of a gas
turbine blade by means of linear elastic fracture mechanics (LEFM). The most critical zone where the
crack may nucleate, due to a combination of thermo-mechanical loads, is detected with an uncracked
finite element (FE) model pre-analysis. Then the sub-modelling technique is used to obtain more
precise results in terms of stresses within the area of interest. Simulations of the state of stress at the
crack apex are performed through an FE model, using the Fracture Tool within ANSYS Workbench,
and the stress intensity factors (SIFs) are determined accordingly. The Fracture Tool was previously
verified on a simple model, and the results were compared with its analytical solution. Finally, the
evaluation of the crack growth due to fatigue stress, creep, and oxidation is performed through
in-house software called Propagangui. The crack behavior is estimated along with the component
life. Results show an unexpected decrease in KI with increasing crack length and slowing of the
crack growth rate with crack propagation. A detailed analysis of this behavior emphasizes that the
redistribution of the stresses at the crack apex means that unstable propagation is not expected.

Keywords: crack propagation; linear elastic fracture mechanics; stress intensity factor; vane

1. Introduction
1.1. Background

The continuous evolution of heavy-duty gas turbines (GTs), with the aim of improving
machine performance, has resulted in the significant modification of its working conditions,
particularly in terms of increasing temperatures and stresses. Especially regarding the
expansion section of the engine, GT blades and vanes of the front stages, which are close
to the combustion chamber, withstand extremely harsh operating conditions that trigger
damage mechanisms [1]. These damage mechanisms, such as creep, fatigue [2,3], and
oxidation, play an important role in crack initiation and propagation.

As a result, fracture mechanics (FM) is becoming increasingly important in the devel-
opment and analysis of heavy GTs, not only to study possible crack behavior, but also to
evaluate preliminary activities to avoid catastrophic failure. Some of these activities are
selecting the required materials, defining the repair criteria, and formulating the component
safe-life design.

Generally, stress intensity factor (SIF) evaluation is used to solve most of the engi-
neering mechanical problems related to crack propagation, such as safety and service
lifeestimation of cracked components. Both analytical and numerical methods can deter-
mine its main parameters. While analytical solutions can be applied to very idealized
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scenarios of geometry and stress distribution [4,5], numerical tools are more accurate
when dealing with more complex geometry and boundary conditions. Recent software
development has been achieved to simulate crack propagation behavior, especially in the
framework of the finite element method (FEM), the boundary element method (BEM), the
extended finite element method (XFEM), and meshless methods [6].

Commonly, complex structures with cracks are modeled through FEM because of its
simplicity and versatility [7] using two main approaches. The implicit approach—also
called smeared crack approaches—models the cracks using constitutive material models
consistent with continuum damage mechanics (CDM) [8,9], while the explicit approach
models the cracks through geometric entities. The explicit approach is suitable when
dealing with structures with predefined crack paths. In this work, the explicit approach
is used, as the crack growth direction is predefined by field feedback experience. On the
one hand, working with FEM implies complex remeshing strategies as the crack evolves,
especially under mixed mode conditions [10–12].

On the other hand, BEM and the dual boundary element method (DBEM)—a particular
variant of the BEM—are characterized by a simplification of meshing processes, as the
extension of the crack is discretized by adding new boundary elements, providing accurate
gradients of the stress state at the crack apex [13,14]. Nevertheless, neither BEM nor DBEM
are suitable for application to non-linear flow problems. In addition, the mathematics used
under these approaches is unfamiliar to the engineering community, with matrices not easy
to solve [15]. As shown in recent works, FEM and DBEM methods can work together to
solve fracture problems in large structures or when faced with residual stresses caused by
plastic deformations [16–21]. Generally, when a joint FEM–DBEM approach is used, FEM
determines the global stress–strain fields, while a DBEM sub-model, obtained from the
global FEM model, deals with the fracture problem.

The re-meshing issues from the FEM could be solved by the self-adaptive remeshing
process. However, due to the complexity of applying and controlling any automated
remeshing algorithm, the extended finite element method (XFEM) and meshless methods
have been extensively and effectively applied to crack propagation. In XFEM [22–24],
re-meshing is avoided by enriching the finite element interpolation functions using asymp-
totic expansions, which allows for an accurate representation of the crack propagation
trajectories and singularity fields near the crack apex. Nevertheless, a priori knowledge of
these enrichments is required, and complexities may arise in formulating finite elements
and performing numerical integrations [25]. On the other hand, meshless methods [26,27]
represent the domain by means of scattered nodes, where propagation will occur through
the movement of computation nodes. These methods eliminate the re-meshing events but
originate refined regions of nodes to account for arbitrary crack paths, thus requiring huge
computational resources to perform the simulations.

1.2. Objective

The nature of the stresses present in the trailing edge of a vane is quite complex.
Several effects act simultaneously:

• Thermal stresses due to thermal differences within the vane seats and large thermal
differences between the internal cooling air and the external hot gas.

• Mounting stresses.
• Gas pressure.
• Local stress concentrations due to geometric discontinuities.

As the vanes operate well above the creep initiation temperature, all these stresses
evolve over time, generally characterized by stress relaxation and redistribution.

In this scenario, the calculation of propagation is nontrivial. The crack propagates
in a (mostly) displacement-controlled field in a multiaxial, non-proportional stress state.
The general stress/strain/temperature state is significantly different from the experimental
condition in which the propagation laws are generally calibrated. Therefore, it is important
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to improve the propagation calculation methodology to reduce the uncertainties associated
with all the complexities mentioned above.

Despite the abundance of numerical methods to simulate crack propagation mech-
anisms, the joint contribution of fatigue, creep, and oxidation on crack growth is still an
important topic that has not been thoroughly examined. Except for some theoretical inves-
tigations, there are no comprehensive numerical tools available to perform crack analysis
in terms of these phenomena. In this work, a FEM approach—using ANSYS Code—was
used to simulate the crack and to study fracture parameters, particularly the stress intensity
factors (SIFs). Since the re-meshing process at each crack size is not avoided using this
technique, the sub-modeling technique was applied, thus reducing the computational time.
Furthermore, the crack propagation behavior in terms of fatigue, creep, and oxidation
was studied using software developed in Ansaldo Energia, called Propagangui, which pre-
dicts crack propagation of cast Ni-base superalloys by identifying the propagation fraction
caused by oxidation, creep, and fatigue crack growth [28].

Therefore, the main purpose of this work is to evaluate the propagation behavior of a
crack located at the most critical points of a second stage GT vane for power generation
(F-class). The behavior of a potential crack and the lifing of the component were estimated
using linear elastic fracture mechanics (LEFM). The SIF was determined using FEM calcula-
tions, while the evaluation of crack growth, due to the joint phenomena of fatigue, creep,
and oxidation, was carried out using the in-house software Propagangui

2. Numerical Model

The crack growth evaluation was conducted in three steps: (i) a preliminary analysis
to obtain the most critical locations where the crack can nucleate because of thermo-
mechanical loads, (ii) fracture parameter calculations using numerical tools to obtain crack
dynamics through SIFs, and (iii) crack growth evaluation considering creep and oxidation.
To estimate the component lifing, curves for different firing hours (FH) as a function of
the number of shutdown (NS) were performed with different crack sizes. The FHs is the
time (or number of cycles) that the vane can accomplish with stable crack propagation. For
reasons of confidentiality, results were normalized by their maximum value. The flowchart
of the procedure is detailed in Figure 1.
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2.1. Preliminary Analysis

An FEM analysis was performed beforehand on the component to evaluate the stress
state under the operating conditions and to obtain the critical areas where cracks may
initiate. The component under investigation is a second stage vane on which a static
analysis within the elastic field was developed with the software ANSYS Workbench and
ANSYS Mechanical APDL. The FE model is depicted in Figure 2 and consists of a turbine
vane with its turbine vane carrier sector (TVC) and the corresponding U-ring sector. For all
these components, a refined mesh was prepared to improve the accuracy of the results.
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The equivalent von Mises Stress at the GT vane and the displacement were at-
tained. Furthermore, the two main damage mechanisms produced at the extreme working
conditions—creep and thermo-mechanical fatigue—were also evaluated. Creep analysis
was performed at different times according to maintenance intervals. The fatigue analy-
sis was carried out with two different approaches, namely, considering or not the stress
relaxation due to creep strain increase. In the first approach, no stress relaxation was
considered, hence evaluating the number of cycles to crack initiation in the worst possible
condition, R = σmin

σmax
= 0, whereas the second approach was performed considering the

stress relaxation attained due to creep, which provides a higher number of cycles to crack
initiation because this relaxation produces a shifted effect of the load cycle mean stress.

Figures 3 and 4 show the boundary conditions, normalized to the maximum value, in
terms of mechanical loads and temperature distribution. Figure 3 illustrates the pressure
distribution along the components such as external airfoil, inner and outer platforms,
internal cavities, etc.

Figure 4 shows the (normalized) temperature distribution in the vane. It depends
mainly on the gas heat transfer coefficient, the material thermal conductivity, and the
internal cooling system.
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2.2. Fracture Parameters Assessment

In this work, the crack propagation behavior was evaluated by means of the SIF.
The complex geometry to be analyzed in addition with the extreme conditions that the
component must withstand meant that the calculations of the fracture parameters were
performed through numerical tools, in particular by means of the Fracture Tool in ANSYS
Workbench. The different calculation steps are detailed below.

2.2.1. Sub-Modeling

The most critical section was identified, with the preliminary analysis, at the platform
exterior trailing edge (PETE). To reduce computational times and obtain more accurate
results, the sub-modeling [29] technique was applied to the uncracked vane. According
to this technique, the displacement field and the temperature gradient obtained from a
coarse model were applied to the sub-model as boundary conditions, obtaining an accurate
and highly refined response at the interested area. The remaining boundary conditions,
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such as mechanical loads, were applied directly to the sub-model. The steps of the sub-
modeling [29] technique are listed below.

• The solution of the full coarse model with ANSYS Mechanical APDL provides the
displacement field and temperature distribution.

• The main region of interest is finely modelled. The coarse model is cut as illustrated
in Figure 5. The sub-model faces that are “inside” the full model are called cut
boundary faces.

• In the ANSYS Workbench project, the sub-model task is attached to the engineering
data and to the full model solutions, as shown in Figure 6.

• The following loads are applied to the-sub model:

# Imported cut boundary conditions (displacements) from the full model.
# Interpolated body temperature from the full model.
# Mechanical loads (pressure distribution) directly applied on the sub-model.
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2.2.2. Meshing

Furthermore, with the aim of guaranteeing the approximation of all the singularities
within the PETE and obtaining a higher stress gradient, a sensitivity analysis of the mesh
was developed. This analysis was done with the SIF evaluation, adopting a mesh size
that gave a mesh-independent status. The implemented mesh had a sphere of influence of
8 mm in radius and 0.5 mm in element size, as illustrated in Figure 7.
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The rest of the sub-model was meshed with quadratic tetrahedron elements, such as
the element SOLID187, with dimensions of 1.5 mm. This element is a higher order 3-D,
10-node element with a quadratic displacement behavior, well suited to modelling irregular
meshes. The element geometry is illustrated in Figure 8. Figure 9a shows the refined mesh,
while Figure 9b details the sphere of influence that give a more refined mesh around the
critical location.
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2.2.3. Crack Modeling

Among the several techniques employed to simulate fracture behavior of complex
structures, the finite element method (FEM) is largely adopted. This work used the Fracture
Tool within ANSYS Mechanical Workbench, in particular the Arbitrary Crack Method, to define
the crack and to compute the fracture parameters.

The applied method involves simulating the crack through a surface body. In this
case, a circular shape was chosen, putting it on the most critical zone (PETE), as shown
in Figure 10. Therefore, by increasing or diminishing the radius of the circular shape, the
crack length is increased or decreased. Furthermore, a new coordinate frame was needed to
define the crack propagation direction. From field feedback experience, the preferred crack
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propagation direction was obtained, setting the origin in the crack apex, the X-axis towards
the crack propagation direction, and the Y-axis towards the crack opening direction, as
illustrated in Figure 11.
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Furthermore, within the Fracture Tool, the type of crack method and its correspondent
properties must be specified. For example, one needs to specify the already-created coor-
dinate frame, the crack surface, the mesh method set to tetrahedrons, and the number of
mesh contours for the crack shapes, set to six.

Once all these parameters are set, the model is ready to generate the fracture meshing.
This is a post mesh process, which occurs in a separate step after that the base mesh is
generated, overriding its settings within the crack limits, permitting the crack front analysis
and therefore making it ready for the SIF calculations.

3. Calculation of the Stress Intensity Factor

The stress and deformation status around the crack apex are not enough to assess the
catastrophic failure of a structure. The computation of fracture parameters and its compari-
son with the material fracture toughness must be performed. The SIFs are computed along
the crack front through the Fracture Tool, using the interaction integral method, which is
defined as

I0 = −

∫
V qi,j

[
σklε

aux
kl uk,i − σkjuaux

k,i

]
dV∫

S δqndS
(1)

where σij, εij, and ui are stress, strain, and displacement, respectively; σaux
ij , εaux

ij , and uaux
i

are stress, strain, and displacement of the auxiliary field, respectively, while qi is the crack
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extension vector. Moreover, if the thermal and initial strains exist in the structure, and the
surface tensile acts on crack faces, the interaction integral is expressed as

I = I0 +

∫
V

[
σaux

kl εth
kl,i − σaux

kl ε0
kl

]
qidV∫

S δqndS
−

∫
S

[
tkuaux

k,i

]
qidS∫

S δqndS
(2)

where εth
ij , ε0

ij, and ti are thermal strain, initial strain, and tensile on crack surfaces, respectively.
As a result, the interaction integral method is associated with the stress-intensity factors

I =
2

E∗
(K1Kaux

1 + K2Kaux
2 ) +

1
µ

K3Kaux
3 (3)

where

Ki (i = 1, 2, 3) are Mode I, II, and III stress-intensity factors,
Kaux

i (i = 1, 2, 3) are the auxiliary Mode I, II, and III stress-intensity factors,
E is Young’s modulus, ν is Poisson’s ratio, and µ is the shear modulus, and
E∗ = E for plane stress or E∗ = E/

(
1− ν2) for plane strain.

Additionally, to guarantee the accuracy of the stress-intensity factor calculations, the
local crack apex coordinate system must fulfill the following specifications:

• Local X-axis pointed toward the crack propagation.
• Local Y-axis pointed toward the normal crack surface (opening crack direction).
• Local Z-axis pointed toward the tangential direction of the crack front.

The local coordinate frame consistency across all the nodes along the crack front is
important to obtain the path-dependency, which results in a correct SIF behavior. Addition-
ally, it can be highlighted that the interaction integral method applies area integration for
2-D problems and volume integration for 3-D problems.

However, prior to evaluating the SIFs at the critical vane location, a fracture parameter
analysis on a test plate was performed as a validation test of the procedure. The test plate,
modelled with ANSYS SpaceClaim, is represented in Figure 12a. A crack with a rectangular
shape was inserted, following the procedure explained in the previous subsection, and the
plate was loaded with a normal tensile load of 1000 N at the top surface and constrained at
the opposite surface, as represented in Figure 12b.
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Moreover, the base mesh was set to tetrahedrons, refining the crack region. The main
objective of this analysis was to compare the numerical values of KI given by ANSYS with
their theoretical value

KI = Yσ
√

πa (4)

as a function of the crack depth a as reported in [30]. The increase of a was performed by
increasing the rectangular length at each time (1, 1.5, 3, 6, and 10 mm). The same procedure
was followed to evaluate the SIFs at the turbine vane. The crack length was increased by
incrementing the radius of the circular shape and computing for each length the SIFs. The
crack lengths studied were 1, 2.5, 3, 5, 7.5, and 10 mm.

Nevertheless, the SIFs were computed by applying the interaction integral method
at each node found along the crack front in six different path contours. To study all
these values, it was decided to calculate the mean value of the five-last contours—the
more reliable ones—which gave the average KI found at each node along the crack front.
However, to obtain a clear evolution of KI with length a, the average value of the KI found
along the crack front was evaluated.

Crack Growth Assessment

The crack growth behavior due to fatigue, creep, and oxidation phenomena was stud-
ied through an in-house tool called Propagangui, provided from Ansaldo Energia company.
It is software developed in the MATLAB environment, which performs life evaluation
of cracked components. Particularly, it carries out crack propagation calculations, fail-
ure assessment, and probabilistic failure evaluation using Monte Carlo analysis. In this
work, the two first approaches were used to analyze crack growth. Crack propagation
is based on the LEFM theory considering fatigue, creep, and oxidation as the main pro-
cesses for crack growth [31]. The different contributions are modelled with the equations
reported below.

• Fatigue Crack Growth modelled through Paris’ law equation:

da
dN

= C∆Kn (5)

• Creep Crack Growth modelled through Arrhenius’ dependent equation:

da
dt

= A0Km
MAXe−

Q
RT (6)

• Oxidation modelled through a sub-parabolic Arrhenius-dependent equation, which
relates depletion zone thickness and time:

dγ′
n
= A0,γ′ e

Q
γ′

RT t (7)

The oxidation contribution is calculated assuming that the γ′-depleted zone corresponds
to a crack of the same length; therefore, the Oxidation Crack Growth is modelled as

da
dNOXI

=
d ∑Ti

∆aoxi
∆t Ti

dN
ti (8)

The model calculates the contribution of these phenomena separately for a given
operating cycle and assumes superposition of effects,

da
dNtot

=
da

dNOXI
+

da
dNCREEP

+
da

dNFATIGUE
, (9)

which is the most common assumption in industrial applications. It should be outlined
that a critical temperature of the material was defined. Below this temperature, the crack
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growth was mainly due to fatigue loads, because of the absence of γ′ depletion zone and
creep effect.

Propagangui evaluates the failure of a component with a crack using the failure as-
sessment diagram (FAD), reported in Figure 13 as an example. International standards
and codes of practice [32,33] recommend slightly different implementations of the failure
assessment line. Additionally, different calculation options are available depending on the
type of input available and accuracy required. Figure 13 illustrates how the assessment
result is affected by these choices. Its main objective is to assess whether the component
will fail when it crosses the FAD line or maintain a stable behavior. The X-axis reports the
variable Lr = σre f /σy (0 ≤ Lr ≤ Lr,max), where an exceedance of its limit implies plastic
collapse. The yield stress σy is also referred to as RP02.
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The Y-axis represents the variable Kr, which is a function that does not depend on
the load or geometry but only on the deformation behavior of the material, and its limit
will ensure that the unstable propagation condition is not reached. Moreover, the FAD can
be established in different ways depending on the available inputs and the level of safety
needed, where more inputs will lead to a less conservative diagram and vice versa.

Propagangui evaluates the assessment point for each cycle, and thus the crack prop-
agation behavior, if exceeding the FAD limit, implies failure of the component. As can
be expected from the previous statement, this failure can be due to plastic collapse, if the
assessment point reaches the right boundary of the FAD, or due to unstable propagation, if
the assessment point exceeds the upper boundary of the FAD. Additionally, the reached
assessment point is expressed by the following coordinates:{

x = Lr =
σre f
σy

y = Kr = Keq
Kmat

= KI
KIc

(10)

where σre f , also referred to as σNetSection, is the von Mises equivalent stress of the uncracked
component found at the corresponding crack depth, considering only primary stress, and
σy = RP0.2 is the offset yield strength of the material. On the other hand, the Keq can be
equal KI , or a function of KI , KI I , and KI I I , depending on the multiaxiality state in the
region of the flaw, while the Kmat is the material fracture toughness (KIC). Then the software
will make an estimation of the propagation analysis providing the listed graphs:

• Crack evolution plot, which reports the crack growth among cycles.
• Propagation plot, which illustrates the crack propagation rate in the stress intensity

factor range.
• FAD plot, in which the assessment point is represented.
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The propagation calculation will stop if one of the following conditions is satisfied:

• The assessment point meets the FAD line where plastic collapse or unstable propaga-
tion can take place.

• The crack grows until the specified number of cycles without reaching the FAD line,
considering in simulated conditions the component as safe.

• The calculation achieves the last crack length for which the SIF was obtained (in this
case it is 10 mm).

• To proceed with the assessment of the vane, the following inputs required to carry out
the analysis are recollected from ANSYS.

• The set of SIFs already obtained in the previous subsection, where the use of multiaxi-
ality correction—KI , KI I , and KI I I—can be emphasized, since the three are of the same
order of magnitude.

• The temperature along the crack path of the uncracked component to apply the
oxidation and creep phenomena whether the temperature is above the critical one.

• The von Mises equivalent stress along the crack path of the uncracked component
to establish the assessment point. It is important to outline that the stress related to
the assessment point considers only the primary stress. Therefore, it multiplies the
obtained stress by the ratio between the primary and total stresses. To obtain this value,
three different analyses were performed on ANSYS: with all loads, with mechanical
loads only, and with thermal loads only.

• The net area of the crack is defined as (total area− crack area)/total area.

Additionally, the inputs related to the material (critical temperature, fracture tough-
ness, yield strength, etc.) and the parameters related to fracture mechanics (oxidation,
creep, and fatigue coefficients) should also be introduced. Moreover, an initial crack size
is given (in this analysis it was 1 mm) and a cyclic target (3000 cycles) which, as it was
mentioned before, can be one of the causes of the end of the calculation. Furthermore, to
evaluate the crack propagation behavior, an operating cycle of 10 firing hours (FH) was
given to the program.

4. Results

This section details the results of the various analyses developed in this work.

4.1. Preliminary Analysis

Displacements from static analysis, normalized to their maximum value, are depicted
in Figure 14. Results were consistent in that an outer radial increase in the vane could be
seen following the radial expansion of the TVC.
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The stress evaluation in terms of the equivalent von Mises, normalized to the max-
imum value, emphasized that the yield strength of the material was exceeded in two
regions, namely, PETE and the platform internal trailing edge (PITE), as shown in Figure 15.
Therefore, these two areas were considered to be critical. Consequently, the two life-limiting
phenomena presented below, creep and fatigue, focused on these life-limiting areas.
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marked in the images, the platform exterior trailing edge (PETE) and the platform interior trailing
edge (PITE). Stresses are normalized with respect to the maximum von Mises stress value.

The creep analysis emphasized that the creep limit of the material was exceeded after
a few firing hours, and the creep verification criteria were not fulfilled, as illustrated in
Figure 16, where the creep strains were normalized with the material creep limit. This
result highlighted the criticality of the area, whereas the absolute strain values, affected by
the local geometry, mesh and boundary conditions, must always be interpreted. Moreover,
the PETE is always the most critical area. Figure 17a shows the creep analysis performed at
66 kFH, with results normalized to the material creep limit value. Areas where the creep
limits were exceeded are highlighted. The fatigue (LCF) assessment is shown in Figure 17b,
and it shows that the required number of cycles was not reached in the PETE for either
of the two approaches performed, namely, considering or not the stress relaxation due to
the creep strain increase. However, it should be remarked that from the first approach,
considering stress relaxation, the number of cycles to crack initiation was lower than
the second approach, as expected. Therefore, from this preliminary analysis, it can be
concluded that the PETE is the most critical part of the component from which a crack
may nucleate.

Materials 2022, 15, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 15. Equivalent von Mises stress. The yield strength of the material is exceeded in the two 
areas marked in the images, the platform exterior trailing edge (PETE) and the platform interior 
trailing edge (PITE). Stresses are normalized with respect to the maximum von Mises stress value. 

The creep analysis emphasized that the creep limit of the material was exceeded after 
a few firing hours, and the creep verification criteria were not fulfilled, as illustrated in 
Figure 16, where the creep strains were normalized with the material creep limit. This 
result highlighted the criticality of the area, whereas the absolute strain values, affected 
by the local geometry, mesh and boundary conditions, must always be interpreted. 
Moreover, the PETE is always the most critical area. Figure 17a shows the creep analysis 
performed at 66 kFH, with results normalized to the material creep limit value. Areas 
where the creep limits were exceeded are highlighted. The fatigue (LCF) assessment is 
shown in Figure 17b, and it shows that the required number of cycles was not reached in 
the PETE for either of the two approaches performed, namely, considering or not the stress 
relaxation due to the creep strain increase. However, it should be remarked that from the 
first approach, considering stress relaxation, the number of cycles to crack initiation was 
lower than the second approach, as expected. Therefore, from this preliminary analysis, it 
can be concluded that the PETE is the most critical part of the component from which a 
crack may nucleate. 

 
Figure 16. Normalized creep strains vs. firing hours at the PETE and PITE. Figure 16. Normalized creep strains vs. firing hours at the PETE and PITE.



Materials 2022, 15, 4694 14 of 23
Materials 2022, 15, x FOR PEER REVIEW 15 of 25 
 

 

 
(a) (b) 

Figure 17. Damage analysis results. (a) Creep analysis at 66 kFH, where the creep limit is exceeded 
in critical areas; (b) LCF analysis with no stress relaxation. 

4.2. Fracture Parameters Assessment Results 
4.2.1. Sub-Modeling 

To verify the correctness of the sub-modeling technique, a comparison was 
performed between the equivalent von Mises stress found in the full model and the sub-
model. Figure 18 shows the comparison. The left part of Figure 18 shows the whole vane 
stress analysis, cropped to the interested area, while the right part shows the sub-model 
with its boundary conditions. The comparison assessed the correctness of the sub-model 
implementation, since the state of stress was almost the same in the two models. 

 
Figure 18. Comparison between the full model (on the left) and the sub-model (on the right) 
equivalent Von Mises stress. 

4.2.2. Stress Intensity Factor Results 
The analysis performed on the test plate showed an increase of the 𝐾  with the crack 

length 𝑎, as reported in Figure 19. The comparison between the analytical results and the 
computation of the SIFs by the Fracture Tool within ANSYS validated the procedure. The 
initial crack size was arbitrarily defined with a depth of 1 mm. This choice was due to 
several considerations: 
• The sensitivity of nondestructive testing (NDT) techniques generally used in the 

energy industry: although several techniques can detect defects and cracks smaller 
than 1 mm, this length is a reasonably safe assumption. 

• The crack initiation process in a high-load area generates cracks that can propagate 
into the component. The transition between the crack initiation phase and 

Figure 17. Damage analysis results. (a) Creep analysis at 66 kFH, where the creep limit is exceeded in
critical areas; (b) LCF analysis with no stress relaxation.

4.2. Fracture Parameters Assessment Results
4.2.1. Sub-Modeling

To verify the correctness of the sub-modeling technique, a comparison was performed
between the equivalent von Mises stress found in the full model and the sub-model.
Figure 18 shows the comparison. The left part of Figure 18 shows the whole vane stress
analysis, cropped to the interested area, while the right part shows the sub-model with its
boundary conditions. The comparison assessed the correctness of the sub-model imple-
mentation, since the state of stress was almost the same in the two models.
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4.2.2. Stress Intensity Factor Results

The analysis performed on the test plate showed an increase of the KI with the crack
length a, as reported in Figure 19. The comparison between the analytical results and the
computation of the SIFs by the Fracture Tool within ANSYS validated the procedure. The
initial crack size was arbitrarily defined with a depth of 1 mm. This choice was due to
several considerations:

• The sensitivity of nondestructive testing (NDT) techniques generally used in the
energy industry: although several techniques can detect defects and cracks smaller
than 1 mm, this length is a reasonably safe assumption.

• The crack initiation process in a high-load area generates cracks that can propagate
into the component. The transition between the crack initiation phase and subsequent
propagation is a gray area. Both field findings and specimen analysis show that the
initial crack size after initiation is significantly less than 1 mm, but it cannot be ruled
out that under some conditions, the initiated crack may reach a length of 1 mm in a
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very limited number of cycles. Therefore, the assumption that the crack after initiation
is 1 mm deep is a reasonably safe choice.
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The target number of cycles for the calculation was set at 3000 cycles, which corre-
sponds to more than 8 years in a daily cycle operating profile. Results obtained on the
vane, at the PETE area, are depicted in Figures 20 and 21. Figure 20 shows the evolution of
KI along the crack front for different crack lengths, normalized with the material fracture
toughness. The increase of KI as it reached the pressure side of the airfoil is remarkable.
Figure 21 depicts in more detail the unexpected trend of KI with increasing crack length
a, normalized with the material fracture toughness. The main result is an unexpected
reduction of the stress intensity factor KI with increasing crack length a, which additionally
is much smaller than the fracture toughness Kc. This unexpected result can be explained
with the following considerations. The nature of the stresses acting on the trailing edge of a
vane is quite complex. The dominant part is a stress state generated by temperature differ-
ences between the different positions of the cooled vane (e.g., the inner surface, in contact
with the cooling air, and the outer surface, in contact with the hot gas), plus some thermal
stresses generated by the different temperatures between the vane profile, the disc, and the
inner ring, plus some pressure generated by the exhaust gas flow, plus some contribution
of concentration factors related to geometric discontinuities, plus residual stresses from
the vane assembly. This leads to a non-proportional, multiaxial stress state that tends to
evolve after the effect of viscous phenomena, generally giving rise to stress relaxation and
redistribution. In addition, strong thermal gradients generate strong stress/deformation
gradients. The stress state can change drastically within millimeters. In addition, the
presence of the crack itself causes stress redistribution. In such a complex scenario, it is
quite understandable that the stress intensity factor now depends on the square root of
the crack size, as predicted by theory, and can easily decrease as it is propagating toward
the least stressed region of the vane. Performing an FE-based analysis, such as the one
we conducted in this paper, is precisely intended to highlight these phenomena and these
“unexpected” dependencies.
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Figure 21. Evolution of KI with the crack length a at the PETE—normalized with the material
fracture toughness.

The slowing of the crack growth rate leads to the conclusion that unstable propagation
is not expected.

Moreover, the equivalent von Mises stress at PETE for each crack length is represented
in Figure 22. Figure 22a shows the equivalent stress at the pressure side of the airfoil, where
a redistribution of stress at the crack apex can be seen. Additionally, from Figure 22b, a
lower stress is predicted at the crack apex, confirming that KI at the suction side is lower
than that on the pressure side.

Furthermore, the two other SIFs, KI I and KI I I , were also determined, and the results
are shown in Figure 23, normalized with the material fracture toughness. Both KI I and
KI I I were lower than KI , but of the same order of magnitude. Additionally, from the
comparison with the material fracture toughness, it is also important to note that unstable
crack propagation was not expected from this first analysis, since the fracture toughness
was well above the SIFs obtained.
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4.3. Crack Growth Assessment Results

The calculation of crack propagation requires one to make several assumptions about
the crack characteristics. Different assumptions are generally made depending on the
type of calculation that is generally performed. For example, handling a manufacturing
nonconformity requires a high degree of accuracy in the type of crack being modeled; on
the other hand, propagation calculations that are required to define the desired quality of
production (evaluation criteria) assume the existence of “possible defects” with unknown
orientation and direction of propagation. Consequently, in industry, each calculation
requires a different set of assumptions to describe the crack, its aspect ratio (the ratio of its
depth to its surface extent), and its evolution.

One of the most important aspects when discussing the use of fracture mechanics in
an industrial scenario concerns the time required to set up the calculation and the resulting
computational resources needed to perform it. The highest accuracy is achieved by explicit
modeling of the crack at the CAD level, with subsequent evaluation of the stress intensity
factor, SIF, using the finite element solver. This method can account for the local redistri-
bution of energy generated by the presence of the crack. Unfortunately, this method is
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extremely challenging, because the modeled crack has a certain depth/extension, and after
its propagation, the finite element calculation must be repeated. This expensive procedure
can be performed sporadically for some special cases (such as the one shown in this article),
but it cannot be used extensively for all Ansaldo fracture mechanics calculations. Conse-
quently, the results of these expensive exercises should be used to improve the calculation
methodology based on simpler and faster methods. The possibility of performing fast
propagation calculations with higher accuracy based on results obtained in the calculations
shown in this article is the main motivation and the most important expected result.

This section reports the results obtained with the simulation performed with the
code Propagangui. Figure 24 shows the crack growth evolution with the number of cycles,
considering the equivalence 1 cycle = 10 firing hours. The software stops the calculation
when the crack length reaches 10 mm, which is the last crack length for which the SIF was
obtained. The slope of this graph represents the crack growth rate. The slowdown as the
crack evolves is evident, meaning that the rate of crack propagation decreased.
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Figure 24. Crack growth evolution with the number of cycles at an operating cycle of ten firing hours.

On the other hand, Figure 25 shows the crack propagation rate as a function of SIFs.
This plot emphasizes the linearity of the fatigue and creep propagation with SIFs, as
expected from Equations (5) and (6), and the non-dependence of the oxidation contribution.
Figure 26 shows the failure assessment diagram (FAD). The evolution of the assessment
point at different cycles was within the limits. Therefore, neither plastic collapse, nor
unstable propagation was expected.
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Figure 26. Failure assessment diagram (FAD) of the cracked component.

4.4. FH–NS Diagram Results

Figure 27 depicts the evolution of the cracks at the different operating cycles. This
graph gives the number of cycles needed to reach the expected crack length, namely 2, 3, 5,
and 10 mm. Data represented in Figure 27 can be rearranged to create the FH–NS diagram,
where FH are the firing hours, and NS (normal shut down) are the cycles. It is also worth
noting the different rate of crack growth at each operating cycle. The number of cycles to
reach the limiting crack length (10 mm) decreases with increasing firing hours per cycle.
This result is because with a higher number of hours per cycle, the total number of hours to
reach limiting crack length (as shown) is much higher, and therefore, the phenomena of
fatigue, creep and oxidation count much more, arriving to the limiting crack length earlier.
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4.5. FH–NS Diagram Approach

Another diagram, the FH–NS diagram, was also derived to estimate component
lifing. NS–FH lines for different “critical” crack sizes could be extracted from the software
Propagangui and then the number of cycles or firing hours needed to reach the critical crack
size. Several operating cycles with different firing hours for each operating cycle were
analyzed. The aim of this analysis was to obtain the number of cycles to reach the target
crack length (2 mm, 3 mm, 5 mm, and 10 mm) for the different operating conditions. The
relationship between equivalent firing hours of each cycle and the total number of cycles in
terms of number of start-ups gave the total number of equivalent operating hours (EOH)
and therefore the requested FH–NS diagrams. This diagram is presented in Figure 28.
This plot shows the different lines below which the vane could withstand the external
load without reaching the “critical” crack size. Firing hours and number of cycles were
normalized to the values to reach the first maintenance interval of the component.
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5. Discussion

The results presented in this analysis show unexpected behaviors of SIF KI . From a
theoretical point of view, the increase of KI with the increase of a is expected. However,
in this work the reduction of KI with increasing crack length after a certain crack length
value was achieved. This result can be explained with the complex geometry of the vane in
addition to the extreme working conditions that allow a stress redistribution at the crack
front apex. This stress redistribution was predicted by the simulations. Therefore, due to
this phenomenon, no unstable amplification of the stresses along the crack front is expected.

Furthermore, the increase of KI along the crack front as it reaches the pressure side was
predictable, since from the preliminary analysis done, the higher stress state was reached
in this side of the airfoil. Therefore, the amplification of the stresses that the crack produces
is expected to be bigger in the pressure side.

The SIF KI better describes the crack propagation dynamics. Nevertheless, the other
two SIFs, KI I and KI I I , were used in the multiaxiality correction to perform the crack
growth study in terms of fatigue, creep, and oxidation, as they should not been neglected
because they are of the same order of magnitude.

The crack growth analysis also shows a reduction of the crack growth rate as it evolves.
This decrease is again explained with the redistribution of stresses at the crack apex. The
reduction of the stress achieved as the crack evolves gives no unstable propagation.

From the FAD diagram, SIF evaluation, and comparison with the fracture toughness
of the material, neither unstable propagation nor plastic collapse is expected. In fact, from
the FH–NS diagram, the number of cycles or firing hours until the arrival of a certain crack
size was obtained, thus estimating the lifing of the component. Finally, the FH–NS diagram
confirms the slowing of the crack growth rate because the crack needs more time, in terms
of firing hours or number of cycles, to propagate.

6. Conclusions

To set the framework for this work, it is worth noting that gas turbine blades are
characterized by significant thermal stresses, which, being self-limiting stresses controlled
by displacement, tend to have significant redistribution in the presence of material fail-
ure or crack formation. This is one reason why detailed modeling of the crack and the
corresponding stress intensity factor at different crack lengths is important. This paper
presented a crack assessment on a second-stage gas turbine vane via the LEFM approach,
in particular by means of SIF evaluation in addition to crack propagation analysis in terms
of fatigue, creep, and oxidation. The crack growth behavior was studied, under a potential
crack propagation hypothesis, on the most critical location of the GT vane—PETE—where a
crack may nucleate due to a combination of thermo-mechanical loads. The expected result
is to determine whether crack propagation exhibits stable behavior or propagates in an
unstable manner, causing possible component failure.

The main conclusions obtained from the analysis performed in this work are listed below:

1. The PETE is the most critical zone where the crack may nucleate due to thermo-
mechanical loads.

2. The reduction of the SIF KI with increasing crack length a is explained by the redistri-
bution of stresses that occurs at the crack apex.

3. The KI increases along the crack front as it reaches the pressure side.
4. The higher value of KI compared to KI I and KI I I means that KI better describes the

crack propagation dynamics.
5. Material fracture toughness is always above the SIF.
6. Crack growth rate slows down as the crack length increases.
7. The assessment points are within the limits in the FAD diagram.
8. The estimated crack size curves on the FH–NS diagram emphasize the slowing of the

crack propagation.

It can be concluded that the stress redistribution at the crack apex gives a decreasing
crack growth rate, and the crack propagation is stable.
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The obtained results represent an important milestone for Ansaldo Energia, since they
are expected to facilitate future propagation calculations at the second vane trailing edge.
Further improvements of the calculation and the method might focus on the investigation
of elastic–plastic fracture mechanics and/or an improved approach to account for the creep
crack growth contribution.

Furthermore, based on FM calculations and qualifications of the repairing process
according to the company technical specification, the repaired components are again assem-
bled into the engine, and a further maintenance interval is guaranteed. Moreover, as further
risk mitigation action to assess the lifing of the components, minor inspections within the
standard maintenance interval are scheduled by means of borescope investigation.
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