
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Consensus formation on heterogeneous networks / Fadda, E.; He, J.; Tessone, C. J.; Barucca, P.. - In: EPJ DATA
SCIENCE. - ISSN 2193-1127. - 11:1(2022). [10.1140/epjds/s13688-022-00347-5]

Original

Consensus formation on heterogeneous networks

Publisher:

Published
DOI:10.1140/epjds/s13688-022-00347-5

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2970149 since: 2022-07-18T14:51:28Z

Springer



Fadda et al.

RESEARCH

Consensus formation on heterogeneous networks
Edoardo Fadda1,2, Junda He3, Claudio J. Tessone4 and Paolo Barucca5*

*Correspondence:

p.barucca@ucl.ac.uk
5Department of Computer

Science, UCL, Gower Street,

WC1E 6EA, London, UK

Full list of author information is

available at the end of the article

Abstract

Reaching consensus -a macroscopic state where the system constituents display
the same microscopic state- is a necessity in multiple complex socio-technical and
techno-economic systems: their correct functioning ultimately depends on it. In
many distributed systems -of which blockchain-based applications are a
paradigmatic example- the process of consensus formation is crucial not only for
the emergence of a leading majority but for the very functioning of the system.
Inspired on this application we build a minimalistic network model of consensus
formation for quantifying how central nodes - with respect to their average
distance to others - can leverage on their position to obtain competitive
advantage in the consensus process. We show that in a wide range of network
topologies, the probability of forming a majority can significantly increase
depending on the centrality of nodes that initiate the spreading. Further, we
study the role that network topology plays on the consensus process: we show
that central nodes in scale-free networks can win consensus in the network even if
they broadcast states significantly later than peripheral ones.

Keywords: network theory; distributed systems; consensus formation

Introduction
Blockchains -and other Distributed Ledger Technologies- [1, 2] staggering success

has opened a deep discussion on the possibility of new social, economic and financial

disintermediated paradigms. The ambition and the depth of the range of applica-

tions of this technology has required an increased level of scrutiny of the underlying

mathematical mechanisms, which are still little understood, especially in its consen-

sus formation dynamics. The main ingredients of the technology are cryptographic

task distribution and coordination. The absence of coordination and consensus be-

tween users would imply the failure of the protocol to generate a common record of

verified data. In proof-of-work based systems, the possibility of immediately com-

municating the positive outcome of mining from miners in the distributed network

is crucial to minimise the waste of computational power, but on the other hand it

serves to maximise the trust in the system [3]. There are important (little discussed)

assumptions in the consensus of blockchain-based systems, as the analytical deriva-

tions rely on negligible propagation times of blocks, and vanishing path-lengths in

the peer-to-peer network [4].

Consensus is the most important trait in the continuously increasing range of

blockchain-based systems [5]. Proof-of-work based open blockchains (of which Bit-

coin and Ethereum 1.0 are primary examples) are decentralised platforms for

value exchange through consensus where each participant can contribute to (and

is rewarded for) verifying and diffusing the information stored in the common

ledger. The reliability of the information is based on the so-called “mining”, a

mailto:p.barucca@ucl.ac.uk


Fadda et al. Page 2 of 14

computationally-intensive problem-solving task that is performed independently by

each participant; when a participant finds a solution, it shares it with other par-

ticipating through a peer overlay network. Despite the fact that the information

communication plays a crucial role in the consensus formation and thus in the func-

tionality of Bitcoin and similar peer networks. With the growth of Proof-of-Stake

derivatives (and existing protocols such as Stellar and Ripple) [6] - which all in-

clude clock synchronisation algorithms - it is clear that modelling approaches based

on discrete time steps has an intrinsic validity in this space. With this variety of

systems, no systematic studies have quantified the role of the network of commu-

nication in shaping the behaviour and the functioning of a decentralised consensus

platform.

In this paper we build a complete theoretical framework for understanding com-

peting consensus in distributed ledger platforms and we establish general results on

the emergence of network effects on the system efficiency. The main contribution

of this study is to model and simulate both the mining activity and the consensus

formation and show how closeness centrality of nodes can lead to a competitive ad-

vantage in winning consensus. The role of network centrality affects the strategies of

users in the system and can compromise the correct functioning of cryptoeconomies,

especially in presence of bandwidth and computational power concentration among

a small subset of users. In the following section we discuss how researchers have

investigated the role of network propagation in blockchain technology. In the model

section we introduce the notation and simple formalism that allows us to model

both the mining activity and the consensus formation mechanism. In the results

section we present experiments to test the competitive advantage of central nodes

in different networks. Finally, we outline possible perspectives on how to extend the

model and how to correctly monitor the efficiency and reliability of the networked

social systems.

1 Literature review
The role of communication in the functioning of blockchain protocols has been in-

vestigated since the very beginning of Bitcoin. In [4], as Nakamoto proposed, Bitcoin

is enforced with a proof-of-work mechanism. By adjusting the mining difficulty, it

limits the block generation rate to around 1 per 10 minutes. According to [4], if

two blocks are received simultaneously, honest miners should always work on their

first received block before the occurrence of next block, as miners should always

work on the longest chain. In fact, miners can deviate from this behaviour, e.g.

by deciding to mine new blocks for shorter chains. [7] produced a systematic re-

view of the blockchain consensus algorithms. The work analysed limitations of the

proof-of-work in Bitcoin. One of the limitations is that increasing mining difficulty

encourages the formation of mining pools. As a result of forming mining pools, the

computational power can become centralised. The paper [8] evaluated the propa-

gation mechanism on updating the ledger replicas. They have focused on analysing

the relationship between the propagation speed and the blockchain fork rate. By

experimentally modulating the Bitcoin protocol, they have shown that speeding up

the dissemination of information adequately reduce the number of forks. Generally,

if a node receives a block which conflicts with its previous ledge replica, it can be
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ignored. [8] showed that - due to the information propagation times - a node may

find more convenient not to pass on the information of new block, in order to in-

crease the probability of mining an alternative one. For honest miners, a fork is an

undesired side-effect of the blockchain protocol. In [9], the authors summarise that

the fork rate is correlated to the performance, capacity, security level and degree

of decentralisation of the blockchain network. Different adversarial attacks, such as

the celebrated selfish-mining [10], resort on the strategic decision of the nodes as

to when share the newly created block. Empirical analyses [11, 12], and modelling

approaches [13] have found indications that such attacks take place in smaller-sized

blockchains. Moreover, the fork rate over a period could be considered as a highly

relevant indicator of the resources utilisation level and malicious behaviours (e.g.

selfish mining) for a particular time period. Based on the orphaned blocks dataset

produced by Blockchain.info, a downtrend on the number of orphaned blocks is

observed during the past few years. In [14], the authors suggested that this drop of

the number of forks indicates an improvement of the block propagation mechanism

in Bitcoin. They produced an empirical analysis of forks in the Bitcoin network

and concluded that the probability of the earlier propagated block to be included

in the main chain increases linearly with the time advantage it gained over the

competing block. Both [8] and [14] mention that the propagation time of different

blocks varies. The overall propagation delay is constituted by the transmission time

and verification time of the block. From [8]’s measurements, the propagation de-

lay varies drastically for blocks that are smaller than 20KB meanwhile the delay

costs tend to be constant for blocks larger than 20KB. In [15] the statistics of block

propagation time is reported in a general evaluation of the problem of scaling of

cryptoeconomies, i.e. the possibility of the decentralised services to keep working

when the number of users increase. Recently, [16, 17] showed in a series of simula-

tions that the block propagation delay has a positive linear relationship with the

block-size and that increasing the number of neighbours and the bandwidth can

significantly speed the block propagation in the network. In [17] the authors also

evaluate the probability of fork formation and the correspondences to the block size,

average P2P bandwidth, and average number of neighbours per node respectively,

based on the Erdős-Rényi random graph model.

2 The model of consensus propagation
In this Section we present the framework that we use for the numerical experiments

as well as for the analytical calculations.

The model We here define the network model for discrete-time consensus forma-

tion. We consider a graph G = (V,E), where V is the set of nodes of the network.

Nodes represent miners (i.e. validator nodes that may produce blocks), each node

i is characterised by a computational power ci and storing a local copy of the

blockchain of a given height hi. In the following, for convenience, we use the terms

miners and nodes interchangeably depending on whether we are focusing on their

mining activity or on their network properties. E is the set of edges and tij ∈ N
is the time it takes for a direct flow of information to go from node i to node j.

In the weighted model, tij is discrete and at each iteration miner j receives the

information on the block that miner i had tij steps before.
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The propagation time between two generic miners is given by the weighted shortest

path between them in the graph, so that the distribution of propagation times [8]

is shaped by the weighted network distances [18]. In the following we use binary

values for tij so that at each time step, each miner receives the blocks from its first

neighbours in the network. Nodes are further endowed with a height hi which is the

length of the local copy of the blockchain they store.

For each miner, we sample the time for mining the next block. The times ti
are sampled from an exponential distribution characterised by a rate parameter

λi = λ ci and rounded to the nearest integer above. Each iteration, the mining

times are synchronously updated, ti → ti−1. Miners find the next block when their

mining time goes to zero. When a block b is mined by a node i, it gets appended to

node i’s local copy of the blockchain, and the node gets assigned a height hi → hi+1.

It is worth noting that in this model forks can appear and two or more blockchains

with the same or with different heights can propagate at the same time within the

network. When a block arrives to a node j, it can perform one of the following

actions:

• if the block has a height greater than its blockchain copy, hi, then the node

will add it to its blockchain and start mining the next block

• if the block has a height less than the its blockchain copy then the node will

ignore it

• if two blocks with a height greater than its blockchain copy arrive together,

then the node will choose to add the block that is more frequent in its neigh-

bourhood. If both have the same frequency then one at random is selected.

Mining times are updated either when a node finds a new block or when it accepts

a new block from a neighbouring node. This interplay between propagation and

mining gives an advantage to the nodes that - due to their position in the network -

tend to receive new blocks before others. With this model it is possible to simulate

chaotic behaviour of distributed networks in which the typical mining time is far

smaller than the typical propagation time on the network.

The probability of forks Empirical studies on blockchain protocols [19, 20, 21] have

shown the emergence of forks, i.e. the simultaneous existence of multiple - poten-

tially conflicting - blockchains among different groups of miners. In this paragraph

we aim at giving a simple statistical intuition of this occurrence and its relation-

ship to the interplay of two characteristic times: the mining times - governed by

mining protocols and CPUs - and propagation times - governed by block sizes and

network bandwidth. In general, the possibility of competing blocks depends on the

joint distribution of the order statistics for the smallest mining times, and their

relative time gaps. The larger the time gaps between the smallest times, the less

probable is for late blocks to be able to compete in the consensus formation via the

network propagation. For the sake of simplicity, here and in the following sections,

each miner is characterised by the same computational power, ci = 1. The param-

eter of the exponential distributions λ can be chosen, depending on the number of

miners, so that the expected minimum time is fixed to 10 minutes. The probability

distribution function for the mining time of each miner is

p(t) = λe−λt. (1)
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We are interested in the corresponding distribution for the minimum time,

p1(t) = Np(t)C(t)N−1 = Nλe−Nλt (2)

where C(t) is the cumulative distribution function of the mining time of each in-

dividual miner. The expected minimum mining time, i.e. the mining time of the

whole system, is then

⟨tmin⟩ =
1

Nλ
. (3)

Let us now focus on the joint distribution of the two smallest mining times in our

model. Supposing an initial situation where all miners start mining at the same

time, it reads

p(t, t′) = N(N − 1)p(t)p(t′)C(t′)N−2θ(t′ − t) (4)

where θ(x) is the Heaviside step function, so that the distribution of the gap ∆ =

t′ − t reads:

p(∆) =

∫
dtdt′δ(∆− t′ + t)p(t, t′) = λ(N − 1)e−λ(N−1)∆ (5)

which yields an average ⟨∆⟩ = 1/λ(N−1). A more general expression for the case of

heterogeneous miners can be found in the appendix. Moreover, this also implies a

cumulative probability C(∆) of a time difference between the best two times smaller

than ∆:

C(∆) ≈ λ(N − 1)∆ (6)

Based on [8], ∆ can be calibrated based on the empirical distribution of propagation

times in real blockchain systems, e.g. the median for Bitcoin was 8.7 seconds in 2015.

For ∆ equal to 8.7 seconds, and substituting λ(N − 1) ≈ 1/600 seconds, then the

probability is

C(∆ = 8.7s) ≈ 8.7s/(600s) ∼= 0.0145 = 1.45% (7)

which is compatible with the old observed value of 1.69% in [8], but less so with the

more recent estimate of 0.41% [22]. Despite the simplifying assumptions, the order

statistics of a set of exponential distributions provides a numerical agreement with

the observed statistics of forks in Bitcoin.

The average inter-block time of 10 minutes is on the upper limit of the existing

blockchains. Ethereum 1.0, for example, has an average inter-block time of 14 sec-

onds. For Ethereum, where the propagation time and the block creation time are

comparable [3], we need to compute directly the cumulative distribution function

to get the probability of having competing blocks in the system, estimated by the

6.8% daily ratio between uncle blocks - rewarded, yet unused, mined blocks - and

mined blocks [23]. This uncle ratio is roughly compatible - in this simple model -
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Blockchain Block creation time (s) Propagation time (s) Stale blocks rate C(∆)
BTC 600 8.7 0.41% 1.44%
ETH 14 0.5-0.75 6.8% 3.51-5.22%
LTC 150 1.02 0.273% 0.68%

DOGE 60 0.85 0.619% 1.40%

Table 1: Estimated C(∆) from block creation times and median propagation times

for multiple blockchain systems, compared with the stale blocks rate. Data are taken

from [22] .

with an estimated C(∆) ranging between 3.51% and 5.22%. See Table 1 for similar

estimates for other blockchain systems. These estimates do not necessarily reflect

real stale blocks rate, potentially outlining the limits of the assumptions of our

simple model with homogeneous and independent miners.

3 Results
In our experiments we investigate three ensembles of networks: Erdős-Rényi,

stochastic block models (SBM), and Barabási-Albert. Erdős-Rényi provides a solid

baseline for evaluating the consensus formation process [24]. The comparison with

the SBM, where nodes are divided into communities provides a scenario to evaluate

the potential emergence of persistent forks in different communities. The analysis

on Barabási-Albert networks tests a scenario of heterogeneously connected miners

in which the distribution of distances has a broader support and node centrality

can create great differences between miners’ ability to propagate their mined blocks.

Firstly to monitor the difference in propagation and cluster formation in these net-

works we compute the distribution of sizes for the clusters of miners keeping the

two different new blocks. Secondly, we demonstrate through simulations how net-

work centrality can statistically favour some nodes over others in the case of a

competition between blocks during the consensus formation. The average distance

of a miner to other nodes determines which block will prevail in a temporary fork,

closeness centrality quantifies this, as it is defined as the reciprocal of the sum of

the distances of a node towards all the other nodes [25].

We consider graphs with |V | = 1000, this dimension is big enough to achieve stable

results for the proposed experiments and allow us to run several repetitions. In

particular, we consider Barabási-Albert graphs characterised by an average degree

d̄ = 8, Erdős Rényi graphs characterised by an edge probability pE = 8/1000, and

SBM graphs characterised by four blocks each one containing the same amount of

nodes (i.e. p = [0.25, 0.25, 0.25, 0.25]) and the following connection matrix:

C =


5 1 1 1

1 5 1 1

1 1 5 1

1 1 1 5

 , (8)

where each entry Cab represents the expected number of edges from a node in block

a to nodes in block b. These choices are done in order to set the average degree to

be 8, as in the bitcoin network. Technically, the bitcoin protocol allows to a larger

number of connections, nevertheless the default parameters called max connections

is set to 4 [26]. The characteristics of the networks are reported in Table 2.
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Graph Type Diameter Betweenness Closeness Centrality
Erdos 6 (0.00) 2.58e-3 (2e-5) 2.81e-1 (1e-2)
SBM 6 (0.00) 2.03e-3 (3e-5) 2.71e-1 (1e-2)

Barabasi 6 (0.00) 2.23e-3 (1e-5) 3.12e-1 (1e-2)

Table 2: Main Characteristic of the generated graphs. For each value is reported

average and std. dev. in brackets.

We present the results of the experiments in the two following subsections.

Cluster dimension The dimension of the winning cluster is one of the most impor-

tant features of the competitive diffusion process. Due to its dynamics, the process

ends with the winning cluster having all the nodes and the losing one having no

nodes, so to observe differences we need to look at clusters before convergence.

Given a graph with average degree d̄, we monitor the sizes of the two clusters for

t∗ =

⌈
ln |V |
ln d̄

⌉
=

⌈
ln 1000

ln 8

⌉
= 4

where ⌈.⌉ rounds to the nearest higher integer. This is an estimate for the propa-

gation time that is obtained by considering a graph with a tree structure with a

fixed number of branches d̄. The histograms of the frequency of each cluster size

are shown in Figure 1a 1b, and 1c for the Erdős-Rényi, SBM, and Barabási-Albert

graph, respectively.

Each graph shows the histogram of the various cluster sizes at a given time,

expressed as percentage of nodes. The histograms are not strictly symmetric since

at time t∗, the propagation process is not finished and some nodes do not belong to

either of the clusters. In the central region the two histograms present an overlap.

This is due to the cases in which the two clusters have similar size and the one with a

lower number of nodes eventually wins the propagation. In the Erdős-Rényi graphs,

at time t∗ the propagation process has not yet a clear winner, thus the dimension of

the cluster are more likely to be similar. In the stochastic block model, the situation

is similar, but it is characterised by a greater variance. Due to the different density of

edges, it is possible for a cluster to spread across more than one block, thus gaining

in few iterations a big percentage of the network. Finally, in the Barabási-Albert

graphs the diffusion process at time t∗ is close to the end: the winning cluster has

a size close to the whole network and the losing one has nearly no nodes.

Closeness centrality In the second experiment we consider the frequencies of vic-

tories for a node characterised by a given centrality (measured in terms of quantiles

for the network). In order to observe this relation, first we sample a graph and we

rank nodes according to their closeness centrality. The distributions of closeness

centralities can be found in the appendix. For each quantile of closeness central-

ity q we select the corresponding node and we run a competitive diffusion process

between this node and another randomly sampled node, repeating this competi-

tion for 100 times. Each point in the graph represents the empirical probability

of winning the process of competitive diffusion for the selected node. Finally, we

average this empirical probabilities over 10 different graphs for each ensemble and
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obtain the results shown in Figure 2a 2b, and 2c, for the Erdős-Rényi, SBM, and

Barabási-Albert graph, respectively. All the graphs present the results for ∆t = 0,

∆t = 1 and ∆t = 2 since for ∆t = 3 the graphs reduces to a constant zero line. The

lower quantiles in the plot correspond to the higher values of closeness centrality.

As expected, if a node has an high centrality it is more likely to win the competi-

tive diffusion process. Moreover, the time is of crucial importance since, if ∆t = 1

(i.e., the considered node starts the diffusion process one time step after the other)

the probability to win suddenly decreases. All the curves for all the ensembles, for

∆t = 0, present a plateau around 0.5 corresponding to the median closeness cen-

trality values. This is due to the fact that for closeness centrality values closed to

the median, the sampled nodes considered to test the victory probability of a node

will be, with equal probability, both above and below the closeness centrality value

of the node being tested.

For ∆t = 1 and ∆t = 2, the results are also different for each of the graph ensem-

bles considered. For Erdős-Rényi, the difference between the curve with ∆t = 1 and

∆t = 2 is not so big. The Erdős-Rényi model also shows low variance, i.e. the points

tend to be closer to their average values. SBM graphs display similar curves but

present an higher variance. Remarkably, for this ensemble also nodes corresponding

to low quantiles are able to reach winning probability closed to one. These nodes

are the ones located near to the intersection of two blocks of the network. They are

characterised by a relatively low degree but they are able to diffuse their cluster

in two blocks in a short time. Finally, the Barabási-Albert graphs behave quite

differently. The variance is lower than for the SBM graphs but greater than the

Erdős-Rényi graph. Despite the advantage of the first node, for ∆t = 1, the second

node has still non-negligible probability to win even for relatively low quantiles of

closeness centrality. This is due to the wider distribution of closeness centrality that

characterises Barabási-Albert graphs. In fact, such variations increase the advantage

of being a node with relatively high closeness centrality.

4 Conclusions
In this study we have shown how information processing and propagation on the

heterogeneous overlay network of a distributed system can generate asymmetries in

the contribution of system elements to its functioning. We have introduced a mini-

malistic time-discrete model which can be used to investigate detailed scenarios for

the role of networks in selfish and non-cooperative behavior in distributed systems.

The numerical results here presented also address the question on how to identify

network features that enable to predict which nodes, or cluster of nodes, will win a

competitive propagation process before the actual full propagation takes place.

This paper opens up a new stream of research with multiple applications to dis-

tributed systems, but specifically to blockchains and distributed ledger technologies.

How these systems reach consensus is a key differentiating component in their design

and concept. While this paper is focused on proof-of-work, the modelling approach

is applicable to other scenarios. Newer platforms - like those based in variants of

delegated-proof-of-stake, voting models (such as Stellar and Ripple) or others more

unique - such as IOTA - depend on round-based systems for their functioning. In

those, a discrete-time approach is even more central to uncover possible adversarial

attacks that may hinder the emergence of trust.
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5 Appendix A: Order statistics for heterogeneous miners
When miners have different computational power, then their distribution of mining

times changes. The probability distribution function for the mining time of any

miner is

pi(t) = λie
−λit (9)

where λi can be modelled as proportional to the computational power, i.e. λi = λ ci,

measured in a common scale λ. We are interested in the corresponding distribution

for the minimum time, tmin = mini{tim}

p1(t) =
∑
i=1

pi(t)

N∏
j ̸=i

Cj(t) (10)

where Ci(t) are cumulative distribution functions for the mining times of different

miners. which for the exponential distributions simply reads

p1(t) = Nλe−Nλt (11)

where λ = 1
N

∑
i=1 λi. The expected minimum mining time, i.e. the mining time of

the system, is

⟨tmin⟩ =
1∑
i λi

. (12)

Let us now focus on the joint distribution of the two smallest mining times in

the heterogeneous case. Supposing again an initial situation where all miners start

mining at the same time, it reads

p(t, t′) =
∑
i̸=j

pi(t)pj(t
′)

N∏
k ̸=i,j

Ck(t
′)θ(t′ − t) (13)

which for the exponential distributions reads

p(t, t′) =
∑
i̸=j

λiλje
−λi(t−t′)−

∑
k λkt

′
θ(t′ − t). (14)

Finally leading to the following equation for the time gap distribution

p(∆) =

∑
i ̸=j λiλje

−
∑

k ̸=i λk∆

Nλ
, (15)

which shows the explicit dependence of the time gaps between new mined blocks

- potentially leading to forks - and the distribution of computational power across

miners.

6 Appendix B: Closeness Centrality Distributions
Closeness centrality distributions for the 3 topologies is represented in Figure 3.
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(a) Erdos graphs with |V | = 1000

(b) SBM graphs with |V | = 1000

(c) Barabási-Albert graphs with |V | = 1000

Figure 1: Distribution of cluster dimensions at time t∗ = 4 for the different

networks
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(a) Erdős network with |V | = 1000

(b) Stochastic Block network with |V | = 1000

(c) Barabási-Albert network with |V | = 1000

Figure 2: Probability of winning for different values of closeness centrality quan-

tile q and different difference in time ∆t in different graphs.
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Figure 3: Distribution of closeness centrality with |V | = 1000
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