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Abstract—Overheating of battery packs in electrified vehicles
is detrimental to their lifetime and performance. Unfortunately,
designing a control strategy that ensures battery protection
without jeopardizing fuel economy is not a straightforward
task. In this paper, we investigate battery temperature-sensitive
optimal energy management for a 48V mild-hybrid electric
vehicle to prevent overheating with minimal fuel consumption
increase. Indeed, this family of hybrid architectures is challenging
due to the absence of an active cooling system.

In particular, we modeled a p0 parallel-hybrid with a 48V
battery pack and we employed dynamic programming to nu-
merically investigate the fuel economy capability while tracking
the battery pack temperature.

First, we tuned a battery current-constrained powertrain
control strategy in order to avoid battery overheating, which
could be easily implemented on-board. Then, we implemented
a predictive temperature-constrained strategy that exploits the
a priori knowledge of driving conditions and temperature con-
straints to maximize fuel economy.

Results show that both strategies are able to meet the battery
temperature constraints, although the predictive temperature-
constrained control strategy outperforms the current-constrained
strategy in terms of fuel economy. This case study demonstrates
the theoretical benefits of a predictive battery thermal manage-
ment for 48V mild hybrids.

Index Terms—mild hybrid, hybrid electric, predictive, thermal
management, passive cooling, battery

I. INTRODUCTION

Mild hybrid electric vehicles (HEVs) embedding a 48 volt
battery pack are currently emerging as a viable and cost-
effective technology to reduce fuel consumption and tailpipe
emissions [1]. Energy management strategies (EMSs) need to
be developed for optimally controlling the power split between
internal combustion engine and belt-starter generator (BSG) of
48V HEVs. To this end, different EMS approaches have been
developed over the years, including for example rule-based [2],
Pontryagin’s Minimum Principle [3], and reinforcement learn-
ing [4].

The 48 volt battery pack is a key component in mild HEVs.
Nevertheless, the above mentioned research works consider
important assumptions concerning modeling and management
of the 48V battery pack. For example, the evolution of the
48V battery pack temperature over time is not modeled neither

in [3] nor in [4]. Alternatively, the maximum charge and
discharge current are set to be heuristically limited by the
HEV EMS in order to prevent overheating the 48V battery
pack in [2].

Temperature is a key aspect in li-ion battery pack of
electrified vehicles. One major related challenge is to limit it to
prevent thermal runaway and accelerated aging [5] [6] while
not penalizing energy economy due to the auxiliary power
dissipated by the cooling system [7]. Recent research works
attempted to investigate the optimal trade-off between these
issues.

For example, in 2014 Johri et al. implemented a battery
temperature-aware dynamic programming (DP) formulation
to determine the optimal battery cooling requirements of a
power-split full HEV [8]. Moreover, predictive battery thermal
management systems for full and plug-in HEVs have been
proposed that exploit either the prediction of future vehicle
operating conditions [9] or real-time traffic and road informa-
tion [10].

The previously mentioned literature however mainly focuses
on active cooling of battery packs for full and plug-in HEVs,
while little research has been published concerning 48V HEVs,
which are peculiar in that they usually do not use a dedicated
cooling circuit. Rather, they use a passive cooling system,
which means that the EMS ensures compliance with battery
thermal limits by appropriately limiting its maximum charge
and discharge currents.

Nevertheless, predictive battery pack thermal management
could potentially lead to significant fuel savings for commer-
cially available 48V HEV powertrains as well. To answer this
research gap, this paper describes a temperature-aware optimal
control framework for 48V HEV powertrains that takes into
account battery thermal limits.

Two main achievements can be accomplished in this way.
First, this papers presents an assessment of the theoretical fuel
saving achievable by a 48V HEV by implementing predictive
battery pack thermal management systems, thus making the
case for technological viability of these systems. Second, the
off-line methdology described in this paper for optimizing 48V
HEV powertrain operation lays the foundations for developing



and benchmarking real-time capable 48V battery pack predic-
tive thermal management systems.

The rest of this paper is organized as follows:

II. SIMULATION MODEL

In order to estimate the fuel consumption while tracking the
battery’s temperature, we adopted a powertrain model which
evaluates the required torque as a function of a given vehicle
driving mission, which is a vehicle speed profile. This type of
simulation models is known as a backward-facing [11], [12] or
quasi-static model [13] and it is commonly used in conjunc-
tion with an EMS optimization algorithm such as Dynamic
Programming in order to assess fuel economy and perform
other energy analyses of hybrid electric powertrains [14].
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Fig. 1. p0 HEV architecture.

A tractive effort was evaluated with a longitudinal vehicle
model in order to match the speed profile prescribed by the
driving mission and then propagated through the drivetrain to
obtain a torque request. This torque request was then split
at the torque-coupling device into an engine and e-machine
torque which were used to evaluate fuel consumption, which
constitutes the running cost in the EMS objective function (7),
and battery power, which is an input to the electrical and
thermal battery models.

First, the total vehicle resistance force was evaluated as a
function of the vehicle speed vveh using a set of coast-down
coefficients [15], [16]. Then, the required tractive effort, equal
to the sum of the resistance force and the vehicle equivalent
inertia, is translated into a torque request to the thermal engine
and the e-machine via a torque-split coefficient α:

α =
Tem,gb

Treq
, (1)

where Tem,gb is the e-machine’s torque contribution at the
gearbox input and Treq is the required torque at the gearbox
input.

The engine fuel rate ṁf was then evaluated using a steady-
state map as a function of its speed ωeng and torque Teng [16]–
[18]:

ṁf = ṁf (ωeng, Teng) ; (2)

and the electrical power drawn from or provided to the battery
Pb was evaluated using a loss map Pem,loss characterizing the
e-machine and inverter losses as a function of its speed ωem

and torque Tem

Pb = ωemTem + Pem,loss (ωem, Tem) . (3)

The battery’s SOC dynamics was modeled using a simple
internal resistance model:

σ̇ =
ib
Qb

, (4)

ib =
voc −

√
v2oc − 4ReqPb

2Req
, (5)

where ib, voc, Req and Qb are the battery current, open-
circuit voltage, equivalent resistance and capacity. The open-
circuit voltage and equivalent resistance were characterized as
a function of SOC and temperature of the battery.

The battery’s thermal dynamics were modeled by assuming
that the most relevant contributions are the heat generated
by Joule effect and the heat transferred to the surrounding
environment by convection [19]–[21]. This convective heat
transfer is proportional to the temperature difference between
the battery (Tb) and the surrounding air (Tenv) via the heat
exchange area Ab and a heat transfer coefficient h.

The temporal evolution of the battery temperature was then
obtained from the following energy balance:

Ṫb =
1

Cb

(
Reqi

2
b − hAb(Tb − Tenv)

)
, (6)

where Cb is the battery’s thermal capacity.

III. ENERGY MANAGEMENT STRATEGY

The HEV powertrain architecture under consideration was
simulated being controleld by a charge-sustaining fuel-optimal
EMS using a DP algorithm. In particular, the described HEV
numerical model was fed to a dedicated optimal control tool
called DynaProg1 [22].

The SOC and temperature of the battery were identified as
the state variables while the torque-split coefficient (1) and the
gear number were set as control variables to be controlled in
order to minimize the cost functional:

J(σ0, Tb,0) =

∫ tf

t0

ṁf (ωeng, Teng) dt, (7)

where σ0 and Tb,0 are the initial SOC and battery temperature.
Charge-sustaining operation was achieved by constraining

the battery SOC at the end of the driving mission to be equal
to the starting SOC, which was set to 0.6.

In addition to the charge-sustaining constraint, other con-
straints were set on the powertrain components in order not to
exceed their physical capabilities, such as the engine and e-
machine maximum speed and torque. The battery’s SOC was
also set not to exceed lower and upper thresholds of 0.4 and
0.8 respectively.

To assess the potential effect of a thermal-aware optimal
control strategy, we set up and simulated three test cases for
the same powertrain, whose characteristics are reported in
Table I, using three different control strategies, a temperature-
unaware strategy, a battery current-constrained strategy and
temperature-constrained strategy.

1Source code is available at https://github.com/fmiretti/DynaProg, toolbox
package available at https://www.mathworks.com/matlabcentral/fileexchange/
84260-dynaprog.



TABLE I
MAIN VEHICLE DATA.

Component Parameter Value

Vehicle Mass 1978 kg
First coast-down coefficient 198 N
Second coast-down coefficient 0.927 N/(ms)
Third coast-down coefficient 0.423 N/(ms)2

Tyre radius 0.329 m
Engine Configuration inline-four cylinders

Displacement 2.0 l
Rated power 243 kW
Maximum torque 450 Nm

E-machine Type IPMSM
Rated power 30 kW
Maximum torque 150 Nm

Battery Type Li-ion 14s11p
Nominal capacity 25 Ah
Nominal voltage 48 V
Heat capacity 7.12 kJ/kgK
Heat transfer coefficient 5 W/(m2K)

Vehicle chassis data, including the mass, tire radius, and
road load coefficients, relate to the Maserati Ghibli Hybrid
model year 2021 and they were obtained from the US Envi-
ronmental Protection Agency (EPA) database [23]. Operational
maps for the engine and BSG were generated using the
respective tools implemented in Amesim software [24], [25].
Electrical and thermal parameters of the 48V battery pack were
taken from [26].

The temperature-unaware strategy does not attempt to keep
the battery temperature under control in any way. The re-
maining two strategies aim to keep the battery’s temperature
below 40 °C; but they differ from each other in that for the
temperature-constrained strategy we directly set a constraint
on this temperature, while for the current-constrained strategy
we se a constraint on the maximum battery current and tuned
it to meet the same temperature constraint.

Because of the high performance and the high potential
for recuperation through regenerative braking enabled by the
hybrid architecture under study, we expected the temperature-
unaware strategy to produce an excessive amount of Joule
heating which in turn would lead the battery temperature to
dangerously high levels. In addition, because the temperature-
unaware strategy is less constrained, we expected the fuel
consumption of the other two strategies to be slightly higher.

These expectations were verified by the simulation results,
as discussed in Section IV.

IV. RESULTS AND DISCUSSION

The strategies were compared by simulating the hybrid
powertrain on the Worldwide Light Vehicle Test Procedure
(WLTP) driving mission, with an initial SOC of 0.6 and an
initial battery temperature equal to the environment tempera-
ture. The environment temperature, which influences the heat

2Maximum and mean currents are evaluated from the current profiles in
absolute value.

exchanged by with the battery through (6), was set to 10° C,
20° C and 30° C, respectively.

As illustrated by Figures 2, 3 and 4, the temperature-
unaware strategy takes full advantage of its electric com-
ponents to reduce fuel consumption as much as possible,
producing higher currents in the process and therefore heating
up the battery up to significantly more than 40 °C.

The temperature-aware3 strategy, on the other hand, signifi-
cantly shaves off all current peaks in order to keep the battery
temperature below 40 °C.

For example, let us consider the case for an environment
temperature of 20 °C, illustrated in Figure 3. As expected,
the temperature-unaware strategy produced the lowest fuel
consumption at 6.20 l/(100 km), against the temperature-
constrained strategy’s 6.36 l/(100 km); though the extent
of this gap is a result worth discussing. Notably, setting a
constraint on the battery temperature influenced fuel consump-
tion by 2.6 %, which is a remarkable increase; a possible
explanation lies in the characteristics of the hybrid powertrain
under study. Turning our attention to the current-constrained
strategy, we found that setting a limit current of 130 A
produced a maximum temperature of 39.6 °C, comparable to
that achieved by the temperature-constrained strategy, with an
increased fuel consumption at 6.36 l/(100 km).
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Fig. 2. Simulated battery current and temperature profiles, for an environment
temperature of 10 °C.

Statistics for the DP results in WLTP considering both
the temperature-aware strategy (T-constrained) and the current
constrained strategy (i-constrained) for values of environment
temperature equal to 10° C, 20° C and 30° C are reported in
Table II. The EM loss and average efficiency have been cal-
culated by interpolating in the corresponding two-dimensional
lookup table with torque and speed as independent variables.

3Note that we use the terms temperature-aware and temperature-
constrained interchangeably throughout this text.



TABLE II
STATISTICS OF DP RESULTS IN WLTP FOR THE TEMPERATURE-AWARE STRATEGY AND THE CURRENT-CONSTRAINED STRATEGY AT DIFFERENT VALUES

OF ENVIRONMENT TEMPERATURE.

10 °C 20 °C 30 °C

T-constrained i-constrained T-constrained i-constrained T-constrained i-constrained

EM loss, MJ 5.50 5.30 5.28 5.27 5.72 5.27
Average EM efficiency 0.737 0.734 0.715 0.708 0.670 0.655
Belt loss, kJ 96.6 96.9 92.2 99.2 83.1 95.3
Battery loss, kJ 211 208 139 147.8 71.2 89.0
Battery current constraint, A - 170 - 130 - 90
Max battery current2, A 247 170 190 130 247 90.0
Mean battery current2, A 44.6 45.1 36.7 39.1 24.5 31.6
Engine mech. energy, MJ 16.3 16.3 16.5 16.5 16.8 16.7
Average engine efficiency, kJ 0.327 0.321 0.325 0.312 0.322 0.310
Fuel economy, l/100km 6.27 6.30 6.36 6.43 6.51 6.79
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Fig. 3. Simulated battery current and temperature profiles, for an environment
temperature of 20 °C.

In general, 0.5 % to 4.3 % fuel economy improvement can
be achieved by the temperature-aware strategy compared with
the current-aware strategy for environment temperatures equal
to 10° C and 30° C, respectively. Different contributions can
be identified for the fuel economy enhancement predicted by
the proposed temperature-aware strategy, including:

1) shifting the operating points of both the EM and the
engine towards higher efficiency areas,

2) reducing the mechanical loss of the belt in the BSG.
The numerical experiments hint that the potential for fuel

economy improvement thanks to the proposed temperature-
aware strategy proportionally increases with the value of the
environment temperature. Indeed, looking at Table II, the
value of maximum battery current that the current-constrained
strategy is allowed to operate while complying with the 40°
C temperature limit markedly decreases for high environment
temperatures. This in turn poses quite limiting constraints
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Fig. 4. Simulated battery current and temperature profiles, for an environment
temperature of 30 °C.

on the operation of the entire electrified powertrain. For
example, the EM is forced to operate in low-efficient low-
torque regions, which results in 13 % only average efficiency
when the environment temperature is 30° C. On the other
hand, the proposed temperature-aware strategy exploits the a
priori information of the drive cycle and the embedded battery
thermal model to keep exploiting the BSG and 48V battery
pack operation and minimize the fuel consumption increase at
high values of environment temperatures.

When it comes to the battery pack itself, the current-
constrained strategy does not seem to make the best use of
it at high values of environment temperatures, as reflected in
the lower loss in Table II compared with the temperature-
constrained strategy when the environment temperature is
equal to 30° C. On the other hand, the temperature-aware
strategy increases the use of the battery pack to improve the
performance of the remaining components of the electrified



powertrain, as suggested by the lower EM loss, the higher
EM efficiency and the higher engine efficiency in Table II.

Another interesting result is that the temperature-
constrained strategy produces higher peak currents, but lower
mean currents. This reflects its ability to use the battery at the
best time given the EMS target of minimizing fuel consump-
tion; while a direct constraint on the battery current reduces
the flexibility with which the EMS optimization algorithm can
pursue the same target.

Overall, these results corroborate the effectiveness of the
proposed temperature-aware strategy in terms of electrified
powertrain efficiency improvement and fuel economy enhance-
ment, especially for high values of environment temperature.

In general, the high performance of the e-machine enables
great fuel savings because of its high recuperation capability
as well as a remarkable ability to power the vehicle in all
acceleration phases. However, since the battery voltage is
limited to 48 V, fully exploiting this capabilities inevitably
produces high currents. The temperature-constrained strategy,
indirectly limiting the maximum current, reduces the extent to
which the electrical part can be used to achieve the maximum
fuel saving.

V. CONCLUSIONS

The simulation case studies presented here show how smart
control strategies can effectively take advantage of knowledge
of anticipated future driving conditions in order to prevent
battery overheating while keeping fuel consumption increase
at a minimum4. Moreover, the obtained results suggest that
setting a constraint on the battery current, when compared to
a direct constraint on the battery temperature, can be equally
effective in preventing overheating although it is slightly
outperformed in terms of fuel economy.

Numerical experiments conducted with different ambient
temperatures show that the advantages of a temperature-aware
control strategy grow larger as the environment temperature
increases.

One major limitation of this work is that we did not consider
different driving scenarios. The experiments where conducted
by driving the vehicle through the WLTP cycle, corresponding
to a traveled distance of approximately 22 km composed by
a mix of urban, suburban and highway driving scenarios. The
proposed strategy was only tested for a short traveled distance
(compared to the relatively slow thermal dynamics of a battery
pack) which averages out a variety of scenarios; an obvious
extension of this work would be to assess its performance with
longer traveled distances and selective driving scenarios.

Secondly, it should be noted that the deterministic dynamic
programming algorithm that was used in this work to obtain
fuel-optimal control strategies assumes perfect knowledge of
future driving conditions. Hence, the fuel economy that we
evaluated in our experiments should be interpreted as an upper
limit that could theoretically be achieved. An important future
step is therefore to test a variety of prediction algorithms

4We called this type of strategy temperature-aware.

for future driving conditions with different levels of data
availability, in order to assess to what extent can a real-time
EMS fulfill this performance.
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