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Abstract. Precise and accurate localization in outdoor and indoor envi-
ronments is a challenging problem that currently constitutes a significant
limitation for several practical applications. Ultra-wideband (UWB) lo-
calization technology represents a valuable low-cost solution to the prob-
lem. However, non-line-of-sight (NLOS) conditions and complexity of the
specific radio environment can easily introduce a positive bias in the
ranging measurement, resulting in highly inaccurate and unsatisfactory
position estimation. In the light of this, we leverage the latest advance-
ment in deep neural network optimization techniques and their imple-
mentation on ultra-low-power microcontrollers to introduce an effective
range error mitigation solution that provides corrections in either NLOS
or LOS conditions with a few mW of power. Our extensive experimen-
tation endorses the advantages and improvements of our low-cost and
power-efficient methodology.

Keywords: Deep Learning, Edge AI, Ultra-Wideband, Indoor Position-
ing

1 Introduction

As Global Navigation Satellite System (GNSS) is the benchmark solution for
outdoor positioning, Ultra-wideband (UWB) real-time locating systems (RTLS)
have recently become the state of the art technology for localization in indoor
environments [13]. Indeed, with its high signal frequency and very narrow pulses,
UWB outperforms all other wireless positioning systems like WiFi and BLE
thanks to its decimeter level of precision and higher resilience to multipath effects
[9].

Nevertheless, in a real-world scenario, the complexity of the environment
often leads to partial or total obstruction of the signal between the transmit-
ter and the receiver, thus causing a substantial degradation of the positioning
performances. The non-line-of-sight (NLOS) condition affects the time-of-arrival
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Fig. 1. Hardware setup for ultra-low-power UWB range error mitigation. The De-
caWave EVB1000 board is connected to a power supply and an external microprocessor
(Arduino Nano 33 BLE Sense) that locally runs a highly optimized and power-efficient
deep neural network for range error mitigation. We also show our custom board de-
signed for the DWM1001C module for size comparison. Future works will fully integrate
our methodology on our custom board, providing a compact solution for precise local-
ization.

(ToA) measurement introducing a positive bias in the ranging estimation [8].
Moreover, multipath components also strongly influence range estimates, es-
pecially in indoor environments where walls and furniture are often made of
reflecting materials.

Therefore, to achieve better localization accuracy, a mitigation algorithm is
needed, and this must be robust and general enough to be effective in a large
set of different scenarios. Most NLOS identification and mitigation methodolo-
gies proposed in the literature are based on channel impulse response (CIR)
statistics [2], likelihood ratio or binary hypothesis tests [10], and machine learn-
ing techniques. As regards the latter, several techniques have been investigated,
such as representation learning models [12], support vector machines (SVM), [16]
and Gaussian processes (GP) [15]. Despite the chosen methodology, the result-
ing mitigation algorithm must require a low computational effort to be usable
in a real-world use case and consequently come out of a pure research scenario.
Indeed, most applications, like robotic indoor navigation and person or object
tracking, typically make use of single-board computers with limited computa-
tional capabilities and stringent power consumption requirements.

In this research project, we propose a highly optimized deep learning model
for range error mitigation that requires a few mW to compensate NLOS and
LOS signals. The proposed methodology can run at high frequency on ultra-
low-power microcontrollers, enabling the design of small and low-power devices
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for precise indoor localization. The complete setup used in our experimentation
is presented in Figure 1. The main contributions of this paper are the following.

– Introduce UWB range error mitigation for ultra-low-power microcontrollers
with deep learning at the edge.

– Modify and highly optimize a deep learning model, leveraging the latest
weight quantization and graph optimization techniques for power and latency
reduction.

– Evaluate the real-time performance of the resulting network, measuring la-
tency, power, and energy usage with different CIR sizes.

The rest of the paper is organized as follows. Section 2 presents the pro-
posed methodology with a detailed explanation of the network and the adopted
optimization techniques for power consumption and latency reduction. Section
3 presents the experimental results and discussion after briefly describing the
DeepUWB dataset used for the tests. Finally, section 4 summarizes the main
achievements of the work and proposes future research developments.

2 Methodology

In this section, we present the proposed methodology for the embedded imple-
mentation of a UWB error mitigation algorithm on an ultra-low-power microcon-
troller. We present details on the deep neural network design and the techniques
adopted to optimize it, quantize all its parameters to 8 bits integers, and deploy
the final model on the target board.

We model the mitigation process as presented by Angarano et al. [1]:

d̂ = d+∆d (1)

where the goal is to predict an estimate of the error ∆d on the UWB range
measurement in order to compensate the observed quantity d̂ and recover the
true distance d. Therefore, we adopt a DNN model that predicts an estimate ŷ
of the true latent error y = ∆d as a non-linear function of the input CIR vector
X, measured by the UWB sensor.

We denote with K the number of temporal samples of the CIR. We develop
our methodology so that the dimension K can be changed to analyze its effects
on the computational efficiency and the accuracy of the algorithm.

2.1 Network Design

The original design of the Range Error Mitigation Network (REMNet) presented
in [1] is adapted to be executed in real-time on a low-power microcontroller. The
neural network should be fully quantized to perform all the operations with 8-bit
integers and meet the real-time constraints. So, in order to overcome software and
hardware limitations of standard low-power microcontroller solutions, we modify
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Fig. 2. Range Error Mitigation Network (REMNet) architecture modified to ensure
compatibility with the target embedded board. The input of the model is the K × 1
tensor representing the CIR of the measurement. Subsequent N Residual Reduction
Modules progressively reduce the original dimension K. Finally, a fully connected layer
composes the high-level extracted features of dimension K/2N ·F and outputs the range
error estimation.

the original REMNet architecture, removing all self-attention blocks that boost
the accuracy performance but compromise compatibility.

The overall modified architecture of the REMNet model is shown in Figure 2.
Starting from the input tensor CIR X of size K×1, we extract low-level features
with a first 1D convolution operation with a kernel of dimension k0. The core
of REMNet is the residual reduction module (RRM). Firstly, the residual is
computed with respect to a 1D convolution of kernel kn; then, a reduction block
decreases the temporal dimension K with a 1D convolution with a stride of
2. The reduction block again has a residual connection characterized by a 1D
convolution with a kernel k of dimension 1 and stride 2 to match the temporal
dimension.

Overall, each RRM block computes the following non-linear mapping func-
tion:

RRM(X ) = Red(Conv1D(X ) +X ) (2)

where

Red(X ) = Conv1Ds=2(X ) + Conv1Dk=1;s=2(X ) (3)

The network is characterized by a stack of N RRM, all with ReLU as non-
linear activation functions [7]. After N RRM blocks, we obtain a tensor with
shape K/2N × F . We perform a flattening operation to feed a regression head
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Fig. 3. LoS and NLoS samples from the DeepUWB dataset, with normalized am-
plitude. In the NLoS case, the signal travels along many routes until it reaches the
antenna. That makes the ToA estimation ambiguous, introducing a positive bias in the
ranging measurement.

composed of dropout and a fully connected layer that predicts the final estimate
of the compensation value ∆d. We denote with F the number of features of each
convolutional operation. We always use zero padding and the same value kn for
each convolutional kernel.

2.2 Network Optimization and Quantization Techniques

To achieve the goal of a real-time implementation, the range error mitigation
technique must respect constraints on memory, power, and onboard latency. We
study different graph optimization and quantization methods to reduce compu-
tational cost without compromising performance. Several techniques have been
developed to increase model efficiency in the past few years [4], from which the
following methods are chosen. First, network pruning and layer fusing are ap-
plied to remove nodes and operations that give almost no contribution to the
output. Moreover, the number of bits used to represent network parameters and
activation functions is reduced by quantizing the float32 values to int8 ones.
Combining these strategies strongly increases efficiency with minimal impact on
performance.

Graph optimization is first applied to the model trained in plain float32 with-
out quantization to investigate its effects on accuracy and dimension. Finally,
a third version of the network is obtained by quantizing weights, activations,
and math operations through scale and zero-point parameters. We follow the
methodology presented by Jacob et al. [4], in which each weight and activation
are quantized with the following equation:

r = S(q − Z) (4)

where r is the original floating-point value, q the quantized integer value, and
S and Q are the quantization parameters (respectively scale and zero point). A
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Fig. 4. Principal Component Analysis representation of DeepUWB benchmark dataset,
showing different spatial configurations for different rooms and materials. The original
CIR dimensions are projected into a three-dimensional space. The first row shows the
data point projection divided into the five considered environments. On the other hand,
the second row highlights the effects of materials on signal propagation. It is clear how
different molecular structures affect the signal in different ways.

fixed-point multiplication approach is adopted to cope with the non-integer scale
of S. This strategy drastically reduces memory and computational demands due
to the high efficiency of integer computations on microcontrollers. The final step
is to convert and import the quantized model into the embedded application
system. As most microcontrollers do not have the resources to run a filesystem,
we provide the network in a C source file that can be included in the program
binary and loaded directly into memory, as suggested by [14]. All the results
obtained with the models at different quantization steps are presented in Section
3.

3 Experiments and Results

In this section, we perform an experimental evaluation of different optimized
versions of REMNet. Moreover, we test the accuracy and performance of the
network on a low-cost microcontroller-based development board, reporting in-
ference speed, and power consumption.

3.1 The DeepUWB Dataset

In the following experiments, we employ the indoor samples of the DeepUWB
dataset presented in [1] and publicly available on Zenodo4. The data is obtained

4 http://doi.org/10.5281/zenodo.4290069
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using DecaWave EVB1000 transmitters and taking several LOS and NLOS in
different indoor and outdoor environments in the presence of various types of
obstacles. Figure 3 presents a comparison between LoS and NLoS samples from
the dataset. Range estimates taken in NLoS conditions are typically positively
biased [8].

For each of the 55,000 measures, both ground-truth distance and the one
given by the UWB boards are included, as well as the environment scenario,
the obstacle materials, and the CIR vector used as input for REMNet. Three
differently sized rooms are selected for indoor measurements to cover various
office-like situations: a large one (10m x 5m), a medium one (5m x 5m), and
a small one (5m x 3.5m). Regarding obstacles, various typical objects for an
indoor scenario are used to cover a wide range of materials, including plastic,
glass, metal, and wood.

Figure 4 shows the result of Principal Component Analysis (PCA) on Deep-
UWB: it is noticeable that the three indoor scenarios occupy close areas in the
3D space, very distinct from outdoor and through-the-wall measurements. That
is due to the presence of strong multipath components. Measurements taken in
the presence of different materials tend to occupy different regions, with heav-
ier and more screening ones, such as aluminum, being highly concentrated and
distant from materials like plastic and wood.

3.2 Experimental Setting

We keep aside the medium-sized room measurements as our primary scope is
to evaluate the effectiveness of REMNet in compensating the error for general
indoor scenarios. In total, 36023 and 13210 training and testing data points are
used, respectively. LoS and NLoS samples are kept together in the sets to eval-
uate the performance of the network in both cases. Real-time range mitigation
with the whole CIR vector could be very computationally intensive [17]. For this
reason, a study is conducted on the number of samples necessary to have an
acceptable error correction. Then, the Tensorflow Lite 5 framework is used to
perform graph optimization and to quantize weights, activations, and math op-
erations. The final test measures the inference frequency of the model deployed
on an Arduino Nano 33 BLE Sense6, alongside its power usage.

In order to select the optimal number of input features, we conduct a grid
search study on the number of CIR temporal samples. We progressively reduce
the input dimensionK from 157, suggested in [3], to 8. The Mean Absolute Error
(MAE) is used as the loss function and metric. Box plot of model performance
with the different CIR input sizes is shown in Figure 5.

The network hyperparameters are obtained with an initial random search
followed by a grid search exploration to fine-tune them and compromise accuracy
and efficiency. We use N = 3 residual reduction modules with kernel dimensions
k0 = 5 and kn = 3, and F = 16 filters.

5 https://www.tensorflow.org/lite
6 https://store.arduino.cc/arduino-nano-33-ble-sense
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Fig. 5. REMNet performance (mitigated ranging error) with different CIR input size
dimensions. For each test, we report LoS and NLoS MAE as well as overall standard
deviation (σ). It is clear how a reduced number of input features degrades the per-
formance of the model. Moreover, an input with eight dimensions appears to be the
minimum amount of information required to obtain an acceptable range error estima-
tion.

Table 1. Model performance for different CIR lengths before and after applying opti-
mizations. The results for a Multilayer Perceptron are included as a reference.

Model CIR Params MAE [m] MAEGO [m] MAEINT8 [m]

REMNet

157 5905 0.0687 0.0687 0.0690
128 5841 0.0702 0.0702 0.0698
64 5713 0.0704 0.0704 0.0701
32 5649 0.0710 0.0710 0.0713
16 5617 0.0712 0.0712 0.0714

MLP 157 54401 0.0769 0.0777 0.0775

Finally, all experimentation adopt Adam as the optimization algorithm [6]
with momentum parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The opti-
mal learning rate λ = 3e − 4 is experimentally derived using the methodology
described in [11] and kept constant for 30 epochs, with a batch size of 32. We
employ the TensorFlow framework 7 to train the network on a PC with 32 GB
RAM and an Nvidia 2080 Super GP-GPU. The overall training process can be
performed in less than 5 minutes.

3.3 Quantitative Results

The medium room data samples, used as test set, have a starting MAE of 0.1242
m and a standard deviation of σ = 0.1642 m. The results obtained by the trained

7 https://www.tensorflow.org/
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Table 2. Model dimensions for different CIR lengths before and after applying opti-
mizations. The results for a Multilayer Perceptron (MLP) are included as a reference.

Model CIR Params Dim [kB] DimGO [kB] DimINT8 [kB]

REMNet

157 5905 317.321 32.988 23.088
128 5841 317.321 32.732 23.024
64 5713 317.157 32.220 22.896
32 5649 317.052 31.964 22.832
16 5617 317.499 31.836 22.800

MLP 157 54401 216.047 125.885 60.320

Table 3. Real-time performance for different optimized models, including inference
frequency, consumed power, and network energy usage.

Model CIR fm [Hz] Vcc [V] Iabs [mA] Pabs [mW] Einf [mJ]

REMNet

157 17.2 3.3 16.2 53.4 3.1
128 21.2 3.3 16.0 52.8 2.5
64 41.0 3.3 15.8 52.2 1.3
32 77.8 3.3 15.6 51.6 0.66
16 140.0 3.3 15.6 51.6 0.37

MLP 157 184.1 3.3 16.2 53.4 0.29

reference architectures and their degradation, as optimizations are applied, are
shown in Table 1. Each model has been tested five times with different random
seeds to obtain statistically significant results. Performances prove the effective-
ness of the model, as the MAE of the medium room samples is reduced by
45.7% using the reference model. Consequently, the final error of 0.0687 m is
comparable to the actual LoS precision of EVB1000 boards [5]. Lastly, REMNet
demonstrates to outperform a Multilayer Perceptron (MLP) with around 10%
of its parameters.

As regards model optimization, columns CIR and Params report the num-
ber of input samples used for the mitigation and the total model parameters,
respectively. Moreover, the resulting MAE is reported for all three model config-
urations: reference, graph optimization (MAEGO), and full 8-bit integer quanti-
zation (MAEINT8). The results show that the effect of graph optimization is null
for REMNet, while the MLP performance slightly deteriorates. Integer quantiza-
tion, instead, minimally increases the resulting MAE for all the models. Finally,
our experimentation confirms that fewer dimensions of 128 tend almost linearly
to degrade the network’s accuracy.

Despite the insignificant effect of graph optimization on performance, mem-
ory occupancy greatly shrinks. Our results show a reduction of about 90% for
REMNet, while the MLP only halves its memory footprint due to its higher
number of parameters. In addition, quantization allows a further reduction of
REMNet memory requirements of an additional 30%, confirming the great ben-
efit of using both optimization and quantization techniques provided by Ten-
sorFlow Lite converter. The MLP reduces another 50% of its memory footprint



10 Angarano et al.

with full integer quantization, reaching a final size of about three times REM-
Net. Therefore, the proposed model can outperform the baseline both in error
mitigation capability and memory requirements. All the results on the memory
footprint of the models under examination are presented in Table 2.

Finally, the inference speed and the power consumed by the Arduino board
for each considered model are analyzed and presented in Table 3. The frequencies,
denoted as fm, have been measured as the reciprocal of the maximum inference
time over a series of tests. In all the cases, they can be considered compliant
for real-time applications. In particular, the MLP requires less computational
effort despite the more significant number of parameters because it involves
simpler math operations than REMNet. Moreover, reducing CIR length results
in an almost linear increase in inference speed. To assess power consumption,
instead, we measured the absorbed current Iabs with a voltage supply Vcc = 3.3
V. Results show that, as the microcontroller is constantly processing data, the
power usage can be considered constant for all the cases. However, since inference
speed significantly changes with model complexity, we computed the energy
required for a single inference step Einf by dividing the consumed power Pabs

by the frequency fm. It is noticeable that very few mJ are sufficient to run
range mitigation, reaching values under 1 mJ. That proves that the already
efficient design of the proposed model, in conjunction with 8-bit weight precision
and graph optimization techniques, makes deep learning a feasible solution for
effective ultra-low-power UWB range error mitigation.

4 Conclusions

In this paper, we introduced UWB range error mitigation for ultra-low-power
microcontrollers. Our effective and power-efficient methodology builds on top of
the latest advancement in deep learning and neural networks optimization tech-
niques to provide precise localization in NLOS and LOS conditions with a few
mW of power. We proposed a modified version of REMNet, a lightweight model
designed explicitly for range error mitigation on ultra-low-power AI edge devices.
Our extensive experimentation proves how the proposed system successfully runs
at a high frequency on microcontrollers and provides enhanced localization in
indoor environments. Future works will integrate the proposed methodology on
a compact custom board designed around the DWM1001C DecaWave module
to provide a compact solution for precise localization.
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