POLITECNICO DI TORINO
Repository ISTITUZIONALE

Greenhouse gas emissions: A rapid submerge of the world

Original

Greenhouse gas emissions: A rapid submerge of the world / Gowrisankar, A.; Priyanka, T. M. C.; Saha, Asit; Rondoni,
Lamberto; Kamrul Hassan, Md.; Banerjee, Santo. - In: CHAOS. - ISSN 1054-1500. - 32:6(2022), p. 061104.
[10.1063/5.0091843]

Availability:
This version is available at: 11583/2970079 since: 2022-07-13T08:48:16Z

Publisher:
American Institute of Physics

Published
DOI:10.1063/5.0091843

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

10 April 2024



Greenhouse gas emissions: A rapid
submerge of the world

Cite as: Chaos 32, 061104 (2022); https://doi.org/10.1063/5.0091843
Submitted: 18 March 2022 « Accepted: 01 June 2022 - Published Online: 21 June 2022

)

View Online Export Citation CrossMark

A. Gowrisankar, T. M. C. Priyanka, Asit Saha, et al.

RN

ARTICLES YOU MAY BE INTERESTED IN

Discovery of interpretable structural model errors by combining Bayesian sparse regression
and data assimilation: A chaotic Kuramoto-Sivashinsky test case

Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 061105 (2022); https://
doi.org/10.1063/5.0091282

Solar activity facilitates daily forecasts of large earthquakes

Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 061107 (2022); https://
doi.org/10.1063/5.0096150

Bifurcation, chaos, multistability, and organized structures in a predator-prey model with
vigilance

Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 063139 (2022); https://
doi.org/10.1063/5.0086906

APL Machine Learning
Open, quality research for the networking communities

Now Open for Submissions

LEARN MORE

Chaos 32, 061104 (2022); https://doi.org/10.1063/5.0091843 32, 061104

© 2022 Author(s).



Chaos

ARTICLE scitation.org/journal/cha

Greenhouse gas emissions: A rapid submerge of

the world

Cite as: Chaos 32, 061104 (2022); doi: 10.1063/5.0091843

Submitted: 18 March 2022 - Accepted: 1 June 2022 -
Published Online: 21 June 2022

® th ®

View Online Export Citation CrossMark

A. Gowrisankar,' T. M. C. Priyanka,' Asit Saha,” Lamberto Rondoni,>*

and Santo Banerjee®:®

Md. Kamrul Hassan,”

AFFILIATIONS

"Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
?Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpo 737136,

East Sikkim, India

*Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

“INFN, Sezione di Torino, Via P. Giuria 1,10125 Torino, Italy

STheoretical Physics Group, Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh

@) Author to whom correspondence should be addressed: scntoban@gmail.com

ABSTRACT

The investigation of worldwide climate change is a noticeable exploration topic in the field of sciences. Outflow of greenhouse gases in
the environment is the main reason behind the worldwide environmental change. Greenhouse gases retain heat from the sun and prompt
the earth to become more sultry, resulting in global warming. In this article, a model based technique is proposed to forecast the future
climate dynamics globally. Using past data on annual greenhouse gas emissions and per capita greenhouse gas emissions, the fractal curves
are generated and a forecast model called the autoregressive integrated moving average model has been employed to anticipate the future
scenario in relation to climate change and its impact on sea-level rise. It is necessary to forecast the climate conditions before the situations
become acute. Policy measures aimed at lowering CO, and other greenhouse gas emissions, or at least slowing down their development, will

have a substantial effect on future warming of the earth.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091843

Human requirements are increasing day by day, driving him to
think faster and invent things much faster, thus resulting in the
world updates. Though the upgrades are helpful for an easy and
more convenient lifestyle, they also lead to drastic changes in
the environment. In many aspects, the changes are worldwide.
One such prominent change is climate change. This change is the
result of greenhouse gas emissions and is extremely harmful, as
one of its key consequences is sea level rise. This paper addresses
the global climate change and forecasts future greenhouse gas
emission rates using fractal interpolation and the autoregres-
sive integrated moving average (ARIMA) model and, as a result,
creates awareness for the need to reduce global greenhouse gas
emissions and thus prevent the submerge of the world.

I. INTRODUCTION

Long-term changes in temperature and weather conditions are
referred to as climate change. Extreme weather occurrences (such as

floods, storms, and droughts), sea-level rise, and interrupted water
systems are just a few of the ecological, physical, and health con-
sequences of a changing climate. Natural reasons, such as solar
cycle oscillations, could cause climate change patterns. However,
anthropogenic activities have been a significant cause for the mod-
ern climate era since 1800s, owing to the combustion of fossil fuels,
such as gas, coal, and oil. Fossil fuel combustion leads to emission
of greenhouse gases, which act as a shield over the earth, capturing
the sun’s heat and increasing temperatures. Nitrous oxide (N,0),
carbon dioxide (CO,), water vapor, methane (CH,), and chloroflu-
orocarbons are all the gases that lead to the greenhouse effect, and
CO, is the most abundant one of these greenhouse gases. Green-
house gases (GHG) are necessary to keep the earth warm; without
them, the average temperature would be around 0°F. Human activ-
ities, such as clearing of land for agriculture, industry, and others,
have increased the concentrations of greenhouse gases in the atmo-
sphere. This results in atmospheric warming and global climate
change; refer to Fig. 1. More details on the connection between the
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FIG. 1. Effect of GHG emissions in climate change.

greenhouse gases and climate change can be found in the
literature."” Ren et al. have discussed the GHG emissions due to on-
site fuel consumption using home equipment, and appliances are
calculated for the household energy consumption.’ Susanne et al.
have introduced the climate tipping impact category to represent the
climate tipping potential (CTP) of GHG emissions relative to a cli-
matic target level and have discussed the urgent impacts of GHG
emissions.’ Nguyen et al. have discussed the environmental impacts
and greenhouse gas emissions for energy recovery of the wastewater
treatment plant.’

Since from the beginning, life is a delicate balance with the sea
level. The greenhouse gas emissions has thrown the system out of
balance by elevating sea levels. By melting mountain glaciers, forc-
ing ice sheets to melt into the oceans and expanding ocean water,
greenhouse gas emissions will raise sea levels by a few meters in
the next century and several meters in the following few hundred
years.” A rise of this magnitude would start flooding deltas and other
coastal lowlands, degrade beaches, and endanger aquifer water qual-
ity. Hence, it is generally acknowledged that the world must reduce
greenhouse gas emissions as quickly as possible to avoid the sub-
merge of the world. To escape from severe climate change, global
greenhouse gas emissions should be reduced rapidly. Every year, the
world emits roughly 50 x 10° tons of greenhouse gases. To ascer-
tain how to reduce the emissions effectively and with the aid of
current technologies, what emissions could and could not be elim-
inated, it is important to understand where the emissions come
from. Energy (electricity, heat, and transport), industrial processes,
and waste and land use (agriculture and forestry) are the primary

sectors causing greenhouse gas emissions. Monitoring the global
temperature changes on a global scale is essential; in the meantime,
we need to be aware of how warming is spread unevenly around the
world. In some areas, warming is extremely more intense. The level
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FIG. 3. Schematic representation of the proposed model.

of greenhouse gases released into the atmosphere varies by country.
China produces the most greenhouse gas emissions of any nation
in the globe. The United States is the world’s second-largest emit-
ter of carbon dioxide. India, like China, has a vast population and is
the third-largest CO, emitter in the world. A substantial greenhouse
effect would warm the ocean and cause glaciers to melt partially,
increasing sea levels. Due to its heat, ocean will also expand, fur-
ther accelerates rise in sea level. Perhaps, a little rise in sea level
can have a major influence on many coastal areas, some of which
can have a variety of effects on both human health as well as
water resource accessibility. The forecast of greenhouse gas emis-
sions from the industries in India and China has been investigated.”
Six different interpolation methods have used to investigate rain-
fall patterns under varying climatic conditions in the Chongqing
province.’ Fractal properties of climate change in northwest China
over the past 50 years have studied.” The impact of sea-level rise on
the coastal groundwater discharge as a result of climate change is
discussed by Masciopinto and Liso."” Authors have utilized the frac-
tal dimensional analysis to explore the Indian climatic dynamics."
The studies relating the interpolation for the forecast of greenhouse
gas emissions and other time series problems are also explored in
the literature.'””'® The aim of the study is to forecast the future
climate conditions of the world by investigating the annual GHG
emissions of three most greenhouse gas emitting countries: China,
USA, and India. Also, by examining the per capita GHG emissions

of 11 countries: Botswana, Canada, Australia, Saudi Arabia, United
States, Germany, Russia, China, United Kingdom, Brazil, and India,
future per capita GHG emissions are predicted. The world’s largest
emitters are inferred by total annual emissions of greenhouse gases.
However, the population of a country also primarily accounts for the
greenhouse gas emissions. For instance, China and India are the top
three emitters as well as the world’s two most populous countries.
The per capita greenhouse gas emissions of a country are measured
in tons per person per year. Among the major emitters, large dif-
ferences can be observed in the per capita emissions: in the US, the
average person emits more than 18 tons; in China, it is less than half,
at 8 tons; and in India, emissions are much lower, at roughly 2.5 tons.
As the world’s smaller countries, such as Botswana and others, tend
to be large oil and/or gas producing countries, they fall under the
category of largest per capita GHG emitters. The aforementioned
reason made us to choose the particular 11 countries: which are the
top 11 per capita emitters based on the evidences of Our World in
Data."”

An advanced interpolation technique called the fractal interpo-
lation finds its applications in many other areas of science, beyond
the interpolation and approximation theory, due to its self-similarity
characteristic and scale invariance properties. For example, Wang
et al. have explored the forecasting stock price indexes using frac-
tal interpolation.'® To improve the neural network predictions for
complicated time series data, fractal interpolation approach has been
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%102 present work, to preprocess and forecast the chaotic nature of green-
i house gas emissions, we were using a data-driven approach with a
—e—China combination of fractal interpolation and the ARIMA model as the
101 ¢ Iui ) core principle of analysis. As a result, we are highly confident that
—o—India

the current study is one of the most fascinating and timely stud-
ies on global greenhouse gas emissions and their impact. In this
study, using the fractal interpolation method, the sample data on
GHG emissions have been reconstructed. By studying variations
in the scaling properties, fractal analysis yields a novel method to
better approximate the climate data. For more details of fractal func-
tions and its recent advancements, the reader is recommended to
refer Refs. 22-29. In addition, with the aid of the ARIMA model,
the predictions are performed from the year 2019-2047 for the
preprocessed sample data.

The rest of the article is organized as follows. Section I provides
the introduction of the present work. Section II discusses the con-
struction of a linear fractal function with a numerical illustration.
Furthermore, the ARIMA model is described, and the fractal inter-
polation—-ARIMA algorithm and evaluation metrics, such as MAPE,
NMAPE, and RMSE, are discussed in Sec. II. The collection of data
for the present work is discussed in Sec. I11. Section IV is devoted to
the results and discussion part of the study. The concluding remarks
of the proposed model for forecasting the future climatic conditions
are presented in Sec. V.
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Time
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FIG. 4. Total GHG emissions.

employed by Raubitzek and Neubauer."” Xiu et al. have developed
a short-term prediction method for wind speed series by utilizing
the fractal interpolation.”” Recently, Gowrisankar et al. have pre-
dicted the trend of an Omicron variant with the help of a fractal

Il. METHODS AND MATERIALS

A. Construction of a linear fractal interpolation

interpolation technique.”!

The ultimate aim of this research is to create public aware-
ness about the negative consequences of greenhouse gas emissions,
notably sea-level rise. However, while many research studies have
been conducted to address global warming and its consequences,
only a few of them have used data-driven methodologies. In the

function

A fractal interpolation function is generally constructed using
the iterated function system as a graph of continuous function inter-
polating the given two-dimensional data set. An iterated function
system is a pair consisting of a complete metric space along with
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FIG. 5. Per capita greenhouse gas emissions.
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FIG. 6. Comparison of predicted greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors /;: (a) China, (b) US, (c) India, and (d) World.

a finite number of contraction maps. The deterministic fractal or
attractor is obtained as the unique fixed point of the IFS.

Consider the data set {(t;, u;) € R? : j € {0, 1, ..., N}} such that
tiy <tforallj=1,2,...,N. Let I = [ty ty] be the closed inter-
val of R and set I; = [tj_1,t]. Let L;: I — I; be the contractive
homeomorphisms and forall t,#' € I, r; € (0, 1) obeys

L) — Li(")] < rjlt —£1, Lito) = ti1, Lilty) = 8.

LetFj: X C I x R — Rbe N continuous mappings and contraction
with respect to a second variable such that forall z,z’ € R, t € I and
s; € (=1, 1) satisfies the conditions

|P}(t,2) - E[(trz/)l =< Sjlz_ ZJ':P:i(thO) = Zj—la P}(tN,ZN) = Zj-

Define the maps f; : X — I; x R,j=1,...,Nby
fitu) = L;(0), Fy(t, ).

Let H(X) and p denote the collection of all non-empty com-
pact sets of X and Hausdorff metric, respectively. The function
F: H(X) — H(X) is defined as the finite union of contraction map-
pings f;(C), where C € H(X). As the space (H(X), p) is a complete
metric space, then by the Banach contraction theorem, the map F
has a unique invariant compact set, say G, such that F(G) = G and
G = lim,_. o F*"*(C). This invariant set G is the graph of the continu-
ous function fsatisfying f(t;) = u;forj =0,1,..., Nand is termed as
the fractal interpolation function for the IFS {X; f] 1j=12,...,N}L
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FIG. 7. Comparison of predicted greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors lj* (a) China, (b) US, (c) India, and (d)

World.

Based on the self-similar nature of the data, the reconstruction
of data can be done by the fractal function approach. For generat-
ing such a fractal function, a suitable iterated function system must
be built. The fractal features of its attractor are similar to those of
the expected data in this so-called suitable iterated function system.
Concretely, the attractor’s trajectory should be close enough to the
observed data. Since only the scaling factors can be utilized to build
a suitable iterated function system, this is acceptable for the sample
distribution.

This paper investigates the prediction of future climatic
conditions; we, therefore, consider the finite two-dimensional data
set {(t,u):j=0,1,...,N}, where ¢ denotes the time period

(in years) and u; denotes the GHG emissions (in tons). The following
affine transformation is considered to construct the required linear
fractal interpolation function:

t ) t _(m 0 t pj
(“) o (”) B (”j ’j) (”) i (%‘ ' W
That is,(t, u) — (mjt+p;, njt+ Lu+ gq;), and each contraction
map v; satisfies the conditions

Vi (li(:)) = (tj—b uj_l), Vi (ZZ;) = (t], u]) (2)

Chaos 32, 061104 (2022); doi: 10.1063/5.0091843 32, 061104-6
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forallj=1,2,...,N, mj, nj, lj, pj» gj are the real parameters, and lj (uj — uj_y) — dj(uN — )
are the vertical scaling factors and also called as contraction factors n= tn — to ’
for the contraction maps v;. Note that /; can be chosen as free vari- ; . At .
ables such that [; € (—1, 1). Using the system of linear equations (2), g = (tnuj1 — tow) — dj(tntig — totin)
the other parameters are determined as In—t
m; = ﬂ, forj=1,2,...,N. The fluctuation of the interpolation curve along
tn—to the vertical direction is greatly influenced by the scaling factor I.
tntio1 — tol Therefore, in this study, the linear interpolation function is con-
pi= ty— to structed to recreate the data by choosing the scaling factors J; appro-
(3) priately as discussed in Sec. II B. A variety of interesting fractals
Chaos 32, 061104 (2022); doi: 10.1063/5.0091843 32, 061104-7
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TABLE I. Evaluation of forecast errors through MAPE, NMAPE, and RMSE values of 11 countries for three models: Model | (/;), Model Il (Ij*), and Model 1l (I/**).

Model - 1 Model - 11 Model - III
Country MAPE NMAPE RMSE MAPE NMAPE RMSE MAPE NMAPE RMSE
Botswana 0.4021 0.4097 10.8174 0.4118 0.4199 11.1285 0.4093 0.4199 10.9284
Canada 0.3592 0.3338 94218 0.3778 0.3499 9.7681 0.5871 0.5820 17.4758
Australia 0.2601 0.2523 5.1387 0.3198 0.3152 6.9172 0.3834 0.3788 8.7035
Saudi Arabia 0.2899 0.3080 4.3852 0.2870 0.3035 4,5116 0.0925 0.1891 3.0163
USA 0.2238 0.2189 4.0565 0.2977 0.2909 5.6103 0.3190 0.3125 6.1007
Germany 0.3282 0.3314 3.2258 0.4052 0.4092 4.2254 0.3507 0.3542 3.5218
Russia 0.3087 0.3288 2.5793 0.4521 0.4914 3.8194 0.4058 0.5416 4.0141
China 1.0244 1.3114 5.2775 0.9609 1.2437 5.0409 0.8820 1.1672 4.8980
UK 0.6681 0.6827 5.5821 0.6673 0.6794 5.5341 0.7030 0.7143 6.1644
Brazil 0.8590 0.8741 6.3005 0.8249 0.8385 5.9644 0.8224 0.8361 6.2146
India 0.7879 1.0424 1.0787 1.2289 1.4873 1.4244 1.2469 1.5033 1.4529

in the real-world occur as graphs of functions. Calculating fractal
dimension for the fractal interpolation functions aids to recognize
the irregularity of the curves. The fractal dimension D of any frac-
tal object can be estimated using the power law (fractal scaling law)
N = R7P, where N is the number of parts that the object gets divided
up and R is the size of the parts (scaling factor). One of the most
important properties of the power law is scaling invariance. In this
study, the fractal curves of total GHG emissions and per capita
GHG emissions predicted for various countries obey the fractal scal-
ing law. As mentioned earlier, the vertical scaling factor determines
the shape and pattern of the fractal interpolation function. In pre-
cise, the evolution of reconstructing fractal function depends on the
scaling factors. Hence, the present study includes the comparative
analysis of different types of scaling factors, which are involved in
the prediction scheme.

B. Numerical illustration

Let us construct a linear fractal interpolation function, which
passes through the four data points: {(to;uo) = (—1,1), (t1;u;)
= (—1/2,2), (ty;42) = (0,2), (t33u3) = (1/2,5/2), (ts3us) = (1,5)}.
The IFS containing four contraction maps {vi, vz, vs,v4} can be
generated using the given interpolation points. Each F; is a affine
transformation as in Eq. (1). The unknown parameters of the maps
v; are determined as follows:

t— i 1
m] = 7’1 i1 = -,
tn—ty 4
Lt —ht  h At
)j = = >
In—t 2
(4)
no— (u] - u]-,l) - lj(uN — uo) _ U —uj1 — 4l]
! tn—to 2 ’
_ (tNuj—l — tou]') — lj(tNLl() - t()uN) _ uj_l + uj - 6l]

4= tn —to 2

Now, substituting all the above determined values into Eq. (1), one
can get the special structure shown below:

t 1/4 0\ (1 -
Viu) = iz i) \u T o |- )
2 2

By fixing the value of vertical scaling factors [; to 1/2 for all
j = 1,2,3,4, the four affine maps are expressed as

n(0)= (k) 03
#(0)= (4 ) () + G
o ()= G 0e) () + ()
(o) = () () + )

Each map generates five new data points after each iteration when
the given five points are sequentially substituted in the above four
affine maps.

A complex interpolation graph can be produced by raising the
number of iterations. The interpolation curve formed by the IFS has
fractal properties, and it is rough in any segment. This is in stark
contrast to the smooth curve produced by the conventional interpo-
lation approach. The function value at any t € (0, 1) can be deduced
using this fractal curve.

In Fig. 2, the black dots represent the sample data points,
{(—-1,1),(-1/2,2),(0,2),(1/2,5/2),(1,5)}, and the pink curve is
the original function 2¢* + #* 4 2. The original function is approxi-
mated using the fractal interpolation method in three ways. The red
curve is drawn using the scaling factor [;, which is proposed in the
present paper. The blue curve approximation is done by choosing
the scaling factor

[ Yi — -1

J
8\/(}/max - )’min)2 + (}’; _yj71)2
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FIG. 11. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors Ij*: (a) Botswana, (b) Canada,

(c) Australia, (d) Saudi Arabia, () USA, and (f) Germany.
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taken from the literature,'* and it is named as the LI method of

approximation, where § = 1 + rand(¢) and the rand(g) represents
the number randomly taken by the computer. Furthermore, the
green dotted curve in Fig. 2 represents the approximation using the
constant scaling factor I* = 1/2. The statistical significance of the
three models has been verified using the evaluation metric, root
mean square error (RMSE). It is observed that the RMSE values
for the three models I, II, and III are 0.150, 0.170, and 0.2111,
respectively. This clearly shows that the red curve drawn using the
proposed method (model I) with the scaling factor J; is the best
approximation to the original (pink) curve among the three models.

C. ARIMA

The autoregressive integrated moving average (ARIMA) is a
short-term time series forecasting model, which has been increas-
ingly utilized since the development of powerful statistical software
packages. This model has been developed using the mathematical
approach in order to describe and analyze the variations on the
time series. Furthermore, it is designed in such a way to mini-
mize the difference between the observed and estimated values near
zero. Employing this approach, the behaviors of both stationary and
non-stationary series can be addressed. Autoregressive terms in the
forecasting equation are lags of the differenced series, moving aver-
age terms are lags of the forecast errors, and an integrated version
of a stationary series is a time series that needs to be differenced
to make it stationary. The ARIMA model is decomposed into three
model parameters; namely, AR (p), I (d), and MA (q), all together
form ARIMA (p, d, q) model, where

p = order of the autoregressive model,
d = degree of differencing,

q = order of moving averages,

Autoregressive (AR) denotes the autoregressive variables, Integrated
(I) denotes the data values that have been changed with the differ-
ence between their actual values and their former values, and the
Moving Average (MA) denotes the linear trend of error terms.

A non-seasonal stationary time series can be designed by com-
bining the past values and the errors, which can be represented as
ARIMA (p, d, ),

Yi=c+B Y +BYo+- -

— 06 —

+ ﬁth—p +e —ore

- aqet—q:

where ¢ is a constant, Y, are actual values at time £, e, are random
errors at time ¢, ax and f; are model parameters for k = 1,2,...,p

and [ =1,2,...,9, and p and g are orders of autoregressive and
moving average polynomials.

D. Fractal interpolation-the ARIMA algorithm
The algorithm for the construction of IFS corresponding to the

given data set is as follows:

(1) Let D= {(t,u;) € R*:j € {0,1,...,N}} be the sample data
where t; and u; denote the time period (year) and the rate of
greenhouse gas emissions in tons, respectively, at rough scales.

y(&) = {yt), y(t2), . ..

ARTICLE scitation.org/journal/cha

(2) All data points in set D are considered points of interpolation to
fully reflect the overall variation pattern. The set D contains n +
1 data points that can be splitted into » intervals of interpolation.

(3) Consider the first element and the next element in D as the
initial and end points of the interpolation interval.

(4) Calculate the parameters m; and p; in (3) for the given sample.

(5) The parameter J; is calculated using the formula

= Ji — X1
87 [ tmes = yoin” + 0= 1)’
Ax max min j )’]—1

where A)’ = Ymax — Ymin> AX = Xmax — Xmin> Ymax and Ymin are
the maximum and minimum values of GHG emissions, respec-
tively.

(6) Calculate the parameters n; and g; using ; in the above step
and (3).

(7) Next, take the end point of the first interpolation interval as
the initial point of the next interpolation interval and iterate
the steps (1)-(6) to obtain the IFS {X;f; : j = 1,2,..., N} for the
sample D. By obtaining the fractal curves using the IFS con-
structed in the step (7), the sample data set is reconstructed.
Now, on applying the ARIMA model over the reconstructed
new data set, the future data points are predicted. The schematic
representation of the proposed algorithm is presented in Fig. 3.

E. Evaluation metrics

In this study, the mean absolute percentage error (MAPE),
the normalized mean absolute percentage error (NMAPE), and
the root mean square error (RMSE) are used as evaluation met-
rics to estimate the error. For many sorts of energy forecasts, the
MAPE and NMAPE are the most often used fit metrics since both
can be converted to accuracy with ease (that is, in terms of per-
centage). RMSE is another frequently used metric to evaluate the
deviation of the estimated values from the observed values. Let
,¥(ty)} denote the given sample (observed)
data and y(t) = {y(t1), y(f2)...,P(tn)} represents the estimated
(preprocessed) data of the sample using the fractal interpolation
technique. The formulations of MAPE, NMAPE, and RMSE are
given below:

MAPE (%) = — Z|y(t)— y(t)] x 100%, (6)
N3
Ly — 38

NMAPE (%) Z Y5 =X 100%. )
j=1 j= ly(t)

In order to interpret the MAPE (%) values, a scale has been devel-
oped by C. D. Lewis, known as the Lewis scale, in 1982. According
to this scale, the forecast that is closer to 50% is regarded as the rea-
sonable forecast. This would have made sense in the 1980s, while
the modeling and forecasting were not as sophisticated as they are
now. In today’s world, any decision maker may consider a 50%
error as a reasonable forecast while making a critical decision. Mean-
while, the advancements in the forecasting methods and knowledge
are constantly driving the accuracy bounds higher. Over the previ-
ous three decades, time series prediction has significantly improved.
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