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ABSTRACT

The investigation of worldwide climate change is a noticeable exploration topic in the field of sciences. Outflow of greenhouse gases in
the environment is the main reason behind the worldwide environmental change. Greenhouse gases retain heat from the sun and prompt
the earth to become more sultry, resulting in global warming. In this article, a model based technique is proposed to forecast the future
climate dynamics globally. Using past data on annual greenhouse gas emissions and per capita greenhouse gas emissions, the fractal curves
are generated and a forecast model called the autoregressive integrated moving average model has been employed to anticipate the future
scenario in relation to climate change and its impact on sea-level rise. It is necessary to forecast the climate conditions before the situations
become acute. Policy measures aimed at lowering CO2 and other greenhouse gas emissions, or at least slowing down their development, will
have a substantial effect on future warming of the earth.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091843

Human requirements are increasing day by day, driving him to
think faster and invent things much faster, thus resulting in the
world updates. Though the upgrades are helpful for an easy and
more convenient lifestyle, they also lead to drastic changes in
the environment. In many aspects, the changes are worldwide.
One such prominent change is climate change. This change is the
result of greenhouse gas emissions and is extremely harmful, as
one of its key consequences is sea level rise. This paper addresses
the global climate change and forecasts future greenhouse gas
emission rates using fractal interpolation and the autoregres-
sive integrated moving average (ARIMA) model and, as a result,
creates awareness for the need to reduce global greenhouse gas
emissions and thus prevent the submerge of the world.

I. INTRODUCTION

Long-term changes in temperature and weather conditions are
referred to as climate change. Extreme weather occurrences (such as

floods, storms, and droughts), sea-level rise, and interrupted water
systems are just a few of the ecological, physical, and health con-
sequences of a changing climate. Natural reasons, such as solar
cycle oscillations, could cause climate change patterns. However,
anthropogenic activities have been a significant cause for the mod-
ern climate era since 1800s, owing to the combustion of fossil fuels,
such as gas, coal, and oil. Fossil fuel combustion leads to emission
of greenhouse gases, which act as a shield over the earth, capturing
the sun’s heat and increasing temperatures. Nitrous oxide (N2O),
carbon dioxide (CO2), water vapor, methane (CH4), and chloroflu-
orocarbons are all the gases that lead to the greenhouse effect, and
CO2 is the most abundant one of these greenhouse gases. Green-
house gases (GHG) are necessary to keep the earth warm; without
them, the average temperature would be around 0◦F. Human activ-
ities, such as clearing of land for agriculture, industry, and others,
have increased the concentrations of greenhouse gases in the atmo-
sphere. This results in atmospheric warming and global climate
change; refer to Fig. 1. More details on the connection between the
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FIG. 1. Effect of GHG emissions in climate change.

greenhouse gases and climate change can be found in the
literature.1,2 Ren et al. have discussed the GHG emissions due to on-
site fuel consumption using home equipment, and appliances are
calculated for the household energy consumption.3 Susanne et al.
have introduced the climate tipping impact category to represent the
climate tipping potential (CTP) of GHG emissions relative to a cli-
matic target level and have discussed the urgent impacts of GHG
emissions.4 Nguyen et al. have discussed the environmental impacts
and greenhouse gas emissions for energy recovery of the wastewater
treatment plant.5

Since from the beginning, life is a delicate balance with the sea
level. The greenhouse gas emissions has thrown the system out of
balance by elevating sea levels. By melting mountain glaciers, forc-
ing ice sheets to melt into the oceans and expanding ocean water,
greenhouse gas emissions will raise sea levels by a few meters in
the next century and several meters in the following few hundred
years.6 A rise of this magnitude would start flooding deltas and other
coastal lowlands, degrade beaches, and endanger aquifer water qual-
ity. Hence, it is generally acknowledged that the world must reduce
greenhouse gas emissions as quickly as possible to avoid the sub-
merge of the world. To escape from severe climate change, global
greenhouse gas emissions should be reduced rapidly. Every year, the
world emits roughly 50 × 109 tons of greenhouse gases. To ascer-
tain how to reduce the emissions effectively and with the aid of
current technologies, what emissions could and could not be elim-
inated, it is important to understand where the emissions come
from. Energy (electricity, heat, and transport), industrial processes,
and waste and land use (agriculture and forestry) are the primary

sectors causing greenhouse gas emissions. Monitoring the global
temperature changes on a global scale is essential; in the meantime,
we need to be aware of how warming is spread unevenly around the
world. In some areas, warming is extremely more intense. The level

FIG. 2. Approximation of 2t3 + t2 + 2 using three various scaling factors lj , l
∗
j ,

and l∗∗
j .
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FIG. 3. Schematic representation of the proposed model.

of greenhouse gases released into the atmosphere varies by country.
China produces the most greenhouse gas emissions of any nation
in the globe. The United States is the world’s second-largest emit-
ter of carbon dioxide. India, like China, has a vast population and is
the third-largest CO2 emitter in the world. A substantial greenhouse
effect would warm the ocean and cause glaciers to melt partially,
increasing sea levels. Due to its heat, ocean will also expand, fur-
ther accelerates rise in sea level. Perhaps, a little rise in sea level
can have a major influence on many coastal areas, some of which
can have a variety of effects on both human health as well as
water resource accessibility. The forecast of greenhouse gas emis-
sions from the industries in India and China has been investigated.7

Six different interpolation methods have used to investigate rain-
fall patterns under varying climatic conditions in the Chongqing
province.8 Fractal properties of climate change in northwest China
over the past 50 years have studied.9 The impact of sea-level rise on
the coastal groundwater discharge as a result of climate change is
discussed by Masciopinto and Liso.10 Authors have utilized the frac-
tal dimensional analysis to explore the Indian climatic dynamics.11

The studies relating the interpolation for the forecast of greenhouse
gas emissions and other time series problems are also explored in
the literature.12–16 The aim of the study is to forecast the future
climate conditions of the world by investigating the annual GHG
emissions of three most greenhouse gas emitting countries: China,
USA, and India. Also, by examining the per capita GHG emissions

of 11 countries: Botswana, Canada, Australia, Saudi Arabia, United
States, Germany, Russia, China, United Kingdom, Brazil, and India,
future per capita GHG emissions are predicted. The world’s largest
emitters are inferred by total annual emissions of greenhouse gases.
However, the population of a country also primarily accounts for the
greenhouse gas emissions. For instance, China and India are the top
three emitters as well as the world’s two most populous countries.
The per capita greenhouse gas emissions of a country are measured
in tons per person per year. Among the major emitters, large dif-
ferences can be observed in the per capita emissions: in the US, the
average person emits more than 18 tons; in China, it is less than half,
at 8 tons; and in India, emissions are much lower, at roughly 2.5 tons.
As the world’s smaller countries, such as Botswana and others, tend
to be large oil and/or gas producing countries, they fall under the
category of largest per capita GHG emitters. The aforementioned
reason made us to choose the particular 11 countries: which are the
top 11 per capita emitters based on the evidences of Our World in
Data.17

An advanced interpolation technique called the fractal interpo-
lation finds its applications in many other areas of science, beyond
the interpolation and approximation theory, due to its self-similarity
characteristic and scale invariance properties. For example, Wang
et al. have explored the forecasting stock price indexes using frac-
tal interpolation.18 To improve the neural network predictions for
complicated time series data, fractal interpolation approach has been
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FIG. 4. Total GHG emissions.

employed by Raubitzek and Neubauer.19 Xiu et al. have developed
a short-term prediction method for wind speed series by utilizing
the fractal interpolation.20 Recently, Gowrisankar et al. have pre-
dicted the trend of an Omicron variant with the help of a fractal
interpolation technique.21

The ultimate aim of this research is to create public aware-
ness about the negative consequences of greenhouse gas emissions,
notably sea-level rise. However, while many research studies have
been conducted to address global warming and its consequences,
only a few of them have used data-driven methodologies. In the

present work, to preprocess and forecast the chaotic nature of green-
house gas emissions, we were using a data-driven approach with a
combination of fractal interpolation and the ARIMA model as the
core principle of analysis. As a result, we are highly confident that
the current study is one of the most fascinating and timely stud-
ies on global greenhouse gas emissions and their impact. In this
study, using the fractal interpolation method, the sample data on
GHG emissions have been reconstructed. By studying variations
in the scaling properties, fractal analysis yields a novel method to
better approximate the climate data. For more details of fractal func-
tions and its recent advancements, the reader is recommended to
refer Refs. 22–29. In addition, with the aid of the ARIMA model,
the predictions are performed from the year 2019–2047 for the
preprocessed sample data.

The rest of the article is organized as follows. Section I provides
the introduction of the present work. Section II discusses the con-
struction of a linear fractal function with a numerical illustration.
Furthermore, the ARIMA model is described, and the fractal inter-
polation–ARIMA algorithm and evaluation metrics, such as MAPE,
NMAPE, and RMSE, are discussed in Sec. II. The collection of data
for the present work is discussed in Sec. III. Section IV is devoted to
the results and discussion part of the study. The concluding remarks
of the proposed model for forecasting the future climatic conditions
are presented in Sec. V.

II. METHODS AND MATERIALS

A. Construction of a linear fractal interpolation

function

A fractal interpolation function is generally constructed using
the iterated function system as a graph of continuous function inter-
polating the given two-dimensional data set. An iterated function
system is a pair consisting of a complete metric space along with

FIG. 5. Per capita greenhouse gas emissions.
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FIG. 6. Comparison of predicted greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors lj : (a) China, (b) US, (c) India, and (d) World.

a finite number of contraction maps. The deterministic fractal or
attractor is obtained as the unique fixed point of the IFS.

Consider the data set {(ti, ui) ∈ R
2 : j ∈ {0, 1, . . . , N}} such that

tj−1 < tj for all j = 1, 2, . . . , N. Let I = [t0, tN] be the closed inter-
val of R and set Ij = [tj−1, tj]. Let Lj : I → Ij be the contractive
homeomorphisms and for all t, t′ ∈ I, rj ∈ (0, 1) obeys

|Lj(t) − Lj(t
′)| ≤ rj|t − t′|, Lj(t0) = tj−1, Lj(tN) = tj.

Let Fj : X ⊂ I × R → R be N continuous mappings and contraction
with respect to a second variable such that for all z, z′ ∈ R, t ∈ I and
sj ∈ (−1, 1) satisfies the conditions

|Fj(t, z) − Fj(t, z
′)| ≤ sj|z − z′|, Fj(t0, z0) = zj−1, Fj(tN, zN) = zj.

Define the maps fj : X → Ij × R, j = 1, . . . , N by

fj(t, u) = (Lj(t), Fj(t, u)).

Let H(X) and ρ denote the collection of all non-empty com-
pact sets of X and Hausdorff metric, respectively. The function
F : H(X) → H(X) is defined as the finite union of contraction map-
pings fj(C), where C ∈ H(X). As the space (H(X), ρ) is a complete
metric space, then by the Banach contraction theorem, the map F
has a unique invariant compact set, say G, such that F(G) = G and
G = limn→∞F◦n(C). This invariant set G is the graph of the continu-
ous function f satisfying f(tj) = uj for j = 0, 1, . . . , N and is termed as
the fractal interpolation function for the IFS {X; fj : j = 1, 2, . . . , N}.
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FIG. 7. Comparison of predicted greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗j : (a) China, (b) US, (c) India, and (d)

World.

Based on the self-similar nature of the data, the reconstruction
of data can be done by the fractal function approach. For generat-
ing such a fractal function, a suitable iterated function system must
be built. The fractal features of its attractor are similar to those of
the expected data in this so-called suitable iterated function system.
Concretely, the attractor’s trajectory should be close enough to the
observed data. Since only the scaling factors can be utilized to build
a suitable iterated function system, this is acceptable for the sample
distribution.

This paper investigates the prediction of future climatic
conditions; we, therefore, consider the finite two-dimensional data
set {(tj, uj) : j = 0, 1, . . . , N}, where tj denotes the time period

(in years) and uj denotes the GHG emissions (in tons). The following
affine transformation is considered to construct the required linear
fractal interpolation function:

(

t
u

)

→ vj

(

t
u

)

=

(

mj 0
nj lj

)(

t
u

)

+

(

pj

qj

)

. (1)

That is,(t, u) → (mjt + pj, njt + lju + qj), and each contraction
map vj satisfies the conditions

vj

(

t0

u0

)

= (tj−1, uj−1), vj

(

tN

uN

)

= (tj, uj) (2)
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FIG. 8. Comparison of predicted greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗∗
j : (a) China, (b) US, (c) India, and (d)

World.

for all j = 1, 2, . . . , N, mj, nj, lj, pj, qj are the real parameters, and lj
are the vertical scaling factors and also called as contraction factors
for the contraction maps vj. Note that lj can be chosen as free vari-
ables such that lj ∈ (−1, 1). Using the system of linear equations (2),
the other parameters are determined as

mj =
tj − tj−1

tN − t0

,

pj =
tNtj−1 − t0tj

tN − t0

,

(3)

nj =
(uj − uj−1) − dj(uN − u0)

tN − t0

,

qj =
(tNuj−1 − t0uj) − dj(tNu0 − t0uN)

tN − t0

for j = 1, 2, . . . , N. The fluctuation of the interpolation curve along
the vertical direction is greatly influenced by the scaling factor lj.
Therefore, in this study, the linear interpolation function is con-
structed to recreate the data by choosing the scaling factors lj appro-
priately as discussed in Sec. II B. A variety of interesting fractals
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FIG. 9. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors lj : (a) Botswana, (b) Canada,
(c) Australia, (d) Saudi Arabia, (e) USA, and (f) Germany.
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FIG. 10. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors lj : (a) Russia, (b) China, (c) UK,
(d) Brazil, and (e) India.
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TABLE I. Evaluation of forecast errors through MAPE, NMAPE, and RMSE values of 11 countries for three models: Model I (l j), Model II (l
∗
j ), and Model III (l

∗∗
j ).

Model - I Model - II Model - III

Country MAPE NMAPE RMSE MAPE NMAPE RMSE MAPE NMAPE RMSE

Botswana 0.4021 0.4097 10.8174 0.4118 0.4199 11.1285 0.4093 0.4199 10.9284
Canada 0.3592 0.3338 9.4218 0.3778 0.3499 9.7681 0.5871 0.5820 17.4758
Australia 0.2601 0.2523 5.1387 0.3198 0.3152 6.9172 0.3834 0.3788 8.7035
Saudi Arabia 0.2899 0.3080 4.3852 0.2870 0.3035 4.5116 0.0925 0.1891 3.0163
USA 0.2238 0.2189 4.0565 0.2977 0.2909 5.6103 0.3190 0.3125 6.1007
Germany 0.3282 0.3314 3.2258 0.4052 0.4092 4.2254 0.3507 0.3542 3.5218
Russia 0.3087 0.3288 2.5793 0.4521 0.4914 3.8194 0.4058 0.5416 4.0141
China 1.0244 1.3114 5.2775 0.9609 1.2437 5.0409 0.8820 1.1672 4.8980
UK 0.6681 0.6827 5.5821 0.6673 0.6794 5.5341 0.7030 0.7143 6.1644
Brazil 0.8590 0.8741 6.3005 0.8249 0.8385 5.9644 0.8224 0.8361 6.2146
India 0.7879 1.0424 1.0787 1.2289 1.4873 1.4244 1.2469 1.5033 1.4529

in the real-world occur as graphs of functions. Calculating fractal
dimension for the fractal interpolation functions aids to recognize
the irregularity of the curves. The fractal dimension D of any frac-
tal object can be estimated using the power law (fractal scaling law)
N = R−D, where N is the number of parts that the object gets divided
up and R is the size of the parts (scaling factor). One of the most
important properties of the power law is scaling invariance. In this
study, the fractal curves of total GHG emissions and per capita
GHG emissions predicted for various countries obey the fractal scal-
ing law. As mentioned earlier, the vertical scaling factor determines
the shape and pattern of the fractal interpolation function. In pre-
cise, the evolution of reconstructing fractal function depends on the
scaling factors. Hence, the present study includes the comparative
analysis of different types of scaling factors, which are involved in
the prediction scheme.

B. Numerical illustration

Let us construct a linear fractal interpolation function, which
passes through the four data points: {(t0; u0) = (−1, 1), (t1; u1)

= (−1/2, 2), (t2; u2) = (0, 2), (t3; u3) = (1/2, 5/2), (t4; u4) = (1, 5)}.
The IFS containing four contraction maps {v1, v2, v3, v4} can be
generated using the given interpolation points. Each Fi is a affine
transformation as in Eq. (1). The unknown parameters of the maps
vi are determined as follows:

mj =
tj − tj−1

tN − t0

=
1

4
,

pj =
tNtj−1 − t0tj

tN − t0

=
tj−1 + tj

2
,

nj =
(uj − uj−1) − lj(uN − u0)

tN − t0

=
uj − uj−1 − 4lj

2
,

qj =
(tNuj−1 − t0uj) − lj(tNu0 − t0uN)

tN − t0

=
uj−1 + uj − 6lj

2
.

(4)

Now, substituting all the above determined values into Eq. (1), one
can get the special structure shown below:

vj

(

t
u

)

=

(

1/4 0
uj−uj−1−4lj

2
lj

)(

t
u

)

+

(

tj−1+tj

2
uj−1+uj−6lj

2

)

. (5)

By fixing the value of vertical scaling factors lj to 1/2 for all
j = 1, 2, 3, 4, the four affine maps are expressed as

v1

(

t
u

)

=

(

1/4 0
−1/2 1/2

)(

t
u

)

+

(

−3/4
0

)

,

v2

(

t
u

)

=

(

1/4 0
−1 1/2

)(

t
u

)

+

(

−1/4
1/2

)

,

v3

(

t
u

)

=

(

1/4 0
3/4 1/2

)(

t
u

)

+

(

1/4
3/4

)

,

v4

(

t
u

)

=

(

1/4 0
1/4 1/2

)(

t
u

)

+

(

3/4
9/4

)

.

Each map generates five new data points after each iteration when
the given five points are sequentially substituted in the above four
affine maps.

A complex interpolation graph can be produced by raising the
number of iterations. The interpolation curve formed by the IFS has
fractal properties, and it is rough in any segment. This is in stark
contrast to the smooth curve produced by the conventional interpo-
lation approach. The function value at any t ∈ (0, 1) can be deduced
using this fractal curve.

In Fig. 2, the black dots represent the sample data points,
{(−1, 1), (−1/2, 2), (0, 2), (1/2, 5/2), (1, 5)}, and the pink curve is
the original function 2t3 + t2 + 2. The original function is approxi-
mated using the fractal interpolation method in three ways. The red
curve is drawn using the scaling factor lj, which is proposed in the
present paper. The blue curve approximation is done by choosing
the scaling factor

l∗j =
yj − yj−1

δ

√

(ymax − ymin)
2 + (yj − yj−1)

2
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FIG. 11. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗j : (a) Botswana, (b) Canada,

(c) Australia, (d) Saudi Arabia, (e) USA, and (f) Germany.
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taken from the literature,14 and it is named as the LI method of
approximation, where δ = 1 + rand(ε) and the rand(ε) represents
the number randomly taken by the computer. Furthermore, the
green dotted curve in Fig. 2 represents the approximation using the
constant scaling factor l∗∗

j = 1/2. The statistical significance of the

three models has been verified using the evaluation metric, root
mean square error (RMSE). It is observed that the RMSE values
for the three models I, II, and III are 0.150, 0.170, and 0.2111,
respectively. This clearly shows that the red curve drawn using the
proposed method (model I) with the scaling factor lj is the best
approximation to the original (pink) curve among the three models.

C. ARIMA

The autoregressive integrated moving average (ARIMA) is a
short-term time series forecasting model, which has been increas-
ingly utilized since the development of powerful statistical software
packages. This model has been developed using the mathematical
approach in order to describe and analyze the variations on the
time series. Furthermore, it is designed in such a way to mini-
mize the difference between the observed and estimated values near
zero. Employing this approach, the behaviors of both stationary and
non-stationary series can be addressed. Autoregressive terms in the
forecasting equation are lags of the differenced series, moving aver-
age terms are lags of the forecast errors, and an integrated version
of a stationary series is a time series that needs to be differenced
to make it stationary. The ARIMA model is decomposed into three
model parameters; namely, AR (p), I (d), and MA (q), all together
form ARIMA (p, d, q) model, where

p = order of the autoregressive model,

d = degree of differencing,

q = order of moving averages,

Autoregressive (AR) denotes the autoregressive variables, Integrated
(I) denotes the data values that have been changed with the differ-
ence between their actual values and their former values, and the
Moving Average (MA) denotes the linear trend of error terms.

A non-seasonal stationary time series can be designed by com-
bining the past values and the errors, which can be represented as
ARIMA (p, d, q),

Yt = c + β1Yt−1 + β2Yt−2 + · · · + βpYt−p + et − α1et−1

− α2et−2 − · · · − αqet−q,

where c is a constant, Yt are actual values at time t, et are random
errors at time t, αk and βl are model parameters for k = 1, 2, . . . , p
and l = 1, 2, . . . , q, and p and q are orders of autoregressive and
moving average polynomials.

D. Fractal interpolation–the ARIMA algorithm

The algorithm for the construction of IFS corresponding to the
given data set is as follows:

(1) Let D = {(tj, uj) ∈ R
2 : j ∈ {0, 1, . . . , N}} be the sample data

where tj and uj denote the time period (year) and the rate of
greenhouse gas emissions in tons, respectively, at rough scales.

(2) All data points in set D are considered points of interpolation to
fully reflect the overall variation pattern. The set D contains n +

1 data points that can be splitted into n intervals of interpolation.
(3) Consider the first element and the next element in D as the

initial and end points of the interpolation interval.
(4) Calculate the parameters mj and pj in (3) for the given sample.
(5) The parameter lj is calculated using the formula

lj =
yj − yj−1

1y

1x

√

(ymax − ymin)
2 + (yj − yj−1)

2
,

where 1y = ymax − ymin, 1x = xmax − xmin; ymax and ymin are
the maximum and minimum values of GHG emissions, respec-
tively.

(6) Calculate the parameters nj and qj using lj in the above step
and (3).

(7) Next, take the end point of the first interpolation interval as
the initial point of the next interpolation interval and iterate
the steps (1)–(6) to obtain the IFS {X; fj : j = 1, 2, . . . , N} for the
sample D. By obtaining the fractal curves using the IFS con-
structed in the step (7), the sample data set is reconstructed.
Now, on applying the ARIMA model over the reconstructed
new data set, the future data points are predicted. The schematic
representation of the proposed algorithm is presented in Fig. 3.

E. Evaluation metrics

In this study, the mean absolute percentage error (MAPE),
the normalized mean absolute percentage error (NMAPE), and
the root mean square error (RMSE) are used as evaluation met-
rics to estimate the error. For many sorts of energy forecasts, the
MAPE and NMAPE are the most often used fit metrics since both
can be converted to accuracy with ease (that is, in terms of per-
centage). RMSE is another frequently used metric to evaluate the
deviation of the estimated values from the observed values. Let
y(tj) = {y(t1), y(t2), . . . , y(tN)} denote the given sample (observed)
data and ŷ(tj) = {ŷ(t1), ŷ(t2), . . . , ŷ(tN)} represents the estimated
(preprocessed) data of the sample using the fractal interpolation
technique. The formulations of MAPE, NMAPE, and RMSE are
given below:

MAPE (%) =
1

N

N
∑

j=1

∣

∣ŷ(tj) − y(tj)
∣

∣× 100%, (6)

NMAPE (%) =
1

N

N
∑

j=1

∣

∣

∣

∣

∣

y(tj) − ŷ(tj)

1
N

∑N
j=1 y(tj)

∣

∣

∣

∣

∣

× 100%. (7)

In order to interpret the MAPE (%) values, a scale has been devel-
oped by C. D. Lewis, known as the Lewis scale, in 1982. According
to this scale, the forecast that is closer to 50% is regarded as the rea-
sonable forecast. This would have made sense in the 1980s, while
the modeling and forecasting were not as sophisticated as they are
now. In today’s world, any decision maker may consider a 50%
error as a reasonable forecast while making a critical decision. Mean-
while, the advancements in the forecasting methods and knowledge
are constantly driving the accuracy bounds higher. Over the previ-
ous three decades, time series prediction has significantly improved.
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FIG. 12. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗j : (a) Russia, (b) China, (c) UK,

(d) Brazil, and (e) India.
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FIG. 13. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗∗
j : (a) Botswana, (b) Canada,

(c) Australia, (d) Saudi Arabia, (e) USA, and (f) Germany.
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However, after nearly four decades, the scale for interpreting the
MAPE function, which is frequently employed in forecasting, has
not been changed. The Lewis scale has been modified recently,7

which relies on the assumption that time series forecasting has
greatly upgraded over the past three decades to the point where a
forecast is regarded inappropriate if at least one-third of the simula-
tion is inappropriate. In the upgraded version, when the MAPE (%)

value is less than 10, the forecast is highly accurate if it is between
10 and 20, the forecast is good, reasonable forecast when the MAPE
(%) value is between 20 and 30, and the forecast is inaccurate if the
MAPE (%) value is greater than or equal to 30. The root mean square
error, also known as a root mean square deviation, is one of the most
popularly used measures to evaluate the quality of predictions. It
depicts the disparity between the predicted and observed true values.
The formulation of RMSE is given by

RMSE =

√

∑N
j=1 (y(tj) − ŷ(tj))

2

N
. (8)

III. DATA DESCRIPTION

For the present study, the data on annual greenhouse gas emis-
sions in three countries, China, US, India, and world, have been
taken from the website Our World in Data.17 The emission records
from the year 1990–2018 is used for the investigation. The data
of per capita greenhouse gas emissions of 11 countries, Botswana,
Canada, Australia, Saudi Arabia, United States, Germany, Russia,
China, United Kingdom, Brazil, and India, have also been taken
from the website Our World in Data.17 The principal sources of
greenhouse gas emissions induced by human activity include energy
(electricity, heat, and transport), direct industrial processes, waste,
and land use (agriculture and forestry).

In the energy sector, 24.2% of greenhouse gases emit 7.2% from
iron and steel, 3.6% from the chemical and petrochemical indus-
tries, and 12.6% from the other energy sources. 16.2% of indirect
emissions are recorded owing to the burning of fossil fuels to pro-
mote transport activities. About 11.9% of emissions come from road
transport and the rest from shipping, rail, and pipeline. Generation
of electricity and heating in residential and commercial buildings
lead to 17.5% of emissions. Unallocated fuel combustion and fugitive
emissions from energy production contribute remaining percent-
age of emissions from the energy sector. In the industrial processes,
cement production causes 3% of greenhouse gas emissions. Man-
ufacturing of chemicals, such as plastic, pesticides, and fertilizers,
contribute 2.2% of emissions. Wastewater treatment and landfills
(low oxygen environments) emit 1.3% and 1.9% of greenhouse
gases, respectively. Grassland (0.1%), cropland (1.4%), deforestation
(2.2%), crop burning (3.5%), rice cultivation (1.3%), agricultural
soils (4.1%), and livestock & manure (5.8%) are the subsectors
that cause greenhouse gas emissions in the agriculture and forestry
sector.

IV. RESULTS AND DISCUSSION

The greenhouse gas emissions (in tons) have been taken over
the years, and a linear fractal interpolation function has been used
to reconstruct the sample data points. Three distinct types of scaling

factors have been selected and compared with each other for the best
approximation of the sample data. The autoregressive integrated
moving average model, ARIMA (1,1,1), is employed to predict the
future climatic conditions in long-term. Besides analyzing the pre-
dictions of annual GHG emissions in China, US, and India from
2019 to 2047, the per capita GHG emissions of 11 countries, namely,
Botswana, Canada, Australia, Saudi Arabia, United States, Germany,
Russia, China, United Kingdom, Brazil, and India, are also predicted
from 2019 to 2047. The yearly emission rate of greenhouses gases
(in tons) is illustrated in Fig. 4 from 1990 to 2020. Figure 4 clearly
depicts the graphs of the total GHG emission rate of the three most
emitting countries, China, US, and India. In Fig. 4, the blue curve,
the red curve, and the green curve represent the fractal curves of
GHG emissions in China, US, and India, respectively. In China, the
emitting rate is not stable, and it tends to increase conspicuously
for the ten years from 2003 to 2013. Though there is a slight fall in
the curve during 2013–2017, the graph begins to rise after 2017. The
emitting rate is gradually increasing in India, whereas the emitting
rate fluctuates periodically with the time period in US. After 2005,
the rate of GHG emissions in US shows a significant decrease until
the end of 2018. The total GHG emission rates of China, US, and
India are 12 × 109, 5 × 109, and 3 × 109 tons, respectively. Figure 5
represents the per capita greenhouse gas emissions of 11 coun-
tries, namely, Botswana, Canada, Australia, Saudi Arabia, United
States, Germany, Russia, China, United Kingdom, Brazil, and India.
Among the 11 countries, Botswana emits the highest rate of per
capita GHG emissions. However, it follows a declining trend, and at
the end of 2018, it the highest per capita GHG emitter globally. The
per capita emission of Canada is nearly 17 tons at 1990. Later on, the
curve gradually increases, and at the beginning of 2001, it achieves
a peak. During 2002–2010, it is the highest GHG emitter globally,
and then the curve gradually decreases and emits nearly 16 tons at
2018. Observing the curve of Australia, it falls down at the year 2010
and emits around 17 tons at 2018. The graph of the United States
oscillates throughout the taken time period, and at the end of 2018,
it emits around 16 tons of GHG. In Saudi Arabia, the emission rate
starts to increase from 1997, and it keeps on increasing until 2015
and starts falling down and reaches 15 tons of per capita GHG emis-
sion. There is no much difference in the curve of Germany since the
per capita emission rate is between 9 and 11 tons from 1990 to 2018.
Similarly, the graph of the United Kingdom does not show much
fluctuations until 2008, and then the graph declines and reaches 5
tons at the end. Comparing with the other ten countries, Russia
shows greater fluctuations and emits nearly 7 tons at 2018, which
is lesser than the emission rate at 1990. China’s curve significantly
increases without decline until 2018, and the per capita emission rate
is more than 5 tons at 2018. It is observed that there is a drastic fall
of Brazil curve from 7 to 3 tons during 2009–2011, and at the end
of 2018, the per capita emission rate is around 4 tons. The graph of
India constantly increases with no fluctuations, and the level of per
capita emission is 3 tons, which indicates that India is the least per
capita emitting country among the chosen 11 countries. The fractal
curves in Fig. 6 are drawn by choosing the scaling factors lj as pro-
posed in the fractal interpolation–ARIMA algorithm. The red curves
in Figs. 6–14 represent the lower bound and the upper bound of the
predicted values (the rate of greenhouse gas emissions in tons). The
predicted values (represented in green curves) are expected to lie in
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FIG. 14. Comparison of predicted per capita greenhouse gas emissions (in tons) from 2019 to 2047 using ARIMA (1,1,1) with scaling factors l∗∗
j : (a) Russia, (b) China,

(c) UK, (d) Brazil, and (e) India.

Chaos 32, 061104 (2022); doi: 10.1063/5.0091843 32, 061104-16

Published under an exclusive license by AIP Publishing



Chaos ARTICLE scitation.org/journal/cha

between the deviated values (red curves). The range of possible pre-
dictions can be determined with the help of deviated values. In Fig. 7,
the graphs are obtained by taking the scaling factor as chosen in the
literature,14 given by

l∗j =
yj − yj−1

δ

√

(ymax − ymin)
2 + (yj − yj−1)

2
,

where δ = 1 + rand(ε) and rand(ε) is the random number taken by
the computer. On the other hand, the curves in Fig. 8 are generated
by taking the scaling factors as constant, l∗∗

j = 0.5.

Figures 6(a)–6(d) illustrate the predicted GHG emissions in
three countries: the China, United States, and India, and the world,
respectively. The prediction is performed until 2047 using the
ARIMA model. In comparison with China and India, the graph of
the United States has more oscillations from 2019 to 2047, as shown
in Fig. 6(b). The curve declines and the emission rate falls below
5 × 109 tons and begins to increase constantly until 2045, and then
the curve falls again. The United States is expected to emit a max-
imum of 6.5 × 109 tons of greenhouse gases. The following causes
account for the declining trend of GHG emissions in the United
States.30

• From 1990 to 2007, emissions increased at roughly the same
rate as the population, resulting in relatively stable emissions
per capita. Between 2007 and 2009, total emissions and emis-
sions per capita decreased, owing in part to a decrease in the US
economic output. Emissions fell further between 2010 and 2012,
owing largely to the increased use of natural gas to generate
electricity rather than more carbon-intensive fuels.

• Carbon dioxide is absorbed from the atmosphere via emission
sinks, which are the polar opposites of emission sources. Net
sinks resulting from land use and forestry practices offset 12%
of US greenhouse gas emissions in 2019.

GHG emissions in China and India do not follow a downward
trend or fluctuate as they do in the United States. In China, the
emission rate has been steadily increasing until 1995, and there is
a constant level of emission up to 2015. Then, with a fall between
2016 and 2018, the forecasted graph shows an increasing trend until
2024. By the end of 2047, it is predicted that the emission rate will
have surpassed 2 × 109 tons. India’s curve continues to rise steadily
until 2030, with no decline. The bend then takes a minor detour,
and then the curve meets a slight fall. From 2035 onward, the curve
steepens, and it is predicted that the India emits roughly 6 × 109

tons of greenhouse gases. China and India are anticipated to boost
their greenhouse gas emissions during the next two decades. From
Fig. 6(d), it is observed that the worldwide rate of greenhouse gas
emissions fluctuates over time, taking into account both the past
recorded and predicted data. The curve indicates that global GHG
emissions are predicted to cross 6 × 109 tons by 2047.

Figure 9 demonstrates the predicted greenhouse gas emissions
per capita of six countries, namely, Botswana, Canada, Australia,
Saudi Arabia, United States, and Germany, from 2019 to 2047.
Figure 10 shows the predicted greenhouse gas emissions per capita
of five countries, namely, Russia, China, United Kingdom, Brazil,
and India. The fractal curves in Figs. 9 and 10 are drawn using

the scaling factor lj, which is proposed in the fractal interpola-
tion–ARIMA algorithm. The predicted greenhouse gas emissions
per capita of six countries, namely, Botswana, Canada, Australia,
Saudi Arabia, United States, and Germany, are drawn using the
scaling factor l∗j and illustrated in Fig. 11. Similarly, by choosing

the scaling factor as l∗j , the per capita greenhouse gas emissions are

predicted until 2047 for the countries, Russia, China, United King-
dom, Brazil, and India, and demonstrated in Fig. 12. Furthermore,
by taking the scaling factor as l∗∗

j , the greenhouse gas emissions are

predicted until 2047 for all the 11 countries and demonstrated in
Figs. 13 and 14.

From Fig. 9(a), it is noticed that the graph of per capita GHG
emissions of Botswana decreases gradually, and the curve does not
fluctuate much. The emission rate is nearly 10 tons at 2047, which is
3 times lesser than the emission rate (35 tons) at 1990. The curve of
Canada in Fig. 9(b) shows peaks at various time periods, and finally,
the per capita emission rate is around 15 tons, which is more simi-
lar to the rate at 1990. The graphs of Australia and USA are analog
to each other. Both the curves in Figs. 9(c) and 9(e) fall to 5 tons
between 2035 and 2038, and the emission rate is around 12 tons at
the end. From Fig. 9(d), Figs. 10(b) and 10(e), the curves of Saudi
Arabia, China, and India increase from 1990, and the rates are 21, 12,
and 3 tons, respectively, at 2047. Figure 9(f) shows that Germany’s
per capita GHG emissions rate declines with fluctuation, and finally,
the emission rate is 4 tons. From Figs. 10(a) and 10(d), it is observed
that the per capita emission rates of Russia and Brazil vanish at a
certain period and then begin to rise. Figure 10(c) demonstrates that
from 2022 onward, the curve of UK falls, and it is expected at the
year 2047, the emission rate vanishes.

Table I evaluates the forecast errors of the ARIMA model
through three evaluation metrics: MAPE, NMAPE, and RMSE. For
three different types of scaling factors lj (Model I), l∗j (Model II),

and l∗∗
j (Model III), the future greenhouse gas emissions are pre-

dicted. The evaluation metrics help to test the best approximation
of prediction among the three models. As discussed in Secs. I–III,
the forecast is reasonable if the MAPE value is closer to 0% and the
forecast is imperfect if it is greater than 100%. From Table I, it is
clear that the predictions of GHG emissions through Model I are
reasonable forecasts for all the countries except China. The MAPE
values of Model II show that the forecasts are perfect except the
country, India, whereas in the case of Model III, the forecasts are
good except India as like Model II. The forecast error of China and
India is due to the reason that both their graphs tend to increase
constantly without any fluctuations in Fig. 5. From the observed
MAPE values, the forecast error in Model II is lesser for China and
Brazil, while in Model II, it is lesser for Saudi Arabia, China, and
Brazil. However, the forecast error of Model I is smaller for most
of the 11 countries than the other two models. Hence, Table I con-
firms that the scaling factor proposed in this paper provides the best
prediction of future GHG emissions. Furthermore, as the numbers
in Table I demonstrate the goodness of each model, the lower the
number, the better the model. As a consequence, the NMAPE and
RMSE values show that the ARIMA model fits the sample better
than the other two models. This result is very useful in predicting
the future GHG emissions to avoid the worst impacts of the global
climate dynamics.
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V. CONCLUDING REMARKS

The present study forecasts the global greenhouse gas emis-
sions through the ARIMA model. By making use of the past data
on GHG emissions, future per capita GHG emission rates of 11
countries have been forecasted. Initially, the sample data have been
reconstructed into finer data using the fractal interpolation and
applying the ARIMA model, and the future GHG emissions are
forecasted. The evaluation metrics, RMSE, MAPE, and NMAPE,
are estimated to compare and find the best model out of the three
models I, II, and III. They are calculated by taking the observed val-
ues as the original data and the estimated data as the preprocessed
data using fractal interpolation. The original data are the same for
all the three models discussed in the article. For Model I, the pre-
dicted data are obtained by preprocessing the original data using
fractal interpolation with the scaling factor lj. For Models II and III,
the same procedure is repeated only by changing the scaling factors
as l∗j and l∗∗

j , respectively. It is found out from the evaluation that

our proposed model (model I) gives the best approximation, and
the extrapolation is done for predicting the future emissions with the
preprocessed data using the ARIMA model. It is observed that the
forecast error of almost all the countries converges to zero except
China and India. Hence, it is concluded that the results produced
in this study are realistic and sensible for the maximum number of
countries in predicting the future climate dynamics. Furthermore,
it is estimated that the world level GHG emission rate would be
more than 6 tons at the end of 2047. As the activities of human rise,
GHG builds up in the atmosphere, warming the weather and caus-
ing plenty of other changes in the atmosphere, on the land, and in
the seas. Since several major greenhouse gases remain in the atmo-
sphere for hundreds of years after release, their warming impacts
on the climate last for a long time, affecting both the present and
future generations. Though the emissions of GHG are stopped, their
associated global warming and sea-level rise would continue for
more than 100 years. This study alerts that short-lived greenhouse
gases affect decades of sea-level rise. Thus, to avoid future sea-level
rise and submerge of the world, greenhouse gas emissions must be
reduced.
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