POLITECNICO DI TORINO
Repository ISTITUZIONALE

Real-Time Classification of Real-Time Communications

Original

Real-Time Classification of Real-Time Communications / Perna, Gianluca; Markudova, Dena; Trevisan, Martino; Garza,
Paolo; Meo, Michela; Munafo, Maurizio; Carofiglio, Giovanna. - In: IEEE TRANSACTIONS ON NETWORK AND
SERVICE MANAGEMENT. - ISSN 1932-4537. - ELETTRONICO. - 19:4(2022), pp. 4676-4690.
[10.1109/TNSM.2022.3189628]

Availability:
This version is available at: 11583/2970070 since: 2022-07-13T08:17:39Z

Publisher:
IEEE

Published
DOI:10.1109/TNSM.2022.3189628

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

08 May 2024

Real-Time Classification of Real-Time
Communications

Gianluca Perna’, Dena Markudovaf, Martino Trevisan?, Paolo Garzal,
Michela Meof, Maurizio M. Munafo T, Giovanna Carofiglio *,

tPolitecnico di Torino, *University of Trieste, *Cisco Systems Inc.,
first.last@polito.it, martino.trevisan@dia.units.it, gcarofig@cisco.com

Abstract—Real-time communication (RTC) applications have
become largely popular in the last decade with the spread
of broadband and mobile Internet access. Nowadays, these
platforms are a fundamental means for connecting people and
supporting businesses that increasingly rely on forms of remote
work. In this context, it is of paramount importance to operate
at the network level to ensure adequate Quality of Experience
(QoE) for users, and appropriate traffic management policies
are essential to prioritize RTC traffic. This in turn requires the
network to be able to identify RTC streams and the type of
content they carry.

In this paper, we propose a machine learning-based applica-
tion to classify media streams generated by RTC applications
encapsulated in Secure Real-Time Protocol (SRTP) flows in
real-time. Using carefully tuned features extracted from packet
characteristics, we train models to classify streams into a variety
of classes, including media type (audio/video), video quality,
and redundant streams. We validate our approach using traffic
from over 62 hours of multi-party meetings conducted using
two popular RTC applications, namely Cisco Webex Teams and
Jitsi Meet. We achieve an overall accuracy of 96% for Webex
and 95% for Jitsi, using a lightweight decision tree model that
makes decisions based solely on 1 second of real-time traffic.
Our results show that models trained for a particular meeting
software have difficulty when used with another one, although
domain adaptation techniques facilitate the transfer of pre-
trained models.

Index Terms—Real-Time Communication, RTP, Classification,
Machine Learning.

I. INTRODUCTION

In recent years, real-time communication (RTC) applica-
tions for video calls and virtual meetings have become a
fundamental pillar of leisure and business. They help people
communicate with each other and businesses save significant
travel costs. Their value was especially proven during the
months of self-isolation due to the COVID -19 pandemic,
when online conferencing allowed many businesses to con-
tinue operations using remote working, mitigating the eco-
nomic impact of the outbreak. This was largely possible due
to the Internet being ubiquitous and the available bandwidth
increasing [[1]]. After the first phase of IP telephony based on
SIP and H.323, during the early 2000s, Skype opened the
business for RTC applications, entering into competition with
traditional telephony providers. At that time, most users were
connected via cable modems, which offered low bandwidth
and high latency. Today, the market offers countless competing
video calling applications that benefit from the widespread

adoption of broadband access and cellular networks. Each
application employs different technical solutions and network
protocols, although Real-Time Protocol (RTP) [2] is most
widely adopted [3]. There are also efforts towards standard-
ization, WebRTC being the notable exampleﬂ

In this context, it is essential to maximize the Quality of
Experience (QoE) of users at the network level in order to
avoid impairments, service misbehavior and consequently user
churn. QoE depends on many factors, such as the quality of
the participants’ connection, network topology, and network
management. Classification of RTC traffic is the first and
most important step towards effective traffic management,
allowing in-network devices to get an informed view of
network flows and, if the classification is done in real time,
to take appropriate actions to counter any degradation. The
widespread adoption of encryption [4] has made it difficult
for routers and middleboxes to separate traffic based purely
on deep packet inspection (DPI) [5], while the convergence
towards HTTPS has made port-based classification ineffective.
However, most RTC applications adopt the RTP protocol [2]
to encapsulate the multimedia content in its encrypted version,
Secure RTP (SRTP). SRTP employs in-clear and straightfor-
ward packet headers, making its identification straightforward
using existing DPI techniques. However, in SRTP, the media
payload is encrypted, making it difficult to guess the type of
content it carries. This calls for novel techniques based on
machine learning (ML) to re-obtain visibility on application
traffic and help decision-making at routers. For real-time
communications, this could amount to distinguishing between
top-priority flows and possibly less critical streams — e.g.,
audio as more important than video, the presenter’s media as
more valuable than the audience’s media.

In this paper, we propose a novel ML-based application
for classifying, in real-time, the RTP streams to the type of
content they carry. Our approach is based on a few, but well-
chosen features derived from the statistical properties of the
traffic, which allow us to classify RTP streams using off-the-
shelf supervised learning algorithms. Our approach identifies
not only audio or video streams but also other properties of the
media, such as the video quality or the use of Forward Error
Correction (FEC) streams. Our solution works with minimal
delay, deciding on the type of each stream within just 1
second of traffic. We design it as a software module that can

Uhttps://webrtc.org/

be plugged into network devices (e.g., routers) or integrated
into Software Defined Networks (SDN) to provide fine-grained
traffic categorization and management.

Our study is based on two popular RTC applications for
online multi-party meetings with audio, video, and screen
sharing: Cisco Webex Teamsﬂ as a business-oriented platform
and Jitsi Meeﬂ as a lightweight in-browser application. Using
data coming from more than 62 hours of real calls, we evaluate
the impact of feature selection and different classification algo-
rithms. After careful feature selection and using a lightweight
decision tree classifier, we achieve an overall accuracy of
96% for Webex Teams and 95% for Jitsi Meet, with no large
differences across classes. Our models require little traffic to
train and do not introduce systematic errors. We note that
models trained for one RTC application (e.g., Webex Teams)
are hard to transfer to another application (e.g., Jitsi Meet)
due to the different feature distributions. However, we show
that we can partially overcome this limitation by using domain
adaptation techniques.

Our proposal serves as a building block for a comprehensive
traffic management system for RTC based on ML, enabling
application-level visibility at the network control plane and
providing highly detailed information about the running RTC
sessions and the perceived QoE. This paper is the complete
version of our previous work [6] and complements it in several
directions. First, we motivate the work by showing scenarios
of traffic management systems where our classification can
be used. Second, we provide a thorough characterization of
the dataset. Third, we extend our experimental evaluation to
another RTC application (Jitsi Meet), as a representative of
all applications used from the browser, thus doubling our ex-
periments. We also discuss the transferability of the approach,
whether we can use a model trained on one RTC application
on another and how. Finally, we provide a thorough discussion
on the importance of the features we used and how systematic
the errors of the system are.

We make our dataset, code, and trained classifiers available
onlineE] We believe they can help researchers reproduce our
results or apply them to different contexts.

The remainder of the paper is organized as follows. In
Section we describe the protocols and technologies we
refer to throughout the paper, while in Section [III| we motivate
our work illustrating the advantages of RTC-aware traffic
management. In Section we present and characterize our
dataset, while in Section [V| we describe our methodology for
feature engineering and classification. Section shows our
experimental results, and, finally, Section concludes the
paper and discusses future work.

II. BACKGROUND

To facilitate the reading of the paper, in this section we
provide an overview of the most common protocols used in
RTC applications and the difference between native applica-
tions (e.g., Webex Teams) and browser-based platforms (e.g.,
Jitsi Meet).

Zhttps://www.webex.com/team-collaboration.htm]
3https://meet.jit.si
4https://smartdata.polito.it/rtc-classification/

Media streaming. The most common protocol for streaming
media in real time is RTP [2]. Proposed in 1996, it defines
a simple encapsulation mechanism in which different streams
are multiplexed using a different Synchronization Source Iden-
tifier (SSRC). The RTP header contains a Timestamp field that
reports the instant the content is generated and the Payload
Type (PT) field indicating the video or audio codec used.
RTP defines a set of predefined or static PTs and offers
the possibility to define them dynamically during a session.
RTP is carried over UDP or (very rarely) over TCP as a
transport protocol. The control protocol RTCP is typically used
alongside RTP to exchange various streaming statistics, such
as packet loss rate. Secure RTP (SRTP) [7]] is a variant of RTP
that ensures confidentiality by encrypting the media payload
while keeping all original headers in clear. In the remainder of
the paper, we use the terms RTP and SRTP interchangeably.

Session Setup. In order to start a media session, it is necessary
for the endpoints to be able to communicate with each other,
especially in the case of peer-to-peer communication between
participants. This is complicated by the presence of NATs,
firewalls and middleboxes in general. To ensure connectivity,
applications often use the STUN protocol [8] for NAT detec-
tion and TURN [9] to relay the traffic through a server with a
public IP address. ICE [10]] combines STUN and TURN into a
single technique. RFC 7983 [11]] defines a simple mechanism
for multiplexing RTP, STUN, and other protocols on the same
UDP flow.

WebRTC. The above protocols need to be carefully coordi-
nated to have a working RTC application. To facilitate the
development of new applications, WebRTC [12] is a set of
high level and standardized APIs that can be used in browsers
and mobile applications for video and audio communication.
WebRTC was launched in 2011 and is currently supported by
most browsers. It represents the standard way for RTC applica-
tions to run via web if we exclude application-specific plugins.
WebRTC provides programming interfaces to establish media
sessions, organizing the use of the RTP, RTCP, STUN, TURN
and DTLS protocols.

RTC Applications Under Study. In our study, we focus on
two RTC applications: (i) Cisco Webex Teams and (ii) Jitsi
Meet. Webex Teams (or Webex for short) is a business-
oriented service that offers paid plans for enterprises and
institutions that require video call service. It is available as
a standalone application for PC and mobile devices, but it
can also be used through browsers that support the WebRTC
standard. Jitsi Meet (or Jitsi for short) is a free of charge
RTC application that provides a simple browser-based user
interface for WebRTC-compliant browsers. It is fully open-
source, and it is possible to run a private Jitsi server or rely on
the public service available online. Important for our analysis,
both applications use RTP for streaming multimedia content
along with STUN and TURN for session establishment. They
support audio and video communication and allow users to
share their screens with the other participants. Moreover, they
adopt the Selective Forwarding Unit (SFU) approach [13]],
where participants send their multimedia content to a central
server. The server then forwards the data, deciding which

https://www.webex.com/team-collaboration.html
https://meet.jit.si
https://smartdata.polito.it/rtc-classification/

Multimedia o Multimedia
Source Path with _“m'ted Destination
Audio bandwidth
Video h—

Fig. 1: Example of RTC-aware traffic management.

TABLE I: Experiment summary

Experiment Media Packets Pac1'<ets Packet
type lost received loss %
1 Audio 2136 6673 24,2
RTC-unaware Video 4997 17031 22,6
2 Audio 0 8809 0
RTC-aware Video - - -

stream to send to each participant. Although the choice of
different RTC applications (e.g., Zoom or Microsoft Teams)
would be possible, we opted for Webex and Jitsi, which
allow us to easily gather the classification ground truth, as
we illustrate in Section For other popular applications, we
could not find such a convenient way to collect the needed
information.

ITI. MOTIVATION AND DEPLOYMENT SCENARIOS

In this section, we discuss the advantages of our proposal
and possible deployment scenarios in real networks. We first
illustrate how RTC-aware traffic management can practically
improve user QoE, using a simple experimental setup. Our
goal is to show that routing traffic not only based on the
classical L3 packet headers, but also based on the media stream
type, leads to sizable benefits under certain conditions. To this
end, we setup a small testbed and assume our ML algorithm
correctly classifies the media streams.

We outline our setup in Figure |1} Two hosts (the multimedia
source and the destination) are each connected to a switch. The
two switches are connected by a single path with limited ca-
pacity. The total available bandwidth for the path is 240 kbit/s.
We set up a multimedia transmission where we send audio and
video in two RTP streams. The audio is a high quality track
with a bitrate of 140 kbit/s and the video has a constant bitrate
of 200 kbit/s. The streams last 10 minutes and we send them
simultaneously to emulate a video call. We build the testbed
using the Mininef)| tool to create the virtual network. We also
use the Linux tool fc netenﬂ to impose network constraints
and FFmped/| to stream the multimedia traces. To show the
usefulness of our approach, we conduct two experiments:
(1) RTC-unaware: the switch uses the classical approach to
forward packets and thus treats both flows in the same way
(i) RTC-aware: our classifier is present and allows the switch
to differentiate its behavior depending on the media type. Note
that in both cases the required bitrate for both streams exceeds
the capacity of the link.

Shttp://mininet.org/
Shttps://www.linux.org/docs/man8/tc-netem.html
"https://ffmpeg.org/

In both experiments, we quantify the impact on user QoE
by using packet loss as a metric, since it has been shown to
be closely related to QoE [14]. The results are summarized
in Table [I} In the RTC-unaware experiment, the switch drops
packets from both audio and video streams, so we observe
24% of losses for audio and 23% for video. This renders the
communication impossible, as such packet loss prevents audio
and video streams from being decoded correctly. In the second
experiment, RTC-aware, the switch detects that the bandwidth
on the path is insufficient for both streams and therefore
decides to forward the entire audio stream and discard the
video stream instead of sacrificing both. In this scenario, the
audio stream reaches the destination without any losses, so
that the interlocutors enjoy at least audio communication.

As this simple experiment exemplifies, our system can im-
prove the QoE users perceive. Moreover, it enables RTC-aware
traffic management so that scarce but expensive resources can
be reserved for more valuable payloads (i.e., audio). Indeed,
even in case we are unable to salvage the video, the network
can preserve the audio. As proven in the literature [15],
[L6], when presented with a good audio and several different
degraded versions of video, users perceive sufficient QoE.

On a general level, we foresee the use of our system in the
context of RTC-aware network management and engineering,
in which the network can make its decisions based on the
type of multimedia content carried in streams. For example,
the emerging SDN paradigm could benefit from RTC stream
classification, allowing switches to steer traffic not only ac-
cording to the classical protocol fields (i.e., addresses and
ports) but also based on the media type of a stream. Similarly,
in a Multiprotocol Label Switching (MPLS) network, the
ingress node can set the label according to the classification
outcomes. Also, approaches inspired to DiffServ or the IP Type
of Service header are viable ways to differentiate traffic upon
classification. Here, we do not explicitly target any of these
possibilities but only show a few general cases where RTC
traffic classification can be beneficial.

We sketch a first deployment scenario in Figure [2a] The
edge network equipments run classification and select the path
of each stream based on the media content they carry. In the
example, audio packets are considered more critical and are
routed to a Golden (reliable yet expensive) egress link, while
the video is routed to a Silver (unreliable, yet cheap) path —
e.g., a congested peering link.

We illustrate a second deployment possibility in Figure
Here, our classification module is a building block of a more
complex RTC-aware management system. Besides classify-
ing streams to the content they carry (close to the source),
network equipments report QoE-related metrics (close to the
destination). The latter can be done in different ways, using
well-known industrial standards [17], [18] or with other ML
models [[14]. A controller (or orchestrator) implements RTC-
aware traffic management and can, like in our example, select
new paths for RTC streams if it detects degradation in the
measured QoE.

Note that the scenarios we envision are robust to possible
flaws or delays in the underlying classification task. In Sec-
tion we report classification performance of 96.3% and

https://ffmpeg.org/

Golden Path Classification

(a) Media-Aware Path Selection

Orchestrator

N path

Ua—
Classification \

Aug,

@/@\

QoE
.+ Reporting

(b) Path Selection based on media type and QoE feedback.

Fig. 2: Deployment scenarios benefiting from our classification
system.

95.3% for Webex and lJitsi, respectively, with a delay of 1
second for collecting statistics and a few milliseconds for com-
puting features and running the classification. Now we evaluate
the impact on our proposed deployment scenarios, taking into
account that both proposals (Figure 2a] and Figure 2b) work
by promoting streams to a better path when QoE is poor
or the link is congested. There are generally two types of
misclassification. In the first case, the error causes the system
to respond unnecessarily — for example, we classify a video
stream as an audio stream and promote it to a more reliable
path. In this case, the system wastes resources unnecessarily.
In the second case, the error does not trigger a system response
when it should have — e.g., we classify a stream that is actually
an audio stream as video and do not promote it. In this case,
the system would maintain the status quo, i.e., a “bad” QoE.
In this sense, an accuracy of 95-96% means that the system
improves the QoE in 95-96% of the cases, while in 4-5%
of the cases we maintain the status quo or we waste some
resources. Although undesirable, these situations do not entail
severe impairment in QoE or in the whole system, provided
they are sufficiently sporadic.

As for delay, we believe a delay in system reaction in the
order of 1 s is tolerable for video calls, since their lifetime is
in the order of minutes or hours. Collecting information about
a stream for 1 second allows us to compute representative
statistics about the stream, thus increasing the accuracy of the

TABLE II: Dataset summary

No. of seconds

Class Webex Jitsi
Train Test Train Test
Audio 224295 80781 123745 30180
Video LQ 200380 76825 84134 20192
Video MQ 55112 18 156 34708 7817
Video HQ 59073 19526 33049 7920
Screen Sharing 41170 8800 29216 6870
FEC Audio 146 567 41247 - -
FEC Video 45591 2164 - -

classifier. In Section [V, we also show that it is possible to use
our classifier with slightly worse accuracy at a reduced delay
of 200ms.

IV. DATASET
A. Data collection

In this section, we describe the dataset we use throughout
the paper. We target the two RTC applications described in the
previous section, namely Webex and Jitsi. With both applica-
tions, we capture real calls made under different conditions,
with a different number of participants (from two to ten),
multimedia content (audio, video, screen sharing), and user
equipment (PC, tablet, or phone). The calls run in a real
environment where participants are connected via different
networks from 3 countries and use different devices, from
Windows PCs to iPhones and Android phones. During each
call, at least one participant captures all the exchanged traffic
and stores it in pcap format. The calls took place over a
period of 6 months.

In our classification problem, we target RTP streams, which
we identify with the tuple: source IP address, source port,
destination IP address, destination port and RTP SSRC. In
other words, we target a single stream that carries a specific
multimedia content. We divide the streams into 5 classes:
Audio, Low Quality (LQ) Video (180p), Medium Quality
(MQ) Video (240-640p), High Quality (HQ) Video (720p),
and Screen Sharing. For Webex, we consider two additional
classes: FEC audio and FEC video. Indeed, Webex uses FEC
to mitigate packet losses, sending streams with redundant
information to be used at the receiver if some packets are
lost or contain errors. We observe FEC streams for audio and
video, and we are interested in identifying them as separate
classes. Hence, seven classes are considered when analysing
Webex data.

We employ the debugging logs to gather the ground truth,
which maps each RTP stream to the content type. For Webex,
logs are automatically generated during each call, while for
Jitsi we use the Chrome browser WebRTC logsﬂ The logs for
both applications contain per-second statistics for each stream,
including the type of media (audio, video or screen sharing),

8This log can be obtained by creating and downloading a dump at
chrome://webrtc-internals

— 1.00 y e 1.00
/ i 2 [
— SS .’, / I’
- HQ 8 0.50 o 8 0.50}
- MQ ,' / /
- L 025 A 0.25f
- Audio s /

0.00 H : : HIY | ks sl i JUA / i i i
0 0.5 1 1.5 2 0.00 0 250 500 750 1000 1250 0.00 0 100 200 300
Mbit/s Bytes ms
(a) Bitrate (Webex) (b) Packet size (Webex) (c) Interarrival time (Webex)

—— 1.00 = 1.00
- 0.75 4t 075t

SS i
HQ 8 0.50 4 8 0.50F
MQ i
LQ 0.25 -1 025}
Audio i ; 1 |
0.00 Lt 0.00
2 0 250 500 750 1000 1250

(d) Bitrate (Jitsi)

(e) Packet size (Jitsi)

Bytes

(f) Interarrival time (Jitsi)

Fig. 3: Distribution of traffic characteristics for Webex (top) and Jitsi (bottom), separately for media stream type.

the video resolution and the number of frames per second.
During each call, the participant who captures the traffic also
collects the logs, which we store alongside the pcap trace.
Note that we cannot use the RTP Payload Type field for this,
as it is dynamically assigned.

We collect traffic for approximately 62 hours of video calls,
exchanged during 27 meetings with Webex and 50 meetings
with Jitsi. They sum up to 90 GB of pcap files, which include
the call traffic as well as a small amount of background traffic
that we neglect. The dataset contains 3977 RTP streams for
Webex and 521 for Jitsi. Each call contains a different mix of
the above classes, and includes traffic generated by all partici-
pants as captured from the point of view of a single individual.
Out of the 77 calls, 35 have only two participants, 11 have
three participants and 31 include more than three. In Table [I]
we give an overview of the dataset, separating the training
and test set. In Section [V| we describe our training/testing
methodology in detail. For each RTC application and class,
we report the amount of data we collected, in seconds. The
most represented classes for both applications are Audio and
LQ video. While this is somewhat expected for audio, the
prevalence of LQ video is due to the video thumbnails used
in the applications to show inactive participants during calls
with more than three participants. Note that for Webex, FEC
audio is also widely represented. The least represented class
is Screen Sharing, but the overall dataset imbalance is still
limited, with the ratio between the support of the most and
the least represented class being less than 6.

B. Characterization and challenges

We provide a high-level overview of the dataset in Figure [3]
where we plot the Cumulative Distribution Functions (CDFs)

for different stream features, separately by application. We
use different lines to contrast the four video-based classes,
plus audio. The leftmost figures show the bitrate distribution
for Webex (Figure [3h) and Jitsi (Figure [3d). For each stream,
we compute the average bitrate using 1-second bins. We first
note that better video qualities tend to have higher bitrates
(e.g., red and green lines). Audio (cyan line) has the lowest
bitrate, as expected. However, the two applications present
different shapes for the video curves. Webex displays smooth
distributions, indicating that it adjusts the target bitrate of the
video codec. In contrast, Jitsi exhibits a cascading behaviour,
indicating thresholding and somewhat quantized bitrates. Note
that the same video quality appears with multiple evident
bitrate peaks. For example, MQ video (green dashed line)
presents two peaks roughly at 0.5 and 1.5 Mbit/s, both
corresponding to 640x360 video. The Screen Sharing class
(solid blue line) exhibits the greatest variability. Again, this
is expected, as it carries diverse contents, from slide sharing
to scrolling through the screen, to effectively playing a video.
This leads to a generally low bitrate with short periods of high
activity. We note that setting a simple threshold on the bitrate
would not yield accurate class predictions. This is especially
true for Webex, where the distributions overlap significantly.
In particular, for screen sharing, the bitrate ranges from a few
kbit/s to more than 1 Mbit/s. Interestingly, the Screen Sharing
bitrate is often as low as an audio stream, for both applications.

Similar considerations hold for the packet size (Figures [3b
and Bp). Better video qualities tend to use larger packets
as they sustain a higher bitrate. Again, we observe a high
overlap of Screen sharing with all other classes. For Webex
(Figure Bp), Screen Sharing packets can be as little as those
of audio streams. Conversely, for Jitsi (Figure [3¢), only audio

uses small (100-150B) packets, potentially easing its identifi-
cation.

Finally, the rightmost figures show the distribution of packet
inter-arrival time for Webex (Figure [3f) and Jitsi (Figure [3f).
We compute it as the time interval between two consecutive
packets in the same RTP stream. The video distributions
partially overlap, with Screen Sharing presenting inter-arrival
time as large as 400 ms when nothing on the screen is
changing. Figure [3] shows that a careful mixture of these
features is required for accurate prediction. In the remainder
of the paper, we show that it is possible to identify the type of
media stream with high accuracy using features derived from
these traffic characteristics and a machine learning classifier.

V. METHODOLOGY

In this section, we describe the proposed approach, from
RTP traffic identification to feature extraction and classifica-
tion. We envision an offline training of a classification model
and its application to live traffic in real-time. We sketch a high-
level overview of our approach in Figure @] We also describe
in detail the methodology to build and select the features from
RTP traffic. We follow the same approach for both Webex and
Jitsi and create a separate classifier for each. Throughout this
section, we use Webex as a running example to facilitate the
understanding of the methodology.

Problem statement. Our goal is to classify the RTP streams
that we observe on the network to one of the classes listed in
the previous section and Table [l We want to solve this task
in real time, i.e., make a decision based solely on the traffic
observed in a short time interval, by applying a model trained
on historical data. Thus, our classification target is an RTP
stream as observed during a certain time bin (from 200 ms to
5s).

RTP stream identification. We identify the RTP traffic with
straightforward deep packet inspection, by matching the pro-
tocol headers. Indeed, the RTP header includes fixed-sized
fields that facilitate its identification, and its sequence number
serves as a simple sanity check for identification, since it
must increase by 1 for subsequent packets. Popular passive
meters identify RTP flows using DPI — e.g., Tstat [19] or
nProbe [20]. Note that we do not handle the case of RTP
tunneled through an encrypted channel (e.g., over a VPN
or IPSec tunnel), since we cannot distinguish the different
streams. We separate multiple media streams via their SSRC.
We are not interested in the control traffic for, e.g., session
establishment or login, and thus neglect it. We also assume
that we know the application in use (Webex or Jitsi), since
different techniques may be used for this purpose. In some
cases, RTC applications provide public lists of the relay server
IP addresses or use well-known ports [3]. Webex, for example,
uses UDP port 5000 for RTP streams. In case such an approach
is not feasible, it is possible to leverage ML-based solutions.
In our previous work [21]], we showed how to guess the RTC
application in use with high accuracy using the domain names
that the client resolves over the DNS prior to the call and an
ML classifier.

The ML pipeline. A single RTP stream results in many
samples (one per time bin) that we shall classify. For our
classification problem, we follow the classical approach of
supervised learning. First, we extract meaningful features from
the data, guided by domain knowledge on network traffic and
RTP protocol. Then, we perform a two-step feature selection
process by first discarding highly correlated features and then
performing a recursive feature elimination. Finally, we train
a machine learning classifier and evaluate its performance
on an independent test set. Feature selection and algorithm
training are performed offline, while the system is designed
to compute features and classify new samples in real time.
The time it takes is equivalent to the chosen time bin plus the
feature computation and algorithm run, whose execution time
is negligible. Our code is written in Python and uses the scikit-
learn library [22] for machine learning. Our methodology is
readily amenable to parallelization, as all processing is done
on a per-flow basis — i.e., feature extraction and classification
only need to obtain data from a single stream. Therefore, a
multi-core parallel approach is fully feasible, and we do not
expect any bottlenecks in high-speed deployments, provided
packet capture is adequate. In case of deployment with off-
the-shelf hardware, high-speed packet capture libraries (e.g.,
DPDKE]) together with Network Cards natively supporting load
balancing (e.g., Receive-Side Scaling on Intel cards) would
perfectly serve at this goal.

Train/test methodology. We split the call dataset into a
training and a test set to prevent overfitting and obtain robust
results. We perform feature selection and algorithm hyper-
parameter tuning on the training set, and we evaluate clas-
sification performance on the test set (which we never use at
training). Note that the streams of a single call are used either
at training or testing time to keep the two sets completely
independent. For Webex, out of 27 calls, we use data from
22 calls for training and data from the remaining 5 calls for
testing. For Jitsi we use data from 41 for training and 9 for
testing. With this split, we obtain roughly 80% of samples (1-
second bins) for training and 20% for testing (see Table [II).
We also verify that each class is well-represented in both
sets. As a global performance indicator, we use the macro-
average (a simple mean) of the Fl-scores of each class@]
For some analyses, we also consider accuracy as a concise
index of overall performance, since classes are not strongly
imbalanced[M]

Feature extraction. We extract features from the packets
separately by RTP stream and time bin. The features are based
on the fields of the RTP protocol and take into consideration its
operation. We outline our approach in Figure [5} We consider
five groups of features, reported in the middle column of
the figure, in bold. These include packet characteristics (size,
time, volume) and the RTP timestamp field, which indicates
the time at which the content was generated at the source.
RTP has a few other fields that essentially indicate header

https://www.dpdk.org/

10The FI-Score is the harmonic mean between Precision and Recall of
a class.

""The accuracy is the share of correct predictions over the total.

https://www.dpdk.org/

LABELLED
PCAPS

AN
.PCAP

FEATURE
SELECTION

5 ep L

a) Offline Training Of Models

MODEL
FITTING

MODELS LIVE

TRAFFIC

RTP FLOW PER SEC. MODEL RESULTS
IDENTIFICATION FEATURE PREDICTION
EXTRACTION

Audio)
Screen Sharing

. @ . . ~ - Video HQ

— Video MQ

Video LQ
FEC*

b) Live Classification

Fig. 4: Overview of the training and classification pipeline.

PACKETS

Packet Time (delta)
Packet Size (delta)
= = » RTP Timestamp (delta)

Mean
Standard Deviation
3rd, 4th Moment

Packet Size Percentile 10, 20 ... 90
! Volume Skewness
v Kurtosis
TIME Max(X.)- Min(X.)
BIN | '

% Unique Values
% Occurrences of Mode

Fig. 5: Features derived from packets.

extensions, which we do not include because they are very
application and client-specific. Since two of the selected fields
(packet time and RTP timestamp) represent time instants, we
only consider their relative variation across packets, since the
absolute values are useless in our context. For packet size, we
use both absolute and relative values. We extract these five
values for all packets and compute various statistical indices
to create the final features, such as range, mean, standard
deviation, percentiles, third and fourth moments, etc. Since we
find that the same values recur frequently in the packets, we
also add features that measure the number of unique values, the
percentage of occurrence of the most frequent value (mode),
and the ratio between the minimum value and the range. We
report the complete list of statistical indicators on the last
column of Figure [5} Finally, we consider the traffic volume
in terms of the number of packets and bitrate observed in the
time bin. We also use the number of packets with the RTP
marker flag set as a separate feature.

Since our goal is to design a real-time classification system,
we create features that can be computed on the fly by con-
sidering only the packets observed in a time bin. Intuitively,
the smaller the time bin is, the faster the stream is classified.
However, features are more representative with larger time
bins since they are computed over a more extensive set of
packets. In Section [VI, we explore this trade-off and evaluate
how the temporal granularity affects the classification of an
entire stream. Finally, note that we also avoid features that
require linking multiple streams to keep our design simple and
easily parallelizable.

Feature selection. In total, we extract 96 features derived from
the four empirical distributions mentioned above, plus volume.

@ Packet size
@ Packet size (delta)

Final ®@ Discarded (after RFE)

@ Discarded (after correlation analysis)

® Volume

@ Packet time (delta)
® RTP timestamp (delta)

Fig. 6: Graph representing the correlation between features.
The color indicates the feature set, the shape whether the fea-
ture is kept after feature selection and the distance represents
the correlation.

We publish the full list of features on our research center
website[To remove those that are redundant and shrink the
overall number of features, we perform a two-step selection
process.

1) Correlation analysis: We perform an initial feature se-
lection by measuring the correlation between each pair
of features. We evaluate all possible pairs in a random
order, and whenever we find a Pearson correlation co-
efficient greater than 0.9 (in absolute terms), we keep
only one of the two features at random. With this step,
we roughly eliminate half of the features.

Recursive Feature Elimination using the ExtraTree algo-
rithm: We use the Recursive Feature Elimination (RFE)
approach [23] to refine our list of features, maintaining
only those that are most useful for our classification
problem. Using RFE, we train an ExtraTree classifier

2)

12https://smartdata.polito.it/rtc-classification/

https://smartdata.polito.it/rtc-classification/

—
=]

©
=
.

I
9
)

—— Webex

=== Jitsi

F1 score (macro average)
o
o0
A

g
o
A

1 5 10 15 20 25 30 35
Number of features selected

40 45

Fig. 7: Mean F1 score when varying the number of features.
The vertical lines indicate the final number of features.

on the training set and rank the features by their feature
importance as provided by the algorithm We then
eliminate the one with the least importance. We recur-
sively repeat this procedure until we reach the minimum
number of features and the best performance, which we
evaluate using 5-fold cross-validation. Note that tree-
based feature ranking is known to be biased in the case
of groups of correlated features [24]. Thus, our first
step (correlation analysis) is essential for RFE to work
correctly.

We graphically illustrate the entire feature selection process
for Webex with Figure [6] which shows the initial 96 features
in the form of a graph. Each node represents a feature, and
the length of edges is (roughly) inversely proportional to
the correlation among pairs in absolute value — i.e., highly
correlated features remain close to each other. For illustration
purposes, we only show the edges where the correlation is
higher than 0.5 (in absolute value). Different colours represent
the feature sets, while the shape of each node indicates whether
a feature is maintained or discarded at one of the selection
steps: a circle means that the feature was discarded after
correlation analysis, a double circle means that the feature was
discarded with RFE, and an octagon means that it passed both
steps and is included in the final list.

We first notice that the correlation analysis step maintains
all features which are poorly correlated with other ones: all
nodes without edges are either double circles or octagons. On
the contrary, among groups of highly correlated features, only
a few samples are retained. For example, the dense community
in the top right of the figure includes the percentiles of
packet time inter-arrival time and RTP timestamp, which are
intuitively highly correlated. We retain only two of them.

Continuing with the running example of Webex, the first
step of the feature selection shrinks our set from 96 to 47
features. We then perform RFE to obtain only those that are
useful for our classification problem. We train an ExtraTree
classifier on the remaining 47 features, running a 5-fold cross-
validation to evaluate how accurate the obtained model is. We
then eliminate the feature ranked as least important and repeat
this process until we find that the classification performance

13The ExtraTree classifier natively exposes the feature importance after
training.

starts to decrease. In Figure [/} we show how the average F1
score varies when removing an increasing number of features.
The figure shows our results for both Webex (solid blue line)
and Jitsi (red dashed line).

Considering Webex, when we use all 47 features, we get
an Fl-score of 0.91. The performance is almost stable (with
minimal variations) until we use 8 features only — i.e., we
eliminate 39. Then, the accuracy starts decreasing consistently.
After analysing the curve, we decide to set the final number of
features to 8. Interestingly, we notice that every feature group
(except the packet size) appears in the set of the final features
(there is an octagon of every colour except red in Figure [6).
Among the final features, we find the packet size (mode, 25t
70" and 75" percentile), the 30" percentile and mode of the
RTP timestamp delta, the mode of the inter-arrival time and the
number of packets with the RTP marker flag set. Intuitively,
for each characteristic of the packets, we keep a few statistical
properties of its distribution.

The process is similar for Jitsi (red dashed line in Figure [7).
Note that the curve ends at 43 features, since for Jitsi the first
step of feature selection eliminates a slightly larger number of
features. The knee in the line shows that we already achieve
good performance with as little as 4 features. Among them, we
find three representatives of the packet size feature group and
the mode of the RTP timestamp delta. This indicates that the
packet length is a vital factor for this classification problem.

Multi-class classification. Using the features that we obtain
after the feature selection, we try different classification algo-
rithms to find the one that yields a proper trade-off between
performance and simplicity. The algorithms we consider are:
tree-based classifiers [Decision Tree (DT) and Random Forest
(RF)], k-Nearest Neighbors (k-NN), which classifies points
based on proximity to other data points, and Gaussian Naive
Bayes (GNB) as a generative probability model. We perform
hyper-parameter tuning with 5-fold cross-validation for each of
these models, using the training set uniquely. We then evaluate
their performance on the separate test set, using the macro-
averaged Fl-score as a performance indicator. In Section
we show that the algorithm choice has a moderate impact on
classification performance.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results for
the entire classification problem. First, we discuss the overall
classification performance and quantify the impact of the time
bin duration, classification algorithm and training set size. We
then discuss the importance of the features and analyze how
classification errors arise. Finally, we investigate the possibility
of transferring a model trained for one RTC application to
another. All results are obtained by training classification
models on the training set and evaluating their performance
on the independent test set.

A. Classification performance

We first report and discuss the performance we obtain for
both RTC applications when using the best models. Indeed, we
try different classification algorithms and finally opt to use a

Predicted label

=
=
o : g 3
g = g 2 T 32 2
£ 5 5 § &8 S L % 8
=] =] =] = 31 -
z 5 5 5 & E B &2 =
Audio 0 0 0 0 0 0 1.00 | 1.00
VideoLQ{ 0 1916 3 232 0 0 0.97 | 0.97
Video MQ{ 0 2267 2523 | 189 0 7 0.73 | 0.75
1)
=1
E Video HQ| 0 2 1728 99 0 4 0.91 | 0.89
=
=
Screen Sharing{ 0 73 78 34 0 44 0.97 | 0.96
FEC Audio{ 0 0 0 0 0 18 1.00 | 1.00
FEC Video{ 0 0 0 1 0 0 2163 || 1.00 | 0.98
Precision{ 1.00 ’ 0.97 ’ 0.78 ’ 0.87 ’ 0.94 ’ 1.00 ’ 0.97 ‘
(a) Webex
Predicted label
o0
K=l
o o o E
s = = <2 2
2 3 3 3 5 5 S
T =2 2 2 3 g 2
< > > > (%) -4 I
Audio 0 0 0 0 1.00 | 1.00
Video LQ P25 0.98 | 0.98
E
° Video MQ 0.75 | 0.81
&
Video HQ 091 | 0.85
Screen Sharing 0.94 | 0.96

Precision

1.00 ‘ 0.97 ‘ 0.87 ‘ 0.79 ‘ 0.98 ‘

(b) Jitsi

Fig. 8: Confusion matrices when using a Decision Tree clas-
sifier and 1s time bins.

Decision Tree classifier, which provides good performance and
a simple model. Running hyper-parameter tuning, we obtain
the best results when using the Gini index as a purity measure.
In Figure [8] we show the confusion matrices for both Webex
and Jitsi using a 1s time bin. By definition, a confusion matrix
C is such that Cj; is equal to the number of observations
known to be in group ¢ and predicted to be in group j.
Thus, the main diagonal represents the number of correctly
classified samples. We also show the per-class recall and F1-
score in the last two columns and precision in the bottom row.
We note that, for both applications, all classes except Video
MQ and HQ exhibit an F1-Score above 0.96, and thus high
precision and recall. Audio is the best performing class for
both RTC applications, together with FEC audio for Webex.
Here only a handful of samples are misclassified, suggesting
that audio streams are generally easy to isolate. Indeed, for
Jitsi especially, audio streams tend to use smaller packets than
video (see Figure [3), making their identification simpler. The
worst performing class is video MQ, with F1 scores of 0.73
and 0.75 for Webex and Jitsi, respectively. The confusion
matrices reveal that the three different video qualities are, in

1.001 M@ GNB Bd KNN BE RF B DT

0.95 1
0.90 1
0.851
0.801
0.75 1
0.70 1
0.65 A
0.60 -

F1 score (macro average)

1.0s
Time bin

0.2s 0.5s 2.0s 5.0s

(a) Webex

1.001 M@ GNB B KNN BN RF BN DT

0.95 1
0.90 1
0.851
0.801
0.75 1
0.70 1
0.65 A
0.60 -

F1 score (macro average)

1.0s
Time bin

0.2s 0.5s 2.0s 5.0s

(b) Jitsi

Fig. 9: Performance of the four algorithms for different time
bins.

some cases, confused with each other. Although this is a flaw
of our classification model, we tolerate this behaviour given
the similar nature of the three classes. Also, keep in mind
that applications (especially Webex) use video codecs with
variable bitrates that result in different network traffic (see
Section m Overall, for Webex, 96.3% of the samples are
classified correctly (i.e., accuracy), and the average Fl-score
is 0.94. For Jitsi, we obtain an accuracy of 95.3% and an
average Fl-score of 0.92.

Considering computational time, our system needs to per-
form 3 consecutive steps before providing the final classifica-
tion label: (i) Wait for the time bin to gather traffic information,
(ii) Calculate the features and (iii) Apply the classification
model. Step (i) obviously takes most of the time. Step (ii)
depends on the class, with Video HQ being the most expensive
as it sends the highest number of packets, thus increasing the
number of samples in the calculation. On average, this step
takes few milliseconds with our Python code on commodity
servers. Finally, step (iii) is even faster, requiring the use
of a light-weight decision tree model, that takes tens of
microseconds. For high-speed deployments, we envision the
use of a parallel multi-core architecture to scale the processing.
Such an approach is completely feasible since the classification
relies on features extracted on a per-UDP flow basis.

B. Parameter sensitivity

We now discuss the impact of the time bin duration on the
classification performance. Indeed, we are interested in classi-
fying a stream as fast as possible without sacrificing accuracy.

1.0
)
- 2 N [R P -
5 09{ ,o—==—=m=~—smc= -1
s 1
m
\g; 0.81 |
= 1
g 07 —— Webex
= -—= Jitsi
0.6 . | | | ' |
Sk S0k 95k 140k 185k 230k 275k

Number of samples

Fig. 10: Learning curve: Relationship between the number of
training samples and the score.

Figure [9] shows how performance varies with different time
bin durations, from 200ms to 5s. We provide results for 4
classification algorithms, and the y-axis reports the average
Fl-score we obtain. We find that we generally get better
results with larger time bins. This is no surprise since the
features are computed over more extensive sets of packets. For
example, in 200ms of a typical audio stream, only 10 packets
are generated. The performance flattens for values larger than
Is for both applications, implying that such a time frame is
large enough to capture representative features about a stream.
We believe that a delay of s is not critical, since RTC calls
typically last minutes.

Looking at Figure [0] we can also compare the performance
of different classification algorithms. We observe no large
differences, except for Gaussian Naive Bayes, which exhibits
somewhat worse performance, probably due to the simplicity
of the model. Note that the lowest F1-score is 0.62 for Webex
and 0.73 for Jitsi. This confirms that our careful feature
engineering and selection make the results robust to the choice
of algorithm. We finally opt to use a Decision Tree for its
simplicity, interpretability and speed. Random Forest produces
similar results, but is more computationally intensive as it uses
trees in parallel, 100 in our case. k-NN also performs well,
but requires the model to store the entire training set in the
main memory, resulting in significant memory consumption.
Using a decision tree instead, the model is only a few kB in
size. Comparing the two applications confirms that they exhibit
very similar performance, with Jitsi having a lower Fl-score
by about 0.02 in most cases.

C. Training set size

We now investigate how much training data is necessary to
achieve good classification performance. To this end, we train
many classification models, gradually increasing the size of
the training set. We vary the number of training set samples
selecting them from the least possible number of calls. In other
words, we entirely consume the samples from one call before
drawing them from a second. In this way, we indirectly observe
how many calls are required. Note that randomly selecting
training data from all calls would likely sample the diversity

of the entire dataset, which is unfair for our analysis. In this
experiment, we use Decision Tree classifiers with Is time bins.

Figure [I0] shows the classification performance versus the
training set size. Again, we measure the performance using
macro-averaged F1- score on the test set. We repeat each
experiment 5 times, shuffling the order of the calls but still
drawing samples from one call altogether. The solid blue and
red dashed lines indicate the mean score of the experiments for
Webex and Jitsi, respectively. The areas represent the standard
deviation across the runs. Starting from Jitsi, we notice that
the performance improves very quickly with the training set
size— with only 20k samples, the F1- score is already above
0.86. Such an amount of time corresponds to 5 hours of
audio and video call. After that, it increases very gradually,
reaching a local maximum of 0.92 F1 score at 200k samples
(55 hours of calls). The standard deviation is generally small
and stable. This result suggests that the features we extract
and the nature of the problem do not require a large dataset to
obtain a reliable model. Conversely, Webex requires a larger
training set for accurate classification, exhibiting a slow growth
and a larger standard deviation, stabilizing at 145k samples
(40 hours of calls). This is likely due to the higher number
of classes (with the additional audio and video FEC classes)
and a variegated behaviour of the application within a call.
Indeed, we observe that there is an abundance of audio and
video LQ in various calls and a deficiency of the other classes.
Consequently, additional calls are necessary to bridge the gap.
To test this conjecture, we perform an additional experiment
where we balance the number of samples per class and find
that the performance converges faster.

D. Feature analysis

We now discuss the outcomes of the feature selection phase.
Our goal is to investigate whether we can recommend a fixed
set of features for any RTC application or they are specific for
each one. As described in Section [V} we carry out a two-fold
feature selection: we first remove highly correlated features,
and then we perform recursive feature elimination using an
ExtraTree classifier. In Figure [IT] we compare the results of
the second step for Webex and Jitsi. Each symbol represents
a feature that we retain after the correlation analysis — 43
for Jitsi (upper row) and 47 for Webex (lower row). Circles
represent the features that are finally selected, and their size is
proportional to the relative importance given by the ExtraTree
classifier. The squares represent the remaining features, that
were discarded using RFE. We arrange them in the order in
which they were discarded. The colours indicate the feature
group, similar to Figure[6] The edges connect the same feature
on the two RTC applications so we can compare Jitsi and
Webex.

As anticipated in Figure [/} with Jitsi, 4 features are enough
to achieve good performance, while Webex needs 8. Looking
at Figure [T} we observe a large presence of features related
to the packet size (blue) — 3 out of 4 for Jitsi and 4 out of 8 for
Webex. This is expected, as the packet size is instrumental for
distinguishing audio and video streams (see Figure[3). We note
that 3 of the Jitsi features also appear in Webex, albeit with

Jitsi

Webex

@ Packet size
@ Packet size (delta)
@ Kept in final feature set

@ Packet time (delta)
RTP timestamp (delta)

BUAEENEEEEEEEEN
_
(AR AR R R R RRRRRRRRRRRRRRRRRRRRRRDRD!

@® Volume

I Discarded after RFE

Fig. 11: Feature importance comparison between Webex and Jitsi.

different importance. Overall, the features are ranked similarly
for the two applications, and the Spearman’s rank correlation
coefficient between the two ranks (including all features shown
in Figure [T1)) is 0.70. Interestingly, two features chosen for
Webex have been discarded in the first feature selection phase
for Jitsi — two circles on the bottom row are not connected
to any of the above shapes. A notable one is the number of
packets with the RTP packets with the marker flag set (the
gray circle). We note that this feature correlates strongly with
frame rate in video streams, and speculate it helps identify the
screen sharing class, typically with a low frame rate.

E. Error analysis

We now analyze misclassification cases to understand
(i) how they are spread among streams and (ii) whether they
can affect the prompt classification of streams.

Overall, we obtain an accuracy of 96.3% for Webex and
95.3% for Jitsi, as detailed in Section Here, we want
to measure whether these errors are concentrated on a few
RTP streams or are scattered between all. To this end, in
Figure we plot the complementary cumulative distribution
function (CCDF) of the percentage of errors per RTP stream.
In other words, for each stream in the test set, we compute
the percentage of misclassified samples and then show the
distribution over all streams. The test set includes 508 streams
for Webex and 101 for Jitsi. We observe that most of them
present a rather low error rate. For Webex (solid blue curve),
we notice that the probability of misclassifying more than
10% of the samples of a stream is ~ 10%. Moreover, the
probability of misclassifying more than 50% is less than 2%.
This result suggests that, in general, mistakes span through
many different streams rather than all originating from a few,
and our classifier typically does not commit systematic errors.
Similar considerations hold for Jitsi. There are only a handful
of streams for which most samples are assigned to the wrong
class — see the right-most side of the plot. These are usually
short-lived streams (shorter than 10s), except two long Webex
video MQ streams where 68% of samples are misclassified
and one long Jitsi video MQ stream with 73%. As reported
in Section video MQ is the hardest class to discern. In
conclusion, these results show that the misclassification of an
entire flow is very unlikely to happen.

We now investigate the possibility of classifying an entire
stream just by looking at the first few samples. It might be

beneficial in some real deployments when the network must
react quickly to new streams to — e.g., prioritize particular
traffic classes (see Section [III| for possible deployment scenar-
ios). To this end, we suppose to classify a new stream based
on the first N samples, using a majority vote scheme on the
labels we obtain for those samples. In other words, given the
first N samples of a stream, we assign it entirely to the class
most samples have been assigned to. In Figure [I3] we show
the macro-averaged F1-score we obtain, varying /N between 1
and 30 seconds. In this case, the classification goal is a stream
rather than a sample, and, as such, we compute performance
metrics over the streams in the test set. When classifying the
stream based solely on the first second, we obtain 0.92 macro-
averaged F1-score for Webex (solid blue line) and 0.82 for Jitsi
(red dashed line), as sporadic errors have the maximum impact.
Increasing the number of samples N, we obtain better results,
reaching macro-averaged F1-Score of 0.99 and 0.93 for Webex
and Jitsi, respectively. Indeed, our classifier hardly perpetrates
systematic errors (see the previous paragraph), making the
majority voting scheme very robust to misclassification. We
conclude that our approach is fully appropriate in contexts
where the network is required to quickly make decisions on
an entire flow, e.g., installing appropriate SDN rules on the
network switches.

F. Model Transfer To Other Applications

In our previous results, we train a classifier with labelled
data belonging to the same RTC application that we aim at
classifying. This might not always be possible, as labelled data
are hard and expensive to obtain. Moreover, new RTC applica-
tions may spread rapidly without controlled experiments being
possible. In this section, we explore to what extent a classifier
trained for RTC application A can be used to classify streams
of the application B.

For our goal, we investigate the use of transfer learning
techniques [25], whose goal is to transfer knowledge from
one domain (i.e., one RTC application) to another. These
techniques are useful when we cannot collect labelled data
in the second domain. In this case, we can try to use the
knowledge from domain A to solve the same problem in
domain B. In general, the rationale behind transfer learning
techniques is to modify and adapt an ML classifier trained in
domain A to classify samples in domain B.

10°

b —— Webex
—1 -~ === Jitsi
107" 4
a9}
@)
O
&)
10—2 i
1073

0 20 40 60 80
Misclassified Samples [%]

100

Fig. 12: CCDF of percentage of errors per stream.

() —
el S
N

F1 score (macro average)
=}
oo

0.7 —— Webex
=== Jitsi
0.6 T T T T .
1 5 10 15 20 25 29

First N seconds

Fig. 13: Classification performance using first /N samples per
stream.

Here, we employ the domain adaptation technique called
CORrelation ALignement (CORAL) [26]. As the name sug-
gests, given the feature distributions from two domains (A and
B), CORAL tries to align the covariance matrix (matrix of
second-order moments) of distribution B to the one of distribu-
tion A. Due to the nature of our problem, we hypothesize this
approach suitable since we target two similar RTC applications
that use the same network protocols. Necessary for our goal,
CORAL is an unsupervised technique, as it assumes data for
domain B are available, but without class labels.

We here investigate the performance we obtain when using a
classifier trained on application A (e.g., Webex) for classifying
data of application B (e.g., Jitsi). We perform experiments
(1) using the classifier directly on application B and (ii) using
CORAL to align domains A and B. Case (i) corresponds to
using a classifier directly outside of the training context. In
case (ii), we assume that non-labelled data for application B
are available, allowing the use of CORAL to align the two
domains. We show the results in Figure [T4] again measuring
performance in terms of macro-averaged F1-Score. The x-axis
reports the domain on which the classifier is trained, while
the colour of the bars indicates the domain on which we use
it. We provide a reference using the green bars, indicating
the performance we obtain when we use the classifier in its
domain —i.e., the approach we used in the previous sections.
For this experiment, we remove the FEC streams from the
Webex traffic, since we need the same number of classes

‘S 1.0 ™ Diff. domain Bl CORAL Ml Same domain
%0 0.94 0.94
S
@ 0.9
g
3
£ 08-
s Y 0.77
o 0.74 0.75
2 0.71 0,67
I
0.6-

Webex

Jitsi

Fig. 14: Classification performance varying the target domain.

for the two applications for a fair comparison. The red bars
represent case (i), while the blue bars case (ii).

We first notice how using a classifier directly on a differ-
ent RTC application entails a certain performance drop (red
bars). Indeed, using a classifier trained on Webex to classify
Jitsi streams leads to a 0.67macro-averaged F1 score. In the
opposite direction (training on Jitsi and testing on Webex),
the performance is slightly better (0.75). The use of CORAL
improves the performance in both directions, yielding similar
results in both directions (blue bars). We get an F1-Score of
0.74 when training on Webex and using Jitsi and 0.77 vice-
versa. Interestingly, the benefit of CORAL is higher in the
former case (40.07), while minimal in the second (+0.02).
Nevertheless, it is still far from the performance obtained by
training a model on the same domain, which then soars to
an Fl-score of 0.94 for both applications (green bars). This
might originate from the different shapes of traffic distributions
between the two RTC applications, as discussed in Section
In summary, our results suggest that it is possible to use
a classifier for a different application if lower performance
can be tolerated. If non-labelled data for the target RTC
application are available, CORAL is instrumental in increasing
the performance.

VII. RELATED WORK

Network traffic classification has been extensively studied
since the birth of the Internet [5]. Due to the widespread
adoption of encryption and the use of proprietary protocols,
traditional approaches based on mere DPI and port numbers
fall short, and the current research tends to use statistical
traffic features and machine learning techniques [27]]. Recent
efforts aim to identify the web services [28] or mobile ap-
plications [29] behind network traffic, predicting the QoE of
web [30]], video or smartphone [32] users.

In Section we investigate the use of transfer learning
techniques for our classification problem. A few works already
proposed their use for problems related to networking, albeit
in different contexts. Authors of [33] use transfer learning
in wireless networks for a caching procedure. Instead, the
approach proposed in used it in combination with Deep
Reinforcement Learning to solve the reconfiguration problem
in the context of experience-driven networking. It has also

been used for QoE estimation of video streaming [35], [36].
The transfer learning technique we use (CORAL [26]]) has
already been used in optical networks for assisted quality of
transmission estimation of an optical lightpath [37]. Here, we
apply it to the RTC scenario, trying to align statistical features
of network traffic.

Focusing on RTC traffic, many works propose techniques to
identify it among other traffic categories. The authors of [38]
use a stochastic characterization of Skype traffic to obtain an
ML-based model to be used for classification. In [39], UDP
flows are classified into different classes, including Skype and
RTP-based traffic,using SVM models and statistical signatures
of the payload. The approach proposed in [40] leverages
statistical properties of RTP to differentiate between voice
and data traffic. The authors of [41] propose a method to
detect WebRTC sessions at run-time based on statistical pattern
recognition. Finally, some approaches target signaling mecha-
nisms of RTC applications to identify Skype traffic through
in-clear headers exchanged during session setup [42]. The
ultimate goal of RTC traffic classification is the improvement
of QoS and users’ QoE. These aspects have been studied,
focusing on the relationship between QoS and QoE [43],
targeting the WebRTC [44] and mobile [45] scenarios. Another
way to improve the QoE of RTC traffic is optimal media bridge
placement. The media bridge relays the traffic between the
peers. Some works target cache placement in SDN, which can
be adapted to the RTC scenario [46], [47]], [48], [49].

Fewer works address the classification of media streams
carried by RTP streams. Authors of [50] train machine learning
classifiers to distinguish, among other classes, video and
audio flows, targeting the WeChat messaging application. The
approach presented in [S1] identifies 20 codecs used for
compression of audio,based on packet size, RTP timestamp
delta, payload type and ratio between RTP timestamp delta
and payload size. However, they do not use machine learning
but a simple lookup table. In [52], the authors use statistics
on the packet size as a distinguishing feature between audio,
video streaming, browser, and chat traffic. They use interesting
features, albeit fewer than we do, and divide into broader
traffic classes. We only target RTC traffic and divide it into 7
classes, while for them it is a single macro class. As a model,
they opt for an interpretable decision tree, similar to ours.

The closest work to ours is the approach proposed by
Choudhury et al. [53]. There, the authors design a system to
classify RTP traffic to the employed codec. They develop an
ML pipeline similar to ours, to classify audio traffic into three
Variable Bit Rate (VBR) codecs, thus identifying three types
of audio. Conversely, we distinguish seven classes, two of
which are audio (audio and FEC audio), four are video (three
video qualities and FEC video) and one is screen sharing.
Similar to us, they classify RTP streams separately by time
bin, with a granularity coarser than ours — 10-20 seconds vs 1
second. They use two types of features: statistical features of
packet sizes (such as mean, standard deviation, mode, etc.) and
entropy-based features (4 types of entropy calculations on the
RTP payload of the packets). We follow a similar approach,
using five feature groups and calculating various statistics on
the distributions. They also perform feature selection, reducing

from 10 to 7 features. We use 8 for Webex and 4 for Jitsi. Like
in our system, they train offline, using 18-second streams and
then the classifier is deployed in real time, over 10 seconds
of stream data. They get overall 97% accuracy, similar to us
(95%). Concerning the algorithms, they opt for a 1 Nearest
Neighbours, while we finally choose a Decision Tree.

In summary, our work aims at unveiling the nature of media
streams. Differently from previous works, we classify streams
into a rich set of classes including media type (audio and
video), video quality and redundant data (FEC). We engineer
a wider range of features and then run an thorough feature
selection process. Moreover, to the best of our knowledge,
we are the first ones to explicitly target real-time applications
with a 1 second (or shorter) classification delay, while the
past approaches base their decision on the characteristics of
an entire stream, lasting 10 seconds or longer.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a machine learning approach
to classify the media streams generated by RTC applications
in real time. Given a media stream carried within the RTP
protocol, we can distinguish seven different classes, including
different video qualities, screen sharing and redundant data
used to mitigate losses (i.e., the FEC). We carefully engineered
features based on packet characteristics and designed the
system to work with a minimal set of features using a light
yet accurate tree-based model. We chose Webex Teams and
Jitsi Meet as case studies and showed that we achieve high
classification performance with only 1s classification delay.
Our approach is robust to the choice of classification algorithm
and rarely commits systematic errors. Our experiments show
that it is possible to use a model trained for one application to
classify streams of another, albeit with a performance penalty.
If non-labelled data from the target application are available,
it is possible to use transfer learning techniques to achieve
better results.

Our approach is designed as a building block of a network
management system that optimizes traffic engineering for RTC
applications. Our future work goes in this direction, and our
approach enables the network control plane to make decisions
on traffic with the awareness of RTC traffic. Our final goal is
to measure and optimize the QoE perceived by users of RTC
applications. We publish our code and dataset to encourage
research in this direction.

ACKNOWLEDGEMENTS

This work has been supported by the SmartData@PoliTO
center on Big Data and Data Science and Cisco Systems Inc.

REFERENCES

[1] M. Trevisan, D. Giordano, I. Drago, M. M. Munafo, and M. Mellia,
“Five years at the edge: Watching internet from the isp network,”
IEEE/ACM Trans. on Networking, vol. 28, no. 2, pp. 561-574, 2020.

[2] R. Frederick, S. L. Casner, V. Jacobson, and H. Schulzrinne, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 1889, Jan. 1996.

[3] A. Nistico, D. Markudova, M. Trevisan, M. Meo, and G. Carofiglio, “A
comparative study of RTC applications,” in 2020 IEEE International
Symposium on Multimedia (ISM), pp. 1-8, IEEE, 2020.

(4]

(51

(6]

(7]

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafo, K. Papagiannaki, and P. Steenkiste, “The cost of the” s”
in https,” in Proc. of the 10th ACM International on Conf. on emerging
Networking Experiments and Technologies, pp. 133-140, 2014.

M. Finsterbusch, C. Richter, E. Rocha, J. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Communications Surveys Tutorials, vol. 16, no. 2, pp. 1135-1156, 2014.
G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafo,
and G. Carofiglio, “Online classification of rtc traffic,” in 2021 IEEE
18th Annual Consumer Communications & Networking Conference
(CCNC), pp. 1-6, IEEE, 2021.

K. Norrman, D. McGrew, M. Naslund, E. Carrara, and M. Baugher, “The
Secure Real-time Transport Protocol (SRTP).” RFC 3711, Mar. 2004.
J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs).” RFC 3489, Mar. 2003.

P. Matthews, J. Rosenberg, and R. Mahy, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN).” REC 5766, Apr. 2010.

J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols.” RFC 5245, Apr. 2010.

M. Petit-Huguenin and G. Salgueiro, “Multiplexing Scheme Updates for
Secure Real-time Transport Protocol (SRTP) Extension for Datagram
Transport Layer Security (DTLS).” RFC 7983, Sept. 2016.

C. Holmberg, S. Hakansson, and G. Eriksson, “Web Real-Time Com-
munication Use Cases and Requirements.” RFC 7478, Mar. 2015.

M. Westerlund and S. Wenger, “RTP Topologies.” RFC 7667, Nov. 2015.
G. Carofiglio, G. Grassi, E. Loparco, L. Muscariello, M. Papalini, and
J. Samain, “Characterizing the relationship between application qoe
and network qos for real-time services,” in Proceedings of the ACM
SIGCOMM 2021 Workshop on Network-Application Integration, pp. 20—
25, 2021.

R. C. Streijl, S. Winkler, and D. S. Hands, “Mean opinion score
(mos) revisited: methods and applications, limitations and alternatives,”
Multimedia Systems, vol. 22, no. 2, pp. 213-227, 2016.

D. Vucic and L. Skorin-Kapov, “The impact of packet loss and
google congestion control on qoe for webrtc-based mobile multiparty
audiovisual telemeetings,” in International Conference on Multimedia
Modeling, pp. 459-470, Springer, 2019.

International Telecommunication Union — Telecommunication Standard-
ization Bureau, “Recommendation ITU-T G.1070 — Opinion model for
video-telephony applications,” 2018.

International Telecommunication Union — Telecommunication Stan-
dardization Bureau, “Recommendation ITU-T G.107.1 — Wideband E-
model,” 2019.

M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi,
“Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned,” IEEE Commun. Mag., vol. 55, no. 3, pp. 163-169, 2017.

L. Deri and N. SpA, “nprobe: an open source netflow probe for gigabit
networks,” in TERENA Networking Conference, pp. 1-4, 2003.

D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafo, and
G. Carofiglio, “What’s my App?: ML-based classification of RTC appli-
cations,” ACM SIGMETRICS Performance Evaluation Review, vol. 48,
no. 4, pp. 4144, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389-422, 2002.

L. Tolosi and T. Lengauer, “Classification with correlated features:
unreliability of feature ranking and solutions,” Bioinformatics, vol. 27,
no. 14, pp. 1986-1994, 2011.

L. Y. Pratt, “Discriminability-based transfer between neural networks,”
Advances in neural information processing systems, pp. 204-204, 1993.
B. Sun, J. Feng, and K. Saenko, “Correlation alignment for unsuper-
vised domain adaptation,” in Domain Adaptation in Computer Vision
Applications, pp. 153-171, Springer, 2017.

T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE communications
surveys & tutorials, vol. 10, no. 4, pp. 56-76, 2008.

M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi, “What:
A big data approach for accounting of modern web services,” in 2016
IEEE Int. Conf. on Big Data (Big Data), pp. 2740-2745, IEEE, 2016.

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile encrypted
traffic classification using deep learning,” in 2018 Network Traffic
Measurement and Analysis Conference (TMA), pp. 1-8, IEEE, 2018.
A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Seshan,
S. Venkataraman, and H. Yan, “Modeling web quality-of-experience
on cellular networks,” in Proceedings of the 20th annual international
conference on Mobile computing and networking, pp. 213-224, 2014.
I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A ma-
chine learning approach to classifying youtube qoe based on encrypted
network traffic,” Multimedia tools and applications, vol. 76, no. 21,
pp. 22267-22301, 2017.

P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,
P. Tran-Gia, and R. Schatz, “Predicting qoe in cellular networks using
machine learning and in-smartphone measurements,” in Ninth Interna-
tional Conf. on Quality of Multimedia Experience, pp. 1-6, IEEE, 2017.
E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach
for cache-enabled wireless networks,” in 2015 13th International Sym-
posium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks (WiOpt), pp. 161-166, 2015.

Z. Xu, D. Yang, J. Tang, Y. Tang, T. Yuan, Y. Wang, and G. Xue,
“An actor-critic-based transfer learning framework for experience-driven
networking,” IEEE/ACM Transactions on Networking, vol. 29, no. 1,
pp. 360-371, 2021.

S. Ickin, M. Fiedler, and K. Vandikas, “Customized video qoe es-
timation with algorithm-agnostic transfer learning,” arXiv preprint
arXiv:2003.08730, 2020.

Y. Hao, J. Yang, M. Chen, M. S. Hossain, and M. F. Alhamid, “Emotion-
aware video qoe assessment via transfer learning,” IEEE MultiMedia,
vol. 26, no. 1, pp. 31-40, 2019.

C. Rottondi, R. di Marino, M. Nava, A. Giusti, and A. Bianco, “On
the benefits of domain adaptation techniques for quality of transmission
estimation in optical networks,” Journal of Optical Communications and
Networking, vol. 13, no. 1, pp. A34-A43, 2021.

D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
skype traffic: when randomness plays with you,” in Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 37-48, 2007.

A. Finamore, M. Mellia, M. Meo, and D. Rossi, “Kiss: Stochastic
packet inspection classifier for udp traffic,” IEEE/ACM Transactions on
Networking, vol. 18, no. 5, pp. 1505-1515, 2010.

A. S. Buyukkayhan, A. Kavak, and E. Yaprak, “Differentiating voice and
data traffic using statistical properties,” in 2013 International Conference
on Electronics, Computer and Computation (ICECCO), pp. 76-79, 2013.
M. Di Mauro and M. Longo, “Revealing encrypted webrtc traffic via
machine learning tools,” in 2015 12th International Joint Conference on
e-Business and Telecommunications, vol. 04, pp. 259-266, 2015.

T. Sinam, I. T. Singh, P. Lamabam, N. N. Devi, and S. Nandi, “A
technique for classification of voip flows in udp media streams using
voip signalling traffic,” in 2014 IEEE International Advance Computing
Conference (IACC), pp. 354-359, 2014.

N. Rao, A. Maleki, F. Chen, W. Chen, C. Zhang, N. Kaur, and
A. Haque, “Analysis of the effect of qos on video conferencing qoe,” in
2019 15th International Wireless Communications & Mobile Computing
Conference (IWCMC), pp. 1267-1272, 1EEE, 2019.

B. Garcia, M. Gallego, F. Gortazar, and A. Bertolino, “Understanding
and estimating quality of experience in webrtc applications,” Computing,
vol. 101, no. 11, pp. 1585-1607, 2019.

M. Vaser and S. Forconi, “Qos kpi and qoe kqi relationship for Ite video
streaming and volte services,” in 2015 9th International Conference
on Next Generation Mobile Applications, Services and Technologies,
pp. 318-323, IEEE, 2015.

J. Badshah, M. Mohaia Alhaisoni, N. Shah, and M. Kamran, “Cache
servers placement based on important switches for sdn-based icn,”
Electronics, vol. 9, no. 1, p. 39, 2020.

J. Badshah, M. Kamran, N. Shah, and S. A. Abid, “An improved method
to deploy cache servers in software defined network-based information
centric networking for big data,” Journal of Grid Computing, vol. 17,
no. 2, pp. 255-277, 2019.

D. Kim and Y. Kim, “Enhancing ndn feasibility via dedicated routing
and caching,” Computer networks, vol. 126, pp. 218-228, 2017.

S. Clayman, R. S. Kalan, and M. Sayit, “Virtualized cache placement in
an sdn/nfv assisted sand architecture,” in 2018 IEEE International Black
Sea Conference on Communications and Networking (BlackSeaCom),
pp. 1-5, IEEE, 2018.

M. Shafig, X. Yu, and A. A. Laghari, “Wechat traffic classification
using machine learning algorithms and comparative analysis of datasets,”

International Journal of Information and Computer Security, vol. 10,
no. 2-3, pp. 109-128, 2018.

[51] P. Matousek, O. Rysavy, and M. Kmet, “Fast rtp detection and codecs
classification in internet traffic,” Journal of Digital Forensics, Security

and Law, 01 2014.

[52] M. C. S, S. H, and T. E. Somu, “Network traffic classification by packet
length signature extraction,” in 2019 IEEE International WIE Conference
on Electrical and Computer Engineering, pp. 1-4, 2019.

[53] P. Choudhury, K.

R. Prasanna Kumar, G. Athithan, and S. Nandi,

“Analysis of vbr coded voip for traffic classification,” in 2013 Inter-
national Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 90-95, 2013.

Gianluca Perna is a PhD student at Politecnico di
Torino and member of SmartData@Polito research
center for Big Data technologies. He obtained a
Bachelor’s degree in Telecommunication engineer-
ing and a Master’s degree in ICT For Smart Societies
with an excellent grade, both in the same University.
Thanks to his passion and expertise in Machine
Learning, Internet of Things and Data analysis he
obtained a six months research grant before starting
his PhD in the SmartData group. He is also pursuing
a patent in the field of Building Design and partici-

pating in an international project with the leading IT company Cisco Systems.

in 2018.

and scalable algorithms.

Dena Markudova is a PhD student in Electrical,
Electronics and Communications Engineering at Po-
litecnico di Torino, Italy and member of the Smart-
Data@Polito research center. Her research focuses
on Data science applied to Computer Networking —
traffic analysis and application of Machine learning
algorithms for better Network management. She ob-
tained her Bachelor degree in Telecommunications
at “Ss. Cyril and Methodius” University in Skopje,
North Macedonia in 2016 and her Master’s degree
in ICT for Smart Societies at Politecnico di Torino

Martino Trevisan received his PhD in 2019 from
Politecnico di Torino, Italy. He is currently an assis-
tant professor with the University of Trieste. He has
been collaborating in both Industry and European
projects and spent six months in Telecom ParisTech,
France working on High-Speed Traffic Monitoring
during his M.Sc. He visited the Cisco labs in San
Jose twice, in the summers of 2016 and 2017, as
well as AT&T labs during fall 2018. He was also a
Visiting Professor at the Federal University of Minas
Gerais in Brazil in 2019.

Paolo Garza received the master’s and PhD degrees
in computer engineering from the Politecnico di
Torino. He has been an associate professor at the
Dipartimento di Automatica e Informatica, Politec-
nico di Torino, since December 2018. He spent
three years as an assistant professor at Politecnico di
Milano. He coauthored about 100 papers in the areas
of data mining and machine learning. His current
research interests are in the fields of data mining,
database systems, and big data analytics. He has
worked on classification, clustering, itemset mining

Michela Meo is a Professor of Telecommunication
Engineering with the Politecnico di Torino. She
coauthored about 200 papers, 80 of which on in-
ternational journals. She edited a book Green Com-
munications (Wiley) and several special issues of
international journals. Her research interests include
green networking, energy-efficient mobile networks
and data centers, Internet traffic classification, and
characterization. Prof. Meo was an Associate Editor
of ACM/IEEE Transactions of Networking, Green
Series of the IEEE Journal on Selected Areas of
Communications Networking and IEEE Communication Surveys and Tuto-
rials. She is a Senior Editor of IEEE Transactions on Green Communications.
In the role of a General or Technical Chair, she has led the organization
of several conferences, including ITC, ICC symposia, ISCC. She chairs the
International Advisory Council of the International Teletraffic Congress. She
was the Deputy Rector of Politecnico di Torino from March 2017 to March
2018.

Maurizio Matteo Munafo is Assistant Professor at
the Department of Electronics and Telecommunica-
tions of Politecnico di Torino. He holds a Dr.Ing.
degree in Electronic Engineering since 1991 and
a Ph.D. in Telecommunications Engineering since
1994, both from Politecnico di Torino. He has co-
authored about 80 journal and conference papers in
the area of communication networks and systems.
His current research interests are in simulation and
performance analysis of communication systems and
traffic modeling, measurement, and classification.

Giovanna Carofiglio received the Dr Ing degree
in telecommunication engineering and in electronic
and telecommunication engineering, both from Po-
litecnico di Torino, Italy, in 2004, and the PhD
in telecommunication engineering jointly from Po-
litecnico di Torino and Telecom ParisTech, Paris,
France, in 2008. Her graduate reseach focused on
stochastic analysis of wired and wireless networks
and has been performed at Politecnico di Torino
and at Ecole Normale Superieure (ENS Ulm) in the
INRIA-TREC group. She spent more than six years
at Bell Labs, as head of the research department on content networking.
She currently works at Cisco Systems as a Distinguished Engineer. She was
general co-chair of ACM ICN 2014. She is a member of the IEEE.

	Introduction
	Background
	Motivation and Deployment Scenarios
	Dataset
	Data collection
	Characterization and challenges

	Methodology
	Experimental Results
	Classification performance
	Parameter sensitivity
	Training set size
	Feature analysis
	Error analysis
	Model Transfer To Other Applications

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Gianluca Perna
	Dena Markudova
	Martino Trevisan
	Paolo Garza
	Michela Meo
	Maurizio Matteo Munafò
	Giovanna Carofiglio

