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Abstract

This paper deals with the development of a surrogate model
for the uncertainty quantification and the stochastic anal-
ysis of passive intermodulation (PIM) in an Aluminum-
Aluminum contact based on the least-squares support vec-
tor machine (LS-SVM) regression. Starting from a small
set of training pairs collecting the configuration of the un-
certain parameters and the corresponding PIM level, the
LS-SVM allows to build a closed-form approximation of
such non-linear relationship. Such model, can be suitably
used within a Monte Carlo (MC) scenario in order to ac-
celerate the simulation process and provide all the statisti-
cal quantities of interest. The results show a considerable
speed-up on the computational time compared to a plain
MC simulation, while achieving an accurate approximation
of the PIM probability density function.

1 Introduction

Electronic systems may observe interference produced by
passive intermodulation (PIM). This interference is char-
acterized by spurious harmonic components produced by
undesirable non-linearities arising in the passive elements
of the system. Such spurious components can seriously
threaten the quality of communication systems, as in-
termodulation products may fall into the receiving band
or close to carrier frequencies, making their elimination
through filters difficult [1, 2] and leading to electromag-
netic interference (EMI) issues. One of the main sources
of PIM in common electronic systems are the tunnel and
thermionic emission effects in electric contacts, where thin
oxide films might naturally be formed, deteriorating the
conduction between the contact surfaces. Therefore, a good
system design must take into account the evaluation of the
PIM levels, as well as their possible impact of the system
operating condition and reliability.

A few analytical models are available in the literature to es-
timate the PIM generated by non-ideal electric contact. The
common idea is replace the perfect contact by an equiv-
alent non-linear circuit taking into account all the non-
ideal effects (e.g., constriction resistance, film capacitance,
etc.)[2, 3, 4, 5]. By considering as input the physical param-
eters of the contact, such model divides the nominal contact
area An into 3 regions (see Fig. 1): (i) areas with a metal-

Figure 1. Illustrative figure of the interface between two
metallic surfaces.

metal (MM) interface, where the oxide film at the sur-
faces was ruptured by the contact; (ii) areas with a metal-
insulator-metal (MIM) interface, where the surfaces are in
contact but the film is still present; (iii) areas in which the
contact surfaces do not touch each other. Each region has
its own effect on the electrical behavior of the contact, and
it is embedded within the contact model in Fig. 2 (e.g., the
non-linear effect of the MIM region is provided by the non-
linear resistance G f ).

Nonetheless, it is hard to know in a deterministic way the
exact values for all the input parameters of such models.
As an example, the ones related to the contact surface are
intrinsically statistical in nature (e.g., the average radius of
surface asperities). On the other hand, some of them are
extremely uncertain, since they strongly depend on the un-
controllable randomness introduced by the manufacturing
process. In this regard, the PIM levels predicted by such
analytical models will always come with some degree of
uncertainty, and thus requiring a statistical assessment. In
the above scenario simulations turn out to be the most ef-
ficient and cheap approach to carry out a statistical assess-
ment during the design phase, compared to the most ex-
pensive and time consuming one based on the experimental
measurements and prototypes [6, 7]. However, it is well
known that a plain Monte Carlo analysis turns out to be ex-
tremely inefficient when the model is slow to be evaluated.
This paper proposes to apply a machine learning regres-
sion technique, namely, the least-squares support vector
machine (LS-SVM) regression [7, 8], to construct a closed-
form and fast to evaluate surrogate model in order to accel-
erate the stochastic evaluation of the production of PIM in
an aluminum-aluminum contact. Specifically, a parametric
circuital model for the contact is estimated through the ana-
lytically models available in the literature [2, 3, 4, 5]. Such
model is then simulated for a small set of configurations of



the input parameters drawn according to their probability
distribution and provides as output the corresponding level
for the 3rd order PIM product. The configurations of the
input parameters are used together with the PIM level to
train a surrogate model based on the LS-SVM regression.
Such model can be used to inexpensively generate the large
number of PIM predictions needed to perform the advocate
statistical analysis(e.g., to obtain the probability distribu-
tion of the output in a fast and efficient way).

2 PIM Simulation

The circuital model used for PIM prediction is shown in
Fig. 2. In the Figure, the highlighted block is the con-
tact model which takes into account the effects of a realis-
tic contact degraded by a thin oxide film and in which the
values of the elements depend on the physical parameters
of the contact [2, 3, 4, 5], whereas Vs and Rs represent the
Thevenin equivalent of the rest of the system. The element
G f (VG f ) is a non-linear conductance written as a polyno-
mial function, which depends on the voltage VG f , providing
the source of non-linearity in the circuit. The circuit is ana-
lyzed in time-domain via a transient simulation in HSPICE
and the PIM products are extracted from the corresponding
spectrum computed by means of the Fast Fourier transform
(FFT). In this work, Rs = 2 Ω, Vs is a 900 MHz sinusoidal
signal with 0.45 V amplitude, and the FFT is applied to 21
periods of steady-state simulation to convert the results to
the frequency-domain. The third intermodulation product,
given in dBm, is computed as

PIM = 10log(ℜ
{

V3 f0 I∗3 f0/2
}
)+30, (1)

where V3 f0 and I3 f0 are, respectively, the contact voltage and
current amplitude at 2.7 GHz.

Figure 2. Equivalent circuit.

Table 1 lists, along with a short description, all the param-
eters used as input to compute the values of the compo-
nents in the circuit equivalent in Fig. 2. The list consists
of 18 parameters, among which we can cite the contact sur-
face rugosity, the mechanical and electrical properties of the
material, and the contact design and operation characteris-
tics., (e.g., its nominal area, temperature and contact force).
It is important to remark that all the parameters collected
in Table 1 are considered uncertain and thus are modeled
as a set of 18 uncorrelated and uniform distributed random

variables defined by a nominal value and their correspond-
ing variation around such value. The above uncertainty on
the parameter values may come either from natural fluctu-
ations during the contact operation, like in the case of the
temperature, or from lack of detailed information on their
characterization, e.g., the standard deviation of the rugos-
ity profile and density of asperities in the surface that are
characterized from a few measured samples. Three differ-
ent values for such variation are considered: for parameters
better known and controlled, only a 2 % variation is used,
while for other parameters that are less controllable, a 5 or
even 10 % variation is considered. The parameter µ has
zero mean and thus cannot have its variability expressed by
a relative value. Therefore, it is set as ±30 nm.

Table 1. Input parameters for the model of an aluminum
electric contact.

Par. Nominal val. Var. Description
η 3×104 mm−2 10% Density of asperities
σ 2.0 µm 10% Std. of rugosity profile
µ 0 30 nm Mean value of rugosity
Ra 30 µm 10% Surface asperities radius
F 0.1 N 10% Contact force
An 1 cm2 5% Nominal area
T 30 °C 10% Contact temperature
ρ f 1×109 Ωm 2% Resistivity of the film
s 15 Å 10% Average film thickness

ε f 9 2% Dielectric constant of film
ϕ f 4.97 eV 2% Work function of film
α 0.4 10% Cracking effect par.
Eg 2.5 eV 2% Band gap of film
ρ1 27 mΩ µm 2% Al. resistivity
ϕ1 4.08 eV 2% Al. work function
E1 70 GPa 5% Al. Young modulus
ν1 0.33 5% Al. Poisson ratio
λ0 0.46 5% Richardson constant coef.

In order to reduce the numerical noise to values lower than
the PIM when converting the data from time to frequency
domain, the circuital simulation of this analytical model
should be performed with maximum accuracy and for many
time steps. In the simple system analyzed in this paper,
each simulation takes 1.9 s to be completed. An uncertainty
quantification requires several thousands evaluations, with
possibly more complex systems, making it a slow task. In
order to speed up the analysis, a LS-SVM surrogate model
is used. After the surrogate model is trained, it allows a
closed-form evaluation of the PIM, without requiring the
long numerical simulation used with the circuital model.

3 Least-Square Support Vector Machine Re-
gression

The LS-SVM regression is a learning method for classifica-
tion or regression characterized by the use of a kernel and
of Tikhonov regularization to prevent over-fitting [8]. The
LS-SVM regression searches to approximate a set of train-



ing data pairs {(xk,yk)} for k = 1 . . .L, with a non-linear
regression ỹ = M (x), with the input x = [x1, . . . ,xd ]

T ∈ R
d

and output y ∈ R. The dual space formulation of the LS-
SVM regression model is the following [8]:

ỹ(x) =
L

∑
k=1

αkk(xk,x)+b, (2)

where α = [α1, . . . ,αL]
T are the coefficients of this dual

space model, b ∈ R is a constant term and k(xk,x) is the
so called kernel function, which provides an implicit map-
ping between the parameter space and a non-linear feature
space. The most adopted kernel function is the radial basis
function (RBF) kernel, tuned by its hyperparameter σ and
given by

k(xk,x) = exp(−|x−xk|2/(2σ
2)). (3)

The unknowns α and b are computed by solving the fol-
lowing linear system of equations [8]:[

Ω+ IL/γ 1

1
T 0

][
α

b

]
=

[
y
0

]
, (4)

where γ is the regularization hyperparameter and Ωi, j, the
element on the i-th row and j-th column of the L×L kernel
matrix Ω, computed as Ωi, j = k(xi,x j).

A LS-SVM model for the PIM in (1) is trained over a limited
quantity of samples L from the circuital model by solving
(4) and optimizing the hyperparameters γ and σ via a 5-fold
cross-validation procedure. This quantity L is much smaller
than the number of samples required to perform the uncer-
tainty quantification, which can then be performed over the
much faster surrogate model, with little loss of accuracy.
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Figure 3. Scatter plot comparing the output of the LSSVM
model for PIM to the true value.

Figure 3 shows a scatter plot over 1600 test samples com-
paring the output of the LSSVM model for PIM to the true
value of the circuital simulation, for different numbers of
training samples. It is possible to observe that starting with
50 training samples, the surrogate model already follows

considerably the pattern of the true model, albeit with some
inaccuracies. The increase in the number of samples pro-
vides better models, and at L = 400 training samples the
model is already very accurate, giving a r2-score of 0.98.

4 Uncertainty Quantification

The output variability of PIM can be analyzed by perform-
ing a Monte Carlo (MC) simulation using the stochastic de-
scription of the input parameters from Table 1. The surro-
gate model is evaluated on 100,000 samples. The resulting
probability density function for the PIM level obtained for
the above analysis is shown given in the blue histogram in
Fig. 4. As a comparison, histograms with 1600 samples
from the true model and the surrogate are also plotted, re-
spectively, in black and red, to validate this stochastic anal-
ysis. Both histograms are similar to each other, albeit the
reduced number of samples make them less smooth than the
probability distribution obtained in blue. Overall, the out-
put probability distribution gives a mean value for the PIM
equal to -113.8 dBm, and a standard deviation of 13.7 dBm.
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Figure 4. Histogram for the PIM obtained by the MC sim-
ulation via the surrogate model compared to the test data.

The PIM histogram presents a wide span in its value, go-
ing from -142 dBm to -56 dBm, even though the inputs
had less than 10% variation. This highlights the fact that
the PIM is a highly non-linear phenomenon, in which small
changes in the contact design can lead to issues. Nonethe-
less, if the system being analyzed requires a maximum PIM
level of -97 dBm [1] in order to function reliably, this MC
analysis has shown that there is a 12.9% probability that the
studied contact produces a PIM higher than that threshold.
It is a rather risky probability, and thus this design should
receive more work on the reduction of PIM or in its robust-
ness to intermodulation interference, and this can be done
before building expensive prototypes due to the performed
analysis. This probability is similar to what is observed in
the 1600 test samples, where 11.1% of samples were larger
than the threshold, when we analyze the circuital model,
and 12.3% in the surrogate model, additionally validating
the surrogate model. This comparison is show in Fig. 5.



Regarding the computational time, the speed-up provided
by the LS-SVM surrogate is its main advantage. While the
full circuital model in Fig. 2 requires 1.9 s per simulation,
the LS-SVM model trained with 400 samples can evaluate
the output 100,000 times in only 37.7 s, a rather negligi-
ble time per sample. Its main computational cost comes
from its training, which takes 28.6 s, and from the simu-
lation of 400 training samples on the true circuital model,
which takes around 760 s. In total, 826.3 s are required
for the uncertainty quantification via the surrogate model.
A similar approach using the original model would take
52.8 h (190,000 s). Based on these numbers, the LS-SVM-
based surrogate model is able of providing a speed-up of
250 times compared to a classical MC simulation.
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Figure 5. Diagram with the probability that the output
presents a PIM value larger or smaller than the defined
threshold.

5 Conclusions

The statistical evaluation of PIM produced by an electri-
cal contact is essential to avoid EMI issues. Such evalua-
tion, however, can only realistically be performed via the-
oretical models analyzed via circuital simulators. Those
circuital simulations are still time consuming, but the use
of accurate LS-SVM surrogate model is able to speed-up
considerably the required statistical analysis. The resulting
workflow provides a quick way to analyze a certain con-
tact design and statistically evaluate the PIM level that can
be introduced to the system by the contact. The performed
analysis provides to the designer the expected PIM so that
he can rearrange the design accordingly without the need of
building possibly expensive prototypes, while also avoiding
subsequent surprises.
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