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Abstract  

Additive manufacturing (AM) has been experiencing considerable growth in recent years, especially for metal application. Directed Energy 

Deposition (DED) is one of the emerging technologies in metal AM. DED selectively deposits material and melts it with a focused high-energy 

source. Accurate numerical modelling of the DED technique is an important step for the comprehension and the technological improvement of 

the process, providing significant gains in terms of time and costs. This paper aims to review the existing knowledge on DED numerical 

simulation, highlighting principal advantages and limitations of different approaches. The key inputs required to model the process properly, and 

the predictable outcomes are discussed. 
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1. Introduction 

One of the latest advances in metal Additive Manufacturing 

(AM) is the Directed Energy Deposition (DED) process. Its 

applications are already numerous across many industries but, 

while other metal AM processes have been studied and tested 

for a long time, DED is a relatively young technology, so its 

potential has not been fully exploited yet. However, companies 

show great interest in its research and development, making this 

technology one of the new boundaries in industrial 3D printing. 

DED technology works by depositing the raw material while 

melting it on a surface, thus creating the melt pool that rapidly 

solidifies generating the track. DED machines are equipped 

with a deposition head, usually mounted on a multi axis arm, 

and the parts are created by the relative motion between the 

head and the build plate. The introduction of the multi axis arm 

allows the deposition of material in various directions and 

different angles: this complicates the understanding of the 

physical phenomena of the process but allows much more 

freedom to component design, elaborate geometries, and 

overall complexity. Moreover, the process can be classified by 

its energy source (laser, electron beam or electricity) and its 

feedstock (powder or wire) [1]. The main advantages of this 

new technology are essentially the possibility to create larger 

parts compared to other metal AM technology, and the rapidity 

with which these parts are created. With this technology, 

functionally graded materials can now be created. Anyway, 

since now, DED process finds its main application in repairing: 

in fact, the way in which the process works allows to repair 

many components of various dimensions and materials [2]. 

Compared to conventional repairing techniques (such as 

welding processes), DED entails a smaller heated affected zone 

(HAZ), allowing to modify a smaller zone of the part. 

Notwithstanding all the benefits described above, there are 

some disadvantages mainly related to the novelty of the 

process. In fact, the high-speed of the process can compromise 

the accuracy, in particular the superficial roughness. Also, the 

choice of process parameters affects greatly the porosity and the 

microstructure of the final components, which can result in poor 

part performances. The disadvantages are mainly related with 

the complex physical phenomena that occur during the process, 

such as solid-liquid transition, microstructure evolution, or 

laser/powder interaction. The research of a feasibility window 

for the process parameters is a key element to allow to build or 

http://www.sciencedirect.com/science/journal/22128271
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repair parts with good mechanical properties. The optimal 

process parameters can be found out in different ways: carrying 

out an extensive experimental campaign, (meaning a great cost 

in terms of money, materials, and time) or a numerical 

simulation of the process (which allows less expense).  

This paper will focus on modelling and simulation of 

Directed Energy Deposition process, presenting the principal 

modelling techniques that are available in the literature, 

highlighting which are the main phenomena that each model 

aims to simulate, and the main advantages and the challenges 

still open in modelling approaches.  

2. Numerical modelling for DED process 

DED process is characterized by a variety of process 

parameters [3], as laser power, beam spot diameter, shielding 

gas flow, scanning speed, powder feed rate, powder and 

building platform material properties, scanning strategies etc. 

combined with many different physical phenomena as transient 

temperature and heat flow, rapid heating and cooling cycles, 

blown powder dynamics, laser/powder interaction, 

solidification phase, and complex transport mechanism 

(convection due to Marangoni effect, radiation followed by 

shielding gas and conduction of heat into the substrate) [4]. To 

fully understand the physics behind the process all the 

interaction among parameters and mechanism should be 

considered. However, considering all the interaction could lead 

to an impracticable and too complex model and usually the 

process is analysed as a sequence of steps, each one focalized 

on a specific phenomenon neglecting interaction among them. 

In fact, a variety of numerical models have been implemented 

for DED processes, but each model focuses on a specific aspect 

and thus provides limited appraisal of the overall part 

characteristic. Therefore, an integrated multi-scale model could 

be helpful to link the process parameters to resultant 

microstructure and mechanical properties to estimate the DED 

part quality comprehensively. Nevertheless, numerical 

simulation of the process is a fundamental tool for predicting 

the final characteristics of the produced component.  Aiming to 

determine the correct range of variation of parameters, it is 

noted that the support of numerical modelling and simulation 

is fundamental to shorten times and costs compared to the 

experimental campaigns. Basically, applied to the DED 

process, numerical simulation allows to predict the temperature 

below the deposition surface, which is experimentally difficult. 

Residual stress and distortion, that lead to a loss of dimensional 

accuracy, result from the localized high heat input, 

characteristic of the process.  Further, the microstructure is 

influenced by the DED thermal cycle with the rapid localized 

heating and cooling, but thanks to simulation tools 

microstructure growth and evolution during the process can be 

estimated. Experimentally instead, only the components’ final 

microstructure can be observed. Even if numerical simulation 

process technique presents many advantages, it represents an 

approximation of the process and cannot prescind from 

experimental calibration and data validation. The simulation, 

ultimately, allows a swifter approach in finding the correct 

process parameters when in need to change inputs such as 

material, feedstock type or design adjustments.  

 The need to link the input parameters and the final output is 

greatly important. Numerical simulation also can help to 

understand which precise process parameter influences a 

specific final part characteristic, such as surface roughness, 

porosity, dimensional accuracy, and residual stress state. As 

seen above, the physical phenomena to be modelled are various 

and complicated and each of them occurs on a different scale 

of size [5,6]: macro-scale, meso-scale, and micro-scale. For 

this reason, several models have been developed over the years 

on various scales of size, both for input and output, such as the 

microstructure or final stress and deformations. Furthermore, 

the models can be weakly coupled or strongly coupled. In the 

first case, the various models are run separately, taking the 

output of one as the input of the other. In the second case they 

are performed together and influence each other throughout the 

process. Although the second method generates a better result, 

it requires a considerable computational cost, therefore, since 

even the first method can give good results, it is often chosen. 

Moreover, there are many similarities between the welding 

process and the DED process, such as the thermal cycle, the 

great thermal gradient, the solidification process. Weld 

numerical modelling has been an active area of studies for 

nearly four decades, in fact many modelling approaches that 

are used to simulate DED processes are based on previous 

research of the welding techniques [7-11]. Moreover, one of 

the main challenges in numerical simulation is managing a 

huge amount of data. In fact, DED process simulation reported 

difficulties in computing power and running time, especially 

when a massive component fabrication is simulated. High 

precision in modelling frequently correspond to high 

computational costs to the great amount of data to be managed. 

Therefore, a primary goal of various research is to find the right 

compromise between accuracy and computational costs. This 

goal is valuable also to AM industries which require efficient 

computational approaches that can be performed in affordable 

computational cost and time.  

2.1. Macro-scale modelling approach 

Simulations at macro-scale are mainly useful to predict the 

thermal-mechanical behaviour of DED components. Usually, 

these models are based on finite element analysis (FEA), and 

aim to predict temperature distribution, residual stress, and 

distortion [11-14]. Residual stress is one of the main drawbacks 

in DED process. Residual stresses can adversely influence 

mechanical properties of the components and can reduce the 

geometrical accuracy of the parts while affecting their final 

performances [12,15,16]. Residual stresses result from high 

thermal gradients and cooling rates, and these stresses persist 

in the material after the removal of the energy source leading 

to thermal distortion or even cracks [5]. Residual stress field is 

affected by many different process parameters such as scanning 

strategies, scanning speed, dwell time, laser power and build 

orientation, for these reasons many works focused their 

attention on the influence of process parameters on residual 

stress and distortion [12,17]. Moreover, the moving heat source 

causes a non-uniform high heat transfer leading to anisotropic 

inherent strains respect to the scanning path. Lu et al. [12] and 

Chen et al. [14] in their works analysed the effect of the 
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scanning strategy on distortion and residual stress in DED 

components. Lu et al. [12] analysed the effect of building 

strategy on the thermomechanical response of titanium alloy 

samples using a weakly coupled thermomechanical model 

implemented in Comet. After the model’s calibration they were 

able to demonstrate that the vertical deviation can be 

significantly reduced by the scanning strategy, but the residual 

stress can be much more reduced by the preheating of the base 

plate. Instead, Chen et al. [14] proposed a continuous laser 

scanning path optimization that present the scalability to much 

taller and complex structures made up of multiple layers and 

features. They also pointed out that the scanning path and part 

design can be concurrently considered to minimize residual 

stress in metal AM components. Another approach, already 

used in Laser Powder Bed Fusion (L-PBF) application to 

enhance geometrical accuracy, is made by changing the 

geometry to compensate the distortion and lead to the desired 

shape of the part. Biegler et al. [18] used transient numerical 

simulation to obtain the compensated geometries for industrial-

scale components. At first, a thermo-mechanical model was 

used to derive the parts’ distortion, then results were inverted 

to derive the compensated geometry. They demonstrated that 

after a single compensation iteration, distortions can be reduced 

by over 65%. Moreover, Stender et al. [19] found out, by way 

of a finite element analysis workflow, that the higher value of 

plastic strain, residual stress and distortion are reached close to 

the baseplate and generally the peak in these values arise at the 

interface between successive layers. They validated their 

results on cylindrical samples built by LENS process. 

Most of these FE models simplified the modelling of the 

material addition by considering the blown powder not 

conductive (inactive) until the powder reaches the melt state. 

Each element can diffuse energy by heat conduction when is 

classified as active in the model, and this is possible when the 

nodal temperature of the element has reached the melting 

temperature due to the application the laser energy [12,19-22]. 

To accurately model temperature distribution, residual stress, 

and distortion it is crucial first choose and calibrate the required 

properties of the heat input (as beam power and scanning 

speed), thermal boundary condition and material properties (as 

beam absorptivity, thermal conductivity, specific heat capacity 

etc.). In fact, a little variation in predicting the temperature 

evolution of the process has a great influence on the calculation 

of residual stress during thermo-mechanical simulation [9]. 

That revealed the importance of an accurate prediction of 

thermal behaviour in DED components. Khanafer et al. [22] 

proposed a finite element model implemented on Ansys to 

evaluate transient heat transfer process in DED parts. As other 

many authors [14,17,18], they represented the laser heat source 

as a Gaussian energy distribution. Further, Nijhuis et al. [23] 

presented a thermal model, but they tried to save calculation 

cost and time introducing a simplified heat input model basing 

it on prescribed temperatures. They were able to demonstrate 

that the hot element addition strategy can be efficiently used 

for thermal simulation of large-scale metal DED parts. 

As it turns out, FE modelling has been widely applied for 

the prediction of thermal-mechanical behaviour of DED 

components. However, it becomes more expensive in terms of 

computational cost as the size of the modelled geometries gets 

larger because these geometries require meshes with a greater 

number of nodes to be represented. Therefore, Li et al. [16] 

proposed a mesh coarsening strategy to predict temperature, 

distortion and residual stress. They compared two type of 

coarsening strategy with a static mesh type and found out that 

the computational time can be reduce by 75% with an error less 

than 2.5% for thin wall geometries built from Inconel 625 and 

Ti-6Al-4V samples. Other approaches have been used to save 

computational significance, Lu et al. [20] proposed a thermo-

mechanical model to study the thermomechanical behaviour of 

more complex geometries of Ti-6Al-4V fabricated by DED 

process. They showed that the computational time can be 

reduced if a 4-layers-by-4-layers activation strategy is used, not 

affecting the average values of both temperature and distortion. 

Kiran et al. [9] were able to reduce the computational time both 

using a thermal cycle heat input and a lumping of layers 

strategy. The thermal cycle heat input consists in considering 

the complete deposition track as one block and reports the 

multiple steps of the transient heat input numerical calculation 

to a single step. Firstly, they validated this method on single 

tracks and multi-tracks and then transposed it to the 

construction of a cube, where the computational time required 

by the transient heat input is great. In the cube the entire layer 

was considered as one single block. To further decrease the 

computational time, they introduced the lumping of layers, 

meaning incorporating multiple layers in one single layer in the 

numerical model. They find out that the best numbers of 

lumped layers are two or four, that can reduce the 

computational time maintaining a good accuracy in results. 

2.2. Meso-scale modelling approach 

Meso-scale approach aims to simulate the fluid flow and the 

heat transfer in the molten pool that are the principal physical 

phenomena that determine the melt pool characteristics. Melt 

pool thermal and physical behaviour is greatly shaped by 

process parameter as laser power, powder feed rate and 

scanning velocity [24-28]. In particular Fatoba et al. [27] 

developed a model to obtain insights on the behaviour of melt 

pool subjected to various process parameters. The melt pool 

characterizes the deposition track geometry and topology that 

has an influence on the final characteristics of the DED 

components as residual stress and cracks. Instead, density and 

strength of components are more affected by the powder 

concentration. To simulate the fluid flow within the melt pool 

is necessary to include in the model the mass and momentum 

equation alongside the energy equation [1]. Wei et al. [26], 

also, directed their work on the effect of process parameters on 

liquid metal flow field and transient temperature of the melt 

pool. Especially they displayed that the contact angle of 

deposited single tracks increases with higher Mass per Unit 

Length intensity but decreases significantly with higher Energy 

per Unit Mass. The contact angle of the tracks can be a 

revealing parameter in predicting voids in the final parts when 

several single tracks are deposited next to each other.  

 Gas-powder flow distribution below the deposition head, 

instead, is usually modelled via Computational Fluid Dynamics 

(CFD) simulations [25]. CFD software works by a system of 

non-linear partial differential equations that describes the 
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motion of the fluid, diffusion, and phase change. Moreover, 

considering the Marangoni effect leads to great accuracies in 

the melt pool temperature distribution and geometry, but at the 

same time increases difficulties in computational calculation, 

Marangoni effect is related to the mass transfer along an 

interface due to the surface tension gradient. In fact, the main 

physical aspect that determines the fluid flow in the melt pool 

is the spatial variation in the surface tension on the melt pool 

surface. This spatial variation is caused by the great thermal 

gradient that can be controlled and adjusted by varying the 

feature of the energy source [29]. Zeng et al. [25] presented a 

CFD simulation to compute gas-powder flow behaviour 

coupled with a FEM analysis to evaluate thermal behaviour of 

the deposition track. CFD model gives as output the particle 

mass concentration, a key parameter to get the density of 

particles on a specific plane or volume. They found out that 

matching the laser beam focal point and the position of the 

highest particle mass concentration is fundamental for the full 

melting of the deposition inducing high-quality deposited 

tracks. On the other hand, Safdar et al. [30] in order to 

overcome computational burden of CFD models investigated 

the possibility to use the isotropic enhanced thermal 

conductivity models, to detail the melt pool convection. They 

revealed that these types of approaches cannot be very useful 

when applied on high Prandtl number materials like Nickel. So, 

they proposed and investigated the anisotropic enhanced 

thermal conductivity approach revealing that it can be much 

more appropriate and flexible for these types of materials.  

Instead, Piscopo et al. [6] proposed an original method to 

model material addition and energy flow in order to evaluate 

geometrical characteristics of deposition tracks. In their model 

the effective power useful to heat up and melt both powder and 

the substrate was calculated as the sum of the power available 

at the substrate plus the power absorbed by the in-flight 

powder. This power can be expressed as a percentage of the 

total available power, and by means of experimental data they 

calibrated the value of the correction coefficient for the power. 

Moreover, the activation strategy applied in this work was 

based on analytical relationships derived from regression 

analysis that linked height and width of the deposited tracks to 

process parameters, namely laser power and the scanning 

speed. Through this model they were able to predict the 

deposited track size with an error lower than 8% and to evaluate 

the penetration depth of the tracks. Also, Vincent et al. [24] 

directed their attention on the geometries of the deposition 

tracks. They proposed a novel numerical simulation technique 

that can predict width and height of the deposition track relating 

them to the thermal gradients, fluid flow, melt pool shape and 

size. They combined a thermal fluid numerical solution with a 

geometrical model to consider the mass addition and an 

analytical model for the track geometry. They were able to find 

a balance to accuracy and computational cost by simplifying 

assumption about the behaviour of the gas-liquid interface.  

2.3. Micro-scale modelling approach 

Micro-scale modelling is typically a phase-field modelling 

used to predict the microstructure evolution during the 

deposition process. The study of the microstructure is of great 

importance to understand the process and to obtain the desired 

mechanical characteristics of the part, such as porosity, density, 

strength etc. As well, microstructure evolution can give insight 

of the mechanisms that control defect formation in DED 

components. Therefore, it is essential to expand the knowledge 

in the microstructure formation and evolution mechanisms. 

There are three main microstructural modelling approaches: 

phase-field modelling (PFM), kinetic Monte Carlo (MC) and 

cellular automata (CA). Kinetic MC and CA modelling differ 

from PF modelling because they can only model the grain 

structure. Instead, PF models include modelling of solidified 

materials, solid state phase transformations, solidification 

segregation of alloys, grain structure, grain-oriented direction, 

grain coarsening etc. [5,31-33]. DED microstructure results 

from the rapid cooling, great thermal gradient typical of the 

process, and the ratio of cooling rate/thermal gradient [34]. 

Microstructure is also influenced by process parameters such 

as build direction, scanning speed, power beam etc. [35-38]. 

DED components mainly show columnar grains, equiaxed 

grains and a mix of columnar-equiaxed grains that consist of 

cellular dendrites [1,34,36]. This type of morphologies has 

been demonstrated to be mostly consequence of the 

temperature gradient at liquid/solid interface and the ratio of 

cooling rate-thermal gradient [36]. The growth of the grains 

follows the direction of the maximum thermal gradient i.e., the 

build direction, that creates an anisotropy in the component that 

implies a dependence on the type of scanning strategy of the 

components’ mechanical properties [32]. 

To simulate components microstructure, is essential the 

temperature evolution experienced by parts, as it is required as 

input for microstructure models. This temperature evolution 

can be evaluated by experimental measurements or predicted 

by a model as well. Baykasoglu et al. [32] presented a thermal-

microstructural model for Ti6Al4V titanium alloy that couples 

the heat transfer calculations with phase transformation 

kinetics. They used a Finite Element (FE) method implemented 

in Abaqus to evaluate the temperature distribution and verified 

it with experimental results. Further, they used the volumetric 

phase fraction to model the microstructure evolution of the 

solid-state Ti6Al4V titanium alloy. The microstructure model 

coupled the thermal FE model via a written subroutine. Then, 

they demonstrated that this is an efficient approach for the 

selection of the best process parameters, predicting the 

microstructure evolution and allowing to obtain the desired 

mechanical properties. On the other hand, Kumara et al. [33] 

used the temperature measurements made at the first deposited 

track level as input. They studied the evolution of the 

microstructure during laser metal powder Directed Energy 

Deposition Inconel 718 and subsequent heat treatment through 

the phase-field method. The process was simulated with 

Micress, a commercially available phase-field software based 

on the multi-phase-field approach. They also used the 

precipitation kinetic modelling through JMatPro software to 

generates the Time-Temperature-Transformation (TTT) 

diagrams and Continuous Cooling Transformation (CCT) 

diagrams to investigate the effect of local elemental 

segregation on the precipitation of different phases. They 

demonstrated that a combined approach using the phase field 

modelling and transformation kinetic modelling is a feasible 
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way to predict and understand the microstructure formation 

during DED process of Ni-based superalloys and subsequent 

heat treatments. The theory shows the evolution in time and 

space of multiple phase-field functions that represent the 

spatial distribution and orientation of the grains.  

The main advantage of PF modelling is that can simulate 

multiple phenomena and results are very accurate, but it is very 

expensive in terms of computational costs. Therefore, Liu and 

Shin [39] proposed an integrated 2D phase-field modelling 

with a 3D DED model and 3D CA model. The approach allows 

to simulate the high temperature solidification and low 

temperature solid state phase transformation for the Ti6Al4V 

DED process. This model can predict the elongated beta grains 

of columnar shape, which are typical of the process. They 

demonstrated the advantage of coupling the CA and PF models 

compared to only CA model in capturing the details of the grain 

structure or compared to only PF model in saving 

computational cost. Sunny et al. [40], alternatively proposed a 

dynamic KMC models, that had the goal to overcome the 

limitation of conventional KMC models. In fact, through this 

approach they can change the spatial domain of the melt pool 

and heat affected zone with time. This allows grain 

morphology prediction of larger DED components made by 

multi-layers deposition, in which melt pool and heat affected 

zone may have much more variation than in smaller parts. 

3. Conclusion 

Directed Energy Deposition process is an emerging 

technique that gives compelling advantages over conventional 

manufacturing processes by granting the fabrication of 

complex structure, repairing valuable components, producing 

functionally graded materials, and reducing material usage. 

However, due to its novelty and the complex physical 

phenomena typical of the process, its spread in AM industry is 

limited. Hence the need of comprehensive studies supported by 

the numerical simulations. However, each model and 

simulation technique anyway must face its own challenges. The 

major challenge in process simulation is to develop a model 

that can result in knowledge at overall scale of DED component 

and building process to apprise engineering decisions. 

Moreover, to be practical, the prediction model must be able to 

compute results in a reasonable amount of time and with 

reasonable computing power, maintaining sufficient accuracy 

in results. The objective is to keep enough physics fidelity to 

trust the outcome of the simulations. In fact, another limit in 

speeding up models’ outcome is the necessity of numerical 

calibration on experimental campaigns.  

About macro-scale approaches computational challenges 

are related with the possibility to simulate large DED 

components, that enhance the data that need to be managed. 

Much research tried to overcome this problem by coarsening 

meshes far from the heat input and lumping multiple layers 

together, finding a balance between saving computational costs 

and maintaining accuracy in results. Moreover, a challenge for 

thermal model is describing accurately the temperature 

evolution through an accurate modelling of the heat source 

input. Most of the time heat input is modelled considering 

estimated power and absorptivity. Instead, CFD approaches 

found out their major challenge in the description of melt pool 

surface tension and its variation with temperature. These 

variations play a fundamental role in the shape and depth of 

melt pool, and their behaviour is very heavy to compute. In fact, 

usually these models are used to simulate only single melt 

track. Finally, also micro-scale approaches must cope some 

challenges. PF models con only simulate a small volume region 

(as a single grain or few grains), even with a great accuracy, 

and require more calculations respect to MC and CA modelling 

technique. On the other hand, MC and CA models are more 

suitable in simulating large volume, since they require less 

computational costs. However, they can only predict the shape 

and the size of the grains, in addition CA models can also 

predict the angle, but do not have the accuracy of PFM. 

Anyhow, all the modelling tools such as described here and 

reported in Table 1 can advance and apprise knowledge of 

conditions during DED process as well as final outcomes of the 

process. Each model is specific for a certain scale and aims to 

simulate a precise behaviour, hence the choice of models comes 

down to the research requirements.  

Concluding, a future development could be the 

implementation of in-process monitoring with numerical 

modelling to realize a closed loop control and better the DED 

parts quality. The process parameters could be adjusted layer 

by layer according to the response of monitoring techniques 

that can reveal errors in the deposition process. This global 

mechanism could really reduce errors and uncertainty and 

enhance parts quality by increasing performances and 

reliability of the process. 

Table 1. Selected studies on modelling of different DED phenomena. 

Model scale Characteristic outputs Software References 

Macro-scale Prediction of temperature distribution, distortion, and residual stress  Abaqus, Comet, Netfabb Local 

Simulation, Simufact Welding, 

Sierra 

[9,11-14,16,18-21] 

 Prediction of thermal behaviour Ansys, Matlab [22-23] 

Meso-scale Prediction of temperature distribution, melt pool geometry, and 

depositions geometrical characteristics 

Abaqus, OpenFOAM, Ansys, 

Comsol 

[6,24,26-28,30] 

 Prediction of temperature distribution, melt pool geometry, and gas-

powder flow distribution 

Abaqus [25] 

Micro-scale Prediction of microstructural evolution, solutes evolution, and 

segregation  

Micress, JMatPro, Abaqus [32-33,39] 

 Prediction of grains structure and morphology and the dynamic 

behaviour of melt pool and heat affected zone 

Proprietary code [40] 
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