
30 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine learning / Metilli,
L.; Morris, L.; Lazidis, A.; Marty-Terrade, S.; Holmes, M.; Povey, M.; Simone, E.. - In: JOURNAL OF FOOD
ENGINEERING. - ISSN 0260-8774. - ELETTRONICO. - 335:(2022), p. 111192. [10.1016/j.jfoodeng.2022.111192]

Original

Real-time monitoring of fat crystallization using pulsed acoustic spectroscopy and supervised machine
learning

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.jfoodeng.2022.111192

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.jfoodeng.2022.111192

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2969868 since: 2022-07-07T19:30:33Z

Elsevier Ltd



 1 

Real-time monitoring of fat crystallization using 1 

pulsed acoustic spectroscopy and supervised machine 2 

learning 3 

Lorenzo Metilli1, Liam Morris1, Aris Lazidis2, Stephanie Marty-Terrade3, Melvin Holmes1, 4 

Megan Povey1 and Elena Simone1,4 5 

1 School of Food Science and Nutrition, Food Colloids and Bioprocessing group, University of 6 

Leeds, Woodhouse Lane, Leeds LS2 9JT, UK  7 

2 Nestlé Product Technology Centre Confectionery, Haxby Road, York YO31 8TA, UK 8 

3Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland 9 

4 Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino (Italy) 10 

 11 

KEYWORDS  12 

Crystallization, Fats, Oils, Ultrasound, Machine Learning 13 

 14 

ABSTRACT 15 

 16 



 2 

Enhancing the control and yield of lipid crystallization is fundamental in several industrial areas, 17 

including pharmaceutical, cosmetic and food manufacturing. However, the multi-component 18 

nature of fats and oils poses a challenge in the understanding and control of the final product 19 

properties. While the crystallization of lipid has been extensively studied with offline techniques, 20 

online monitoring of the process would be highly advantageous, especially in large-scale sheared 21 

vessels. In this work, a novel method to calculate the solid fat content (SFC%) of crystallizing 22 

lipids under shear, based on an acoustic probe and supervised-machine learning, is presented. The 23 

temperature, composition and ultrasonic velocity of the samples, and the SFC(%) measured with 24 

nuclear magnetic resonance were used to develop a predictive model to calculate the SFC(%) 25 

during crystallization. Gaussian models showed the highest accuracy compared to linear and 26 

regression tree models (RMSE = 0.03 vs 0.7 and 0.25, respectively). 27 

1. Introduction 28 

The crystallization of lipids is a fundamental unit operation for several manufacturing industries, 29 

including pharmaceuticals (Jose & Netto, 2019), cosmetic (Duprat-De-Paule et al., 2018; Patel et 30 

al., 2021) and food (Rios et al., 2014). Recently, the use of crystalline fat to produce structured 31 

oils (oleogels) has gained significant attention from academia and industry alike, due to the 32 

potential to produce solid-like materials with low amounts of saturated fat and specific 33 

macroscopic properties (Patel & Dewettinck, 2016). Furthermore, oleogels may be used as 34 

precursors for the production of oil-continuous foams (Binks & Vishal, 2021) and emulsified oil 35 

foams (Brun et al., 2015; Goibier et al., 2019) that can find application as nutrients or drug delivery 36 

vehicles, or as structuring materials for food products. In all of the above examples, the properties 37 

of the fat crystals, such as crystal size, shape and polymorphism, significantly affect the stability 38 

and functionality (e.g., drug delivery, oil binding capacity, air incorporation) of the final oleogel 39 
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material (Co & Marangoni, 2012; Heymans et al., 2017). The total amount of crystals, i.e. the solid 40 

fat content (SFC%), is a general parameter strongly related to some macroscopic properties of fat-41 

based materials, such as the melting point, hardness and texture (Himawan et al., 2006). Hence, 42 

monitoring SFC% during crystallization processes is important to determine when equilibrium 43 

conditions are reached, and therefore maximize the yield of crystallization in industrial contexts. 44 

The SFC% is routinely measured by means of nuclear magnetic resonance (NMR) (Cerdeira et al., 45 

2004), differential scanning calorimetry (DSC) (Foubert et al., 2008) or small-angle X-Ray 46 

scattering (SAXS) (Ladd Parada et al., 2019). These techniques, however, are all off-line, requiring 47 

the collection of a sample (not always a trivial operation, especially if the sample melting point is 48 

close to ambient temperature) and some degree of sample preparation, which can significantly 49 

affect the measurement. In the context of industrial large-scale crystallization, the issues related to 50 

off-line analysis and sampling are tackled by applying process analytical technology (PAT) tools, 51 

which enable real-time monitoring of the product properties, enhanced process understanding, and 52 

the application of the so called “Quality by Design” (QbD) strategy (Rathore et al., 2010). 53 

Common PAT tools used to monitor crystallization usually include in situ probes that exploit the 54 

scattering or absorption of electromagnetic radiation (visible light, ultra-violet (UV) or infra-red) 55 

by the sample to monitor phase transitions, polymorphic transformations or crystal morphology 56 

(Hansen et al., 2017; Simone et al., 2015; Simone et al., 2019). In the case of industrial lipid 57 

crystallization, online determination of the SFC% is highly sought, albeit presenting some 58 

challenges. Fat crystals form a viscous three-dimensional network of aggregates with a fractal 59 

pattern (Tang & Marangoni, 2008), whose quantification is non-trivial. Moreover, (partially) 60 

crystalline fat is often opaque to electromagnetic radiation, limiting the analysis to the surface of 61 

the sample. While oleogels (and hydrogels) are widely used in consumer products, at present there 62 
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are sparse examples of PAT tools applied to the manufacturing process of materials with similar 63 

properties (Bostijn et al., 2018; Pu et al., 2015). 64 

The use of low-power ultrasound for studying the crystallization of lipids has been proposed as a 65 

non-invasive, non-destructive method since the 1980s (Hussin & Povey, 1984; McClements & 66 

Povey, 1988; McClements & Povey, 1987). Low-power ultrasound, i.e., sound waves exceeding 67 

20 kHz frequency, can penetrate opaque media, without causing physical and chemical changes in 68 

the sample. Moreover, it is relatively inexpensive compared to other spectroscopy techniques, and 69 

it is easily adaptable to different measuring configurations (Povey, 2017). The technique involves 70 

the propagation of a short (few microseconds) ultrasonic pulse from a transducer into the sample; 71 

this pulse is received by either another transducer on the other side of the measuring apparatus 72 

(pitch-and-catch mode) or it is reflected and received by the same emitting transducer (pulse-echo 73 

mode). The velocity of sound (csample) is then calculated from the travelled path length as a function 74 

of time and temperature. The acoustic attenuation (α), i.e., the ratio of the amplitude of the sent 75 

and received pulse, may also be calculated. As both the velocity of sound and acoustic attenuation 76 

depend on the physicochemical properties of the sample, such as density and adiabatic 77 

compressibility, and the presence of heterogeneities, acoustic measurements can be used to 78 

monitor phase transitions such as crystallization and polymorphic transformations (Fairley & 79 

McClements, 1992; Kloek et al., 2000; Miles et al., 1985). Several authors demonstrated the use 80 

of custom-made acoustic cells to study fat crystallization using acoustic signals, with particular 81 

emphasis on determining the SFC(%) (Birkhofer et al., 2008; Martini et al., 2005a, Martini et al., 82 

2005b; Singh et al., 2002, Singh et al., 2004). Nevertheless, most of the previous works on fat 83 

crystallization were carried out in quiescent conditions, and/or with small sample volumes, thus 84 
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excluding the effect of shear and secondary nucleation on crystallization which are predominant 85 

on industrial scale (Agrawal & Paterson, 2015).  86 

Despite its several advantages and ease of implementation, there are only sporadic examples in the 87 

literature on the use of acoustic probes as a PAT tool for studying lipid crystallization. The 88 

immersion probe described in Titiz-Sargut & Ulrich (2003), which featured two 2 MHz 89 

transducers in pitch-and-catch mode, was applied to the determination of the metastable zone 90 

width (MSZW) of coconut oil, and validated by optical back-reflectance measurements (ORM) 91 

(Chaleepa et al., 2010). The authors focused their study on the effect of different levels of shear, 92 

cooling rates and the presence of additives on the MSZW; however, no quantitative information 93 

on the SFC% of this lipid system was reported. Due to the complexity involved in the 94 

crystallization of lipids, such as the occurrence of melt-mediated polymorphic transformations, 95 

and the development of crystalline networks whose size range from nanometres to several 96 

hundreds of microns, the determination of the SFC% directly from acoustic parameters is non-97 

trivial. Moreover, the large acoustic attenuation exhibited by crystalline fat results often in loss of 98 

the acoustic signal (Rigolle et al., 2018). One of the growing trends in the use of PAT tools is the 99 

implementation of machine learning (ML) algorithms to facilitate analysis of real-time data 100 

provided by sensors, and to enable prediction of material properties of interest based on training 101 

the algorithm with known outcomes (supervised machine learning) (Wasalathanthri et al., 2020). 102 

Examples of ML applications in the context of crystallization include the automatic detection of 103 

crystal aggregation from microscopic images (Ochsenbein et al., 2015), the real-time estimation 104 

of the crystal size distribution of 2D needle-shaped crystals from measurements of chord length 105 

and aspect ratio distributions (Szilágyi & Nagy, 2018) and the estimation of  the 3D size 106 

distribution of plate-like particles using projections from multiple cameras (Jaeggi et al., 2021). 107 
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The approach can be extended to the actual control of crystallization processing, for example 108 

through the use of convolutional neural network (CNN) feedback control to dissolve undesired 109 

precipitated impurities during the crystallization of active pharmaceutical ingredients (APIs) 110 

(Salami et al., 2021). Recently, ML has been applied to ultrasonic reflectance measurements to 111 

monitor the mixing process in a large-scale vessel (Bowler et al., 2020; Bowler & Watson, 2021). 112 

In this work, a novel technique for estimating the SFC%, based on a custom-built acoustic probe 113 

(Morris et al., 2021) and supervised machine learning is presented. This immersion acoustic probe 114 

was used as a PAT sensor to monitor the crystallization of a cocoa butter/sunflower oil oleogel 115 

system, in a 1L scale vessel and under shear. Stirring was maintained constant throughout the 116 

whole temperature profile. Cocoa butter and sunflower oil are both ingredients widely used in 117 

food, cosmetic and pharmaceutical applications (Metilli et al., 2021). The ultrasonic data was 118 

validated with light turbidimetry, and the SFC% of the crystallized oleogel was measured with 119 

offline pulsed NMR (pNMR) at equilibrium conditions and specific temperatures. Finally, 120 

supervised machine learning was applied to develop a predictive model based on the acoustic 121 

parameters and the results of pNMR, enabling the calculation of SFC% based on the velocity of 122 

sound, sample composition and temperature. 123 

2. Materials and Methods 124 

2.1 Cocoa butter–based oleogels 125 

Refined, bleached and deodorized cocoa butter (CB) and high-oleic sunflower oil (HOSO) were 126 

kindly provided by Nestlé PTC Confectionery (York, UK) and used without any further 127 

purification. CB was melted at 65 °C for one hour, and then mixed with HOSO at 9%, 11%, 13% 128 

and 15% concentration by weight. HOSO contains usually the following fatty acids (by weight): 129 
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86% oleic acid, 5% stearic acid, 3% linoleic acid, 3% palmitic acid, 1.5% behenic acid, and 0.7% 130 

arachidic acid. CB normally contains by a weight about 26% palmitic acid, 36% stearic acid, 34% 131 

oleic acid, 2.7% linoleic, and 0.9% arachidic acid. 132 

2.2 Fat crystallization rig 133 

The CB-HOSO mixture (900 g) was transferred to a jacketed crystallization vessel (capacity ca.1 134 

L, diameter 15 cm) (Radley, UK) connected to a Huber Ministat 230 thermostat (Huber, Germany), 135 

filled with silicone oil as a heating/cooling medium. The sample was stirred continuously at 200 136 

rpm with a DLH overhead stirrer (VELP Scientifica, Italy), equipped with an anchor-shaped mixer 137 

(8 cm diameter). A Pt-100 temperature probe (Omega Engineering, UK), placed in the vessel, was 138 

used to monitor the sample temperature during the experiment. The crystallization process was 139 

followed using a Control 4000 turbidity meter (Optek, Germany) fitted with an ASD12-N 140 

absorption probe, which measured light transmittance and absorbance. Finally, the velocity of 141 

sound and the acoustic attenuation of the crystallizing mixture were measured using a custom 142 

acoustic probe, recently described in literature (Morris et al., 2021), with some design 143 

modifications. Briefly, the probe comprised a 2.25 MHz broadband transducer coupled with a 144 

Rexolite buffer rod (Sonatest model RDT5025, Sonatest, UK), and a stainless-steel acoustic 145 

reflector plate. This probe was manufactured in an ‘L’ shape configuration. The probe was 146 

connected to a UT320 pulser/receiver (UTEX scientific instruments inc., Canada) and a HDO3034 147 

digital oscilloscope (Teledyne LeCroy, USA). A schematic of the equipment is shown in Figure 148 

1. 149 

The thermal profile of the experiment was set to the following: Equilibration of the fat blend 150 

mixture at 45 °C for 10 minutes, cooling to 0 °C at a nominal rate of ‒0.5 °C/min and holding at 151 
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0°C for 3 hours. The sample was then heated back to 45 °C at 1 °C/min. The process temperature 152 

and the acoustic waveforms were collected using an in-house script developed with 153 

MATLAB2021a (MathWorks, USA). Measurements were collected every 10 seconds. Each 154 

experiment was repeated three times. 155 

2.3 Determination of the acoustic parameters 156 

2.3.1 Velocity of Sound 157 

Figure  contains a diagram describing the design of the acoustic probe, and an example of 158 

waveform acquired from the oscilloscope with MATLAB. 159 

The ultrasonic pulse generated from the transducer travels through the buffer rod, and it is partially 160 

reflected at the buffer rod/sample interface, due to the acoustic impedance mismatch (i.e., the 161 

difference in the product of density and velocity of sound of the two materials). The pulse is then 162 

received back by the transducer after a time Δt1, shown in Figure  as the blue trace. Part of the 163 

initial pulse, however, is transmitted through the sample, and it is reflected by the stainless-steel 164 

reflector to the transducer after a time Δt2 (Figure , red trace). In order to calculate the velocity of 165 

sound in the sample, the time of flight in the sample is required. To calculate it, the initial value of 166 

Δt1 and Δt2 were first determined with MATLAB from the original waveform, using the leading-167 

edge method (i.e., detecting the arrival time of the pulse envelope when it crosses a set voltage 168 

threshold). Afterwards, the shifts of the pulses’ position (ΔΔt1 and ΔΔt2) during the experiment 169 

were calculated with the cross-correlation function (xcorr) implemented in MATLAB. This 170 

function provides an estimate of the correlation between each analysed waveform and a reference 171 

waveform, returning the intensity of the correlation value as a function of time units. The position 172 

of the maximum peak of this calculated vector corresponds to the time delay between two pulses. 173 

This method proved to be more robust in the analysis of the set of waveforms compared to applying 174 
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the leading-edge technique on all collected waveforms. This is because the pulse envelop was 175 

subject to distortion due to frequency dependent signal attenuation through the experiment. The 176 

variation in the sample time of flight (ΔΔt3) was then calculated with Equation 1: 177 

 ΔΔ𝑡3 = ΔΔ𝑡2 − ΔΔ𝑡1 (Eq. 1) 

In order to obtain an accurate value of the velocity of sound, however, it was necessary to 178 

determine the path length dependence on the temperature with a calibration experiment. The 179 

velocity of sound in distilled water (cwater) with respect to temperature (T) may be calculated using 180 

a fifth-order polynomial, as first described by Chávez et al. (1985) (Equation 2): 181 

 𝑐𝑤𝑎𝑡𝑒𝑟 = 3.16 ⋅ 10−9𝑇5 − 1.48 ⋅ 10−6𝑇4 + 3.35 ⋅ 10−4𝑇3 − 5.81 ⋅ 10−2𝑇2

+ 5.04 ⋅ 𝑇 + 1.40 ⋅ 103 

(Eq. 2) 

The shift in the time of flight in distilled water (ΔΔt3,water) was then measured between 50 °C and 182 

5°C, using a ‒0.01 °C/min cooling rate to allow the probe to reach thermal equilibrium with the 183 

surrounding medium. The corresponding experimental path length (Lcalibrated) was calculated with 184 

Equation 3 185 

 𝐿𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 = ΔΔ𝑡3,𝑤𝑎𝑡𝑒𝑟 × 𝑐𝑤𝑎𝑡𝑒𝑟 (Eq. 3) 

The dependence of the path length on the temperature was then obtained by fitting a fifth-order 186 

polynomial to Lcalibrated against the temperature (Figure ). 187 

The coefficients estimated for the path length calculation were then used to accurately calculate 188 

the velocity of sound during the crystallization experiments with Equation 4 189 

 
𝑐𝑠𝑎𝑚𝑝𝑙𝑒 =

𝐿𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑
ΔΔ𝑡3

 (Eq. 4) 

2.3.2 Acoustic Attenuation 190 

The acoustic attenuation quantifies the acoustic power absorbed and scattered by the sample, and 191 

is affected by several factors, including the onset of phase transitions and scattering phenomena 192 
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generated by the presence of dispersed objects in the sample (McClements & Povey, 1992). In this 193 

work, the acoustic attenuation was used to detect the onset of crystal growth and dissolution during 194 

the crystallization experiments. The acoustic attenuation was calculated according to Equation 5 195 

 
𝛼 = −20 log

𝐴

𝐴0
 (Eq. 5) 

where A and A0 are the peak-to-peak amplitudes of the sample signal during the experiment, and 196 

at the start of the experiment, respectively. 197 

 198 

2.3.3 Solid Fat Content 199 

The solid fat content (SFC%), defined as the mass fraction of solid to liquid material in a fat blend, 200 

was calculated by applying a prediction model, developed with the Regression Learner App in 201 

MATLAB2021a, (MathWorks, USA). Regression Learner is a supervised machine-learning 202 

utility, where a regression algorithm is applied to an observation matrix and compared with a 203 

response matrix. The observation matrix comprised the temperature (T), velocity of sound in the 204 

sample (𝑐𝑠𝑎𝑚𝑝𝑙𝑒) and the amount of added cocoa butter (CB%) for each crystallization experiment; 205 

the response matrix contained the SFC% values, measured with pNMR, between 5 and 45 °C for 206 

the respective samples. The velocity of sound and temperature of pure sunflower oil were also 207 

added to the observation matrix, with a corresponding solid fat content of 0%. The sunflower oil 208 

data was included in the model to provide information on the behaviour of a sample without any 209 

crystallizing material in the explored experimental conditions. Three models available in the 210 

Regression Learner App were tested for training of the dataset, and their predictive ability were 211 

compared: “Linear”, “Fine Tree” and “Gaussian Process Regression–Rational Quadratic”. The 212 

Linear model uses a linear regression to fit the data from the observation matrix. The “Fine Tree” 213 

model, instead, is a type of nonlinear model based on regression trees, which applies a recursive 214 



 11 

partition of the observation matrix to improve the prediction of the response value. Lastly, the 215 

Gaussian Process Regression model, which is also nonlinear, works by predicting the probability 216 

distribution of responses for each parameter in the observation matrix. Model cross-validation was 217 

performed using the in-built function in the Regression Learner App (5-fold validation setting). 218 

Briefly, the software divides the dataset into a number of sub-sets of the same size, trains the 219 

predictive model on all sub-sets except one, which is used as test data. This process is repeated 220 

until all sub-sets have been used as test data once (Bosnić & Kononenko, 2009). The accuracy of 221 

all iterations is calculated as R2, RMSE and other statistical parameters. In the discussion, the Root 222 

Mean Square Error values (RMSE) were compared to select the most accurate predictive model.  223 

In addition to the predictive model, an equation that estimates the equilibrium SFC% as function 224 

of the temperature and the concentration of CB in sunflower oil was determined using the Curve 225 

Fitting Tool in MATLAB2021a. A custom equation based on literature was used to fit the 226 

experimental data using the NonlinearLeastSquares method; R2, RMSE and 95% confidence 227 

intervals for each estimated parameters were also calculated. 228 

 229 

2.4 Pulsed Nuclear Magnetic Resonance (pNMR) 230 

The solid fat content (SFC%) of the CB-HOSO mixtures was determined with pNMR using a 231 

Bruker Minispec NMR (Bruker, Switzerland). The samples were collected at the end of the 232 

crystallization experiment, transferred to a 10 mm inner diameter NMR tube and stored in a fridge 233 

at 4 °C. The SFC% was measured between 5 and 45 °C, in steps of 5 °C. During the experiment, 234 

the NMR tube was left to equilibrate for 90 minutes for each temperature step. The measurements 235 

were carried out in triplicates. The resulting SFC(%) vs. temperature data was fitted using a 236 

Gompertz-type model (Farmani, 2015) to obtain the SFC(%) as a function of the temperature and 237 

CB%. 238 
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3. Results and Discussion 239 

3.1 Fat crystallization monitored by PAT tools 240 

The crystallization of one 9% CB w/w in HOSO sample, monitored with turbidity and the acoustic 241 

probe, is shown in Figure 4. 242 

While some variability among the three experiments conducted for each CB concentration was 243 

observed, (particularly in the crystallization temperature and the absolute values of acoustic 244 

attenuation) the trends observed for all CB/HOSO samples were similar. In particular, for the 245 

experiment shown in Figure 4a, four regions could be identified. Between 0 and 115 minutes 246 

(region I of Figure 4a) the temperature of the sample followed the cooling profile, from 45 °C to  247 

5°C, accompanied by an increase in the velocity of sound, from 1390 to 1510 m/s, due to the 248 

negative velocity coefficient with respect to temperature (McClements & Povey, 1992). After 115 249 

minutes, when the sample temperature reached 5 °C, the onset of nucleation was detected by a 250 

sharp decrease in the light transmittance, due to the sample becoming turbid (region II). 251 

Simultaneously, the light absorbance increased, exhibiting two distinct steps: a first, modest 252 

increase occurring between 115 and 129 minutes, and a larger increase after 129 minutes. 253 

Interestingly, the acoustic attenuation and the velocity of sound were responsive to the second step 254 

only, with a delay in detecting the onset of crystallization of ca. 14 minutes. This behaviour was 255 

consistently observed across all CB % w/w concentrations (Figure S1 of Supporting Information), 256 

and reported also in previous works (Martini et al., 2005b; Singh et al., 2002). The sheared 257 

crystallization of CB/HOSO mixtures was thoroughly investigated in a recent publication, 258 

reporting that cocoa butter crystallized as spherical aggregates of crystalline nanoplatelet (CNPs) 259 

in the β(V) form (Metilli et al., 2021) (Figure 5). Additional characterization is provided in the 260 

Supporting Information (Figure S2). 261 
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It is hypothesized, however, that CB first nucleated as a metastable polymorph (α or β’) and then 262 

transformed into the β(V) structure during the experiments. It might be that the change in 263 

compressibility and/or density associated to the formation of a liquid crystal structure – most likely 264 

the α polymorph – were too small to be detected by the acoustic probe used in this work (Ladd 265 

Parada et al., 2019). On the other hand, the nucleation and the growth of the β (V) crystals and the 266 

consequent development of the fat crystal network were clearly detected in both the velocity of 267 

sound and acoustic attenuation (at 129 minutes). As the velocity of sound depends strongly on the 268 

temperature, the first derivative with respect to temperature was calculated to better discriminate 269 

the effect of crystal nucleation on this acoustic parameter (Figure 4b). Before the appearance of 270 

fat crystals, when the change in the velocity of sound was only dependent on the temperature, the 271 

calculated first derivative was zero; whereas, upon growth of the CB crystal network, the value of 272 

this parameter changed significantly. Variations in the first derivative occurred at the same time 273 

with the increase of the acoustic attenuation, which was caused by (a) scattering by fat crystals and 274 

(b) additional attenuation mechanisms associated with the space filling interconnected fat crystals, 275 

which also affected the overall compressibility of the system through the appearance of an 276 

additional ‘frame modulus’ (Povey, 2017). Finally, fat crystal nucleation might release a high 277 

amount of latent heat of solidification. In the case of the experiment of Figure 4a, such exothermic 278 

process increased the process temperature from 3.2 °C to 5.65 °C (130-137 minutes). While this 279 

temperature perturbation did not affect the signal from the turbidity probe or the acoustic 280 

attenuation, it did affect the velocity of sound, which is strongly dependent on the sample 281 

temperature. 282 

After nucleation of the β(V) polymorph, the crystallization process of Figure 4a proceeded until 283 

275 minutes (region III), when the sample temperature reached ca. 1.5 °C, which corresponded to 284 
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the thermal equilibrium of the whole setup. In this time the acoustic attenuation kept increasing, 285 

following a similar trend to the light absorbance. The velocity of sound also increased, but mostly 286 

due to the change in temperature. Nevertheless, it is worth noticing in Figure 4b that the appearance 287 

of fat crystals determined an increase in the noise of the first derivative of the velocity of sound, 288 

albeit its mean value was still around zero. 289 

After reaching equilibrium at around 275 minutes, the sample was heated back to 45 °C (region 290 

IV). A focus on this region of the experiment is displayed in Figure 4c. In the heating step between 291 

1.5 °C to 15 °C (from 280 minutes to 315 minutes), a decrease in the velocity of sound linearly 292 

proportional to the decrease in temperature was observed. At the same time, a moderate decrease 293 

in the acoustic attenuation happened, potentially linked to a decrease in the SFC% of the 294 

crystallized sample. 295 

Further increase in the sample temperature (from 315 to 330 minutes, 15 °C to 25 °C) resulted in 296 

the complete melting of the fat crystalline network, which was evident in the sharp increase in 297 

light transmittance and in the decrease in light absorbance, as well as acoustic attenuation. It is 298 

worth noticing that both techniques detected full dissolution at the same time, around 327 minutes. 299 

The velocity of sound presented a steeper decline in correspondence to the full melting; this was 300 

clearly observable in the calculated first derivative. 301 

Upon complete remelting of the sample (330 minutes – 350 minutes) all parameters returned to 302 

their values prior to crystallization.  303 

This set of experiments showed that the tested acoustic probe could be used to monitor 304 

crystallization processes, although it seemed less sensitive than light turbidimetry to the detection 305 

of early nucleated crystals, perhaps due to their liquid crystalline nature. 306 
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Experiments carried out with a higher weight % of CB showed similar trends for the acoustic and 307 

light signals. The velocity of sound of the crystallized oleogels at different % w/w of added CB, 308 

between 5 and 35°C, is shown in Figure 6. 309 

In agreement with previous literature (McClements & Povey, 1992), the velocity of sound of the 310 

crystallized oleogels increased, for the same range of temperatures, with increasing CB % w/w 311 

(approximately by 10 m/s every 2 % of CB). From Figure 6 it can be noted that, between 20 and 312 

25°C, the velocity of sound of all samples decreased steeply, due to the oleogels melting. It can be 313 

appreciated that such decrease occurred at lower temperatures for lower CB concentrations, in 314 

accordance with the lower melting point of the oleogels. Once liquid, the oleogels then displayed 315 

the same velocity of sound of the sunflower oil.  316 

The acoustic attenuation measured at equilibrium also increased with the amount of CB contained 317 

in the oleogel, as shown in Table 1. In fact, higher concentrations of crystalline solids scattered 318 

more sound and attenuated it. The relatively large standard deviation of the acoustic attenuation 319 

for the 9% CB w/w sample, and its non-linear increase with higher concentrations of CB w/w, 320 

however, prompts further work to establish a more robust relationship with the amount of solid fat 321 

in the sample. In fact, the relationship between acoustic attenuation, SFC(%) and the crystal size 322 

and shape is challenging to elucidate (Martini et al., 2005a). 323 

The solid fat content (SFC%) of the CB/HOSO samples as a function of temperature was measured 324 

with pNMR at the end of the crystallization step (Figure 7). Samples were collected directly from 325 

the vessel to ensure direct comparison with the performed experiments. 326 

By inspecting the SFC% values at 5 °C, it can be noted that all samples displayed a lower SFC% 327 

compared to the total amount of added cocoa butter. This is because the main triacylglycerides 328 

species that are solid at ambient temperature, 1,3-dipalmitoyl-2-oleoyl-glycerol (POP), 1,3-329 
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distearoyl-2-oleoyl-glycerol (SOS) and 1-palmitoyl-2-oleoyl-3-stearoyl-glycerol (POS), 330 

constitute about 80% w/w of cocoa butter, while the remaining 20% comprises mono- and di-331 

glycerides, phospholipids, sterols and free fatty acids that are liquid at ambient conditions (Dimick, 332 

1991). It is worth noticing that the pNMR measurements present an average standard deviation of 333 

0.101%, which is a more than acceptable value for industrial applications (particularly the 334 

confectionary sector).  335 

The SFC(%) values at equilibrium were fitted using a Gompertz-type model, similar to the one 336 

described in Farmani (2015) (Equation 6): 337 

 

𝑆𝐹𝐶(%)(𝑇, 𝐶𝐵) = (𝑏0 + 𝑏1𝐶𝐵)𝑒
−𝑒

−(𝑇−(𝑏01+(𝑏11𝐶𝐵)))

𝑐  
(Eq. 6) 

where T is the sample temperature in °C, CB is the concentration (w/w) of added cocoa butter, and 338 

b0 = 1.24, b1 = 73, b01 = 13.48, b11 = 38.5 and c = -4.66 are the coefficient determined via 339 

interpolation in MATLAB. The 𝑅2 of the fitting was equal to 0.9965 with a 𝑅𝑀𝑆𝐸 of 0.2324% 340 

(95% confidence intervals for each parameter are shown in supporting information Table S1), 341 

which is still acceptable for industrial purposes.  342 

This fit enabled calculation of the equilibrium SFC(%) as a function of temperature and CB 343 

concentration, which can be used in combination with the predictive models determined in the next 344 

section for oleogels with composition ranging from 9 to 15% of CB.  345 

 346 

3.2 Solid fat content predicted by Regression Learner model 347 

The measured SFC(%) with pNMR, and the predicted SFC(%) obtained with the Regression 348 

Learner models is displayed in Figure 8. 349 

It can be noticed how the Linear model showed inaccuracies both when the sample was in the 350 

melted state (high temperatures), as well as in its crystallized phase, at all concentrations. This 351 
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could be ascribed to the non-linear dependence of the SFC(%) with respect to temperature, as 352 

already highlighted in Figure 7. When considering the Fine Tree model, the accuracy generally 353 

improved, however still displaying some errors in predicting the SFC(%) of the oleogels, in 354 

particular between 15 and 25 °C. Finally, the GPR model showed the best predictive accuracy, for 355 

all samples and temperatures, with an RMSE value almost one order of magnitude lower compared 356 

to the other two models. Such improvement could stem from the similarity between the Gompertz-357 

type SFC(%) dependence with temperature (Equation 6) and the gaussian-type distribution 358 

function (also exponential). Therefore, the GPR model was selected to predict the SFC% evolution 359 

during fat crystallization, as shown in Figure . 360 

The increase in the predicted value of the SFC% in the oleogel matched the increase in the acoustic 361 

attenuation at 130 minutes, reaching 5% over few minutes and then levelling to a value of about 362 

7.6%, very close to the equilibrium SFC% at such temperature (as shown in Figure 7). During the 363 

heating phase, the SFC% started decreasing, falling sharply to 0% when the temperature was raised 364 

above 20 °C and remaining constant thereafter, until the end of the experiment. Therefore, in 365 

contrast with previous research, the approach presented in this work only requires measuring 366 

velocity of sound, the temperature, and the SFC(%) measured with pNMR on samples on the 367 

concentration of interest. The SFC(%) is then rapidly and accurately predicted from the ultrasonic 368 

probe data under realistic operating conditions (i.e., under shear and with large sample volumes).  369 

The predicted SFC% for the samples at different CB % was plotted as a function of temperature 370 

in Figure . 371 

By inspecting the cooling profile, it can be noted that crystal growth, signalled by the increase in 372 

SFC%, occurred at higher crystallization temperatures for oleogels containing higher % of CB, as 373 

also reported previously in Metilli et al. (2021) for this type of system. Whereas, by inspecting the 374 
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heating profile, the SFC% decreased with the temperature with the same trend observed with 375 

pNMR. The estimated values of SFC% at 5 °C during heating were 7.3, 8.7, 10.2 and 11.7% for 376 

the 9, 11, 13 and 15% CB samples, respectively. These values are very close to the equilibrium 377 

SFC% measured with pNMR at the same temperature (7.6, 8.5, 10.3 and 11.7%) indicating the 378 

reliability of the predictive model built. Furthermore, both pNMR and acoustic spectroscopy 379 

showed agreement that at 25 °C all samples returned to the full liquid state. 380 

This work presents a prototype of an acoustic in situ probe, coupled with a reliable machine 381 

learning-based predictive model, for online monitoring of oleogels crystallization. The probe could 382 

provide useful quantitative information on the evolution of crystallization processes in an 383 

industrial setting with minimal investment cost and calibration experiments. Furthermore, due to 384 

the versatility of acoustic probes, the design of the hardware could be optimized in order to allow 385 

effective measurements even in different fluid-dynamic environment (e.g., different crystallizers 386 

designs, commercial tempering equipment).  387 

 388 

4. Conclusions 389 

In this work, the crystallization of cocoa butter–based oleogels was characterized qualitatively and 390 

qualitatively using a custom-built immersion probe based on pulsed acoustic spectroscopy. The 391 

SFC% of the oleogel during crystallization was estimated through a predictive model developed 392 

with supervised machine learning. Such method uses the acoustic parameters (i.e., velocity of 393 

sound) collected from the immersion probe, the sample temperature and composition, and the 394 

SFC% measured with pNMR. The predicted SFC% and its evolution during the shear 395 

crystallization of the CB/HOSO mixtures was in agreement with the nucleation and development 396 

of crystalline fat, as corroborated by light turbidimetry and acoustic attenuation. A comparison 397 
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between several predictive models showed that Gaussian Process Regression model was the most 398 

accurate in describing the SFC% both prior and during crystallization. The SFC% value increased 399 

steeply during crystal growth, with a final value close to 80% by weight of the added cocoa butter 400 

in the mixture, with a similar trend to the acoustic attenuation. The SFC% then returned to 0% 401 

close to the melting point of the oleogel, in agreement with the melting profile measured with 402 

pNMR. Moreover, this work highlighted that turbidimetry was more sensitive in detecting the 403 

nucleation of lipid crystals, whereas the acoustic probe was more responsive to the crystal growth 404 

process. This difference could be ascribed to the liquid-crystalline nature of the metastable lipid 405 

polymorph that developed during nucleation, for which the change in density and compressibility 406 

may be too small to be measured by the current acoustic probe. Using a different frequency 407 

transducer might increase the sensitivity of the ultrasonic probe to crystal nucleation; however, 408 

this might result in excessive signal attenuation at equilibrium conditions, at which the SFC% 409 

needs to be calculated. In summary, the results presented in this work demonstrate the feasibility 410 

of implementing acoustic probes as PAT tools, in combination with supervised machine learning, 411 

to improve the oleogel crystallization yield through the timely and accurate monitoring of the 412 

SFC%. 413 
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 616 

Figure 1. Crystallization vessel fitted with a Pt-100 thermocouple, the turbidity probe and the 617 

custom ultrasound probe (left), schematic depiction of the rig used in this paper (right). 618 

  619 
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 620 

Figure 2. Schematic drawing of the custom acoustic probe (left) and the measured waveforms 621 

obtained by the reflection of the buffer rod (blue), and buffer rod and sample (red) (right). Δt1 and 622 

Δt2 represent the time-of-flight of the pulse travelling through the buffer rod and through the buffer 623 

rod and sample, respectively. 624 
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 626 

Figure 3. Measured time-of-flight in distilled water between 60 °C and 5 °C (left), calculated 627 

sample path length and 5th-order polynomial fitting (right). 628 
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 630 

Figure 4. Process Analytical Technologies (PAT) tools plot of the crystallization of a 9% w/w CB 631 

in HOSO blend (a). The different regions of the crystallization process are indicated with roman 632 

numerals (I-IV). First derivative plot overlaid on the other PAT tools parameters (b) and 633 
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enlargement of the melting zone (c). Process temperature (-), velocity of sound (-∙-), acoustic 634 

attenuation (∙∙∙), light transmittance (--), light absorbance (-o-) and first derivative of the velocity 635 

of sound (-◊-) . 636 
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 638 

Figure 5. Polarized Light Microscopy (PLM) image of a 15% CB in HOSO mixture while 639 

crystallizing under shear. Onset of nucleation (a) and formation of the spherical aggregates 640 

network (b). Scale bar is 200 µm for both figures.  641 
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 643 

Figure 6. Velocity of sound of crystallized CB/HOSO oleogels between 5 and 35 °C. The error 644 

bars show the standard deviation of three measurements for each concentration. The velocity of 645 

sound of the pure HOSO phase is also plotted for reference. 646 
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 648 

Figure 7. SFC% calculated with pNMR with respect to temperature for the different CB/HOSO 649 

blends. The datapoints were fitted using a Gompertz-type model, similar to the one described in 650 

Farmani (2015). 651 
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 653 

Figure 8. Predicted SFC(%) values obtained from the supervised-machine learning models, 654 

compared against the measured SFC(%) from pNMR (blue circles) as a function of temperature: 655 

a) Linear model (red upward triangles), b) Fine Tree model (red downward triangles), c) Gaussian 656 

Process Regression (red squares) and d) histogram plot showing the RMSE on the 𝑆𝐹𝐶(%) values 657 

for each model. 658 
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 660 

 661 

Figure 9. Process Analytical Technologies (PAT) tools plot of the crystallization of a 9% w/w CB 662 

in HOSO blend. Process temperature (-), velocity of sound (-∙-), acoustic attenuation (∙∙∙), and 663 

predicted SFC% with the GPR model (-o-). 664 
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 666 

Figure 10. Evolution of ultrasound predicted SFC% during cooling from 40 °C to 5 °C and heating 667 

(5 °C to 40 °C) for oleogels containing different CB w/w %. 668 
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 670 

Table 1. Velocity of sound and acoustic attenuation for oleogel samples at the end of the 671 

crystallization (5 °C). 672 

CB % (w/w) Velocity of Sound (5 °C) (m/s) Acoustic Attenuation (5 °C) (dB) 

9 1545.8 ± 2.2 2.25 ± 1.13 

11 1555.1 ± 1.2 2.42 ± 0.09 

13 1567.5 ± 6.5 2.61 ± 0.06 

15 1578.6 ± 4.0 3.31 ± 0.42 

 673 

 674 


