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Abstract. The life cycle of industrial manipulators is heavily affected by wear 

due to continuous and repetitive movements the joints make. The consequent 

increase of backlash can jeopardize the correct execution of a task and, eventu-

ally, cause unexpected downtimes and economical losses. The present paper 

proposes a preliminary analysis of the effects of the presence of backlash be-

tween the motor and the joint shafts in a collaborative robot. To do so, different 

levels and locations of such fault have been simulated in a pick-and-place ap-

plication using a dynamic model of a UR5 manipulator. The simulation results 

show how the deviations of the position of the tool center point from the desired 

trajectory highly depend on which joint presents a non-nominal behavior. The 

manuscript also introduces a methodology to detect the presence of backlash in 

industrial manipulators without any need for additional sensors. Besides the dif-

ferences in the angular position measured by the motor (input) and the joint 

(output) encoders, spikes, whose magnitude depends on the backlash severity, 

arise in the motor currents. From these signals, a pool of health features candi-

dates can be then extracted and considered for future applications in diagnostics 

and prognostics routines. 

Keywords: Industrial Robots, Collaborative Robotics, High-Fidelity Model-

ling, Backlash, Health Management, Diagnostics. 

1 Introduction 

The level of automation within industrial companies has grown significantly in the 

last decade, driven in no small part by the increasingly widespread use of collabora-

tive robots (cobots) [1]. Since any critical malfunctioning of these machines could 

lead to production wastes, unexpected downtimes, and economical losses, their cor-

rect health assessment is of primary importance. To do this, Data-Driven Models 

(DDMs) are used to extract health features from signals coming from the robot and 

other additional sensors to detect a fault at its early stage and optimize the mainte-

nance procedures on the machine [2-3]. The drawback of this approach consists in its 
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need for large datasets of both healthy and degraded robots to properly detect and 

classify a faulty unit. However, since a robot mean time between failures is in the 

order of tens of thousands of hours [4], there is a shortage of data coming from robots 

operating in non-nominal conditions [5]. To overcome this problem, a possible solu-

tion is represented by the development of a High-Fidelity (HF) model of the manipu-

lator in which to inject simulated faults and failures of different types and magnitudes. 

Signals generated by the robot simulation model would be representative of its behav-

ior both in nominal and degraded operating conditions and could be fed to DDMs for 

health features selection. The feasibility of this approach has been proven in previous 

studies like [6], where a properly validated mathematical model of a robotic roller 

hemming device has been used to inform the machine learning routines used both for 

diagnostics and prognostics purposes. To do so, proper knowledge of the possible 

failure modes affecting both industrial and collaborative manipulators, and the effects 

on their performances, is crucial. In general, a robot is made up of three main macro-

elements: the control unit, the teach pendant and the robotic arm. Except for acci-

dental damages, the first two components are only subjected to electrical failures, 

which can be easily recognized by the built-in control logic. On the contrary, mechan-

ical faults to the joints gearboxes, besides representing the most common failure mode 

in industrial robots [7], are less likely to be autonomously detected by the robot [8].  

In this context, the present study provides a first insight into the effects of the pres-

ence of backlash between the input and the output shaft in a joint of a collaborative 

robot. Using a simulation model of a UR5 manipulator from Universal Robots, differ-

ent levels and locations of backlash have been simulated and their effects on the Tool 

Center Point (TCP) position and motor currents have been quantified. The research 

campaign is a continuation of the work done in [9], where a UR5 multibody model 

has been developed in a MATLAB/Simulink environment and validated with experi-

mental results. 

2 Dynamic Model of a UR5 Collaborative Robot 

To build a simulation model able to replicate the behavior of the real robot, it has 

been necessary to specify both the kinematic and dynamic properties of the manipula-

tor and to properly tune the Proportional-Integrative (PI) parameters with which the 

joints control logic have been modeled. The Denavit-Hartenberg coefficients, used to 

build the robot kinematic chain, together with the values of mass and position of the 

center of mass of each joint/link, are provided by the manufacturer [10]. On the other 

hand, inertia tensors and joints friction have been identified according to the method-

ologies provided in [11] and [12], respectively. However, since not all the robot iner-

tia parameters are identifiable, a mismatch among simulated and measured joints 

currents still persists. This issue will be addressed in future studies where the UR5 

inertia tensors will be fully identified according to the methodology described in [13]. 

As for the real robot, the only input provided to the UR5 simulation model is the 

set of joints angular positions (qset) required to perform the desired trajectory. All the 

other quantities (i.e., motor voltages, currents, joints angular velocities, and torques) 



3 

are internally calculated, for each one of the six joints of the manipulator, according 

to the joint scheme reported in Fig. 1. 
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Fig. 1.  Schematic representation of the dynamic model of the UR5 collaborative robot. 

The control electronics has been structured in three nested control loops. The 

outermost ones are used to compensate the errors related to joints angular positions 

(epos) and the motor angular velocities (evel). On the other hand, the current control 

logic evaluates the reference voltage (Vref) as a function of the reference (iref) and the 

feedback (iFB) motor currents, and the motor angular position (qM,FB). This infor-

mation is sent to the power electronics that modulates the network voltage (Vnet) to 

provide the electric motor the supply voltage (Vsup). Then, the gearbox model esti-

mates the joint torque (T) taking into account friction losses. Torques are then given 

as input to the robot multibody model from which, through direct dynamics, joints 

angular positions (q) are determined and sent to the resolvers from which the feed-

back signals qFB are obtained.  

In case of a fault (i.e., backlash), the control logic will try to compensate the off-

nominal behavior of the robot by minimizing the deviation of the actual joints posi-

tions from the nominal ones. As it will be better highlighted in section 3, the macro-

scopic effects of this drop in the manipulator performance will affect the TCP pose 

which is crucial, for the end user, for a proper competition of the assigned tasks. 

 

2.1 Moto-reducers 

To build a high-fidelity simulation model of a collaborative robot, detailed models 

of all its components should be developed. However, this would lead to high simula-

tion times, so simplifications should be adopted. In the present research, only the 

shoulder joint has been modeled using a three-phase AC motor, while, for the other 

ones, simplified models of a DC brushless motor have been adopted. This choice has 

been driven by the fact that, according to [14], this is the joint with the highest stop-

ping time. 

The reduction of the motor speed, and the consequent increase in the joint torque, 

is achieved through a gearbox with a reduction ratio of 101:1. 
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The mechanical transmission is described through a damping-stiffness (c-k) model 

[15] so that the ideal output torque (Tid) is defined as: 

 

 Tid =                                                                                        , (1)  

 

 

being θrel and θd,rel, respectively, the relative angular position and velocity of the 

gear teeth, and α the maximum clearance, expressed in radians, between them. How-

ever, due to the presence of friction within the joint, a friction torque (Tf) must be 

subtracted to Tid to obtain the actual torque (T) at the output shaft. This value is de-

termined by an approximation of the Stribeck curve: 

 Tf = (Tf,s-Tf,c) ּ[1-tanh(10ω)]+Tf,c+fv ּ ω , (2) 

being Tf,s and Tf,c, respectively, the static and the Coulomb friction torques, fv the 

viscous friction coefficient, and ω the joint angular velocity at the output shaft. In the 

left image of Fig. 2, are depicted, for all the robot joints, the values of these contribu-

tions with respect to both the joint and motor angular velocities. For an accurate de-

scription of this phenomenon, the viscous friction coefficients are determined as a 

function of the joints temperature according to the findings reported in [16]. These are 

used to determine the experimental trends of the friction torques for the UR5 shoulder 

joint, reported in the right graph of Fig. 2, in a range of temperature likely to be en-

countered by a robot in an industrial environment. 

 

Fig. 2. Friction torques of the UR5 joints at 28 °C (left); Friction torque of the UR5 shoulder 

joint at different operating conditions (right). 

 
  
 

  
 

𝑘𝜃𝑟𝑒𝑙 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 𝑖𝑓𝛼 = 0  𝑛𝑜𝑏𝑎𝑐𝑘𝑙𝑎𝑠ℎ 

𝑘 𝜃𝑟𝑒𝑙 − 𝛼 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 𝑖𝑓 𝜃𝑟𝑒𝑙 > 𝛼 ∧  𝑘 𝜃𝑟𝑒𝑙 − 𝛼 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 > 0

0 𝑖𝑓 𝜃𝑟𝑒𝑙 > 𝛼 ∧  𝑘 𝜃𝑟𝑒𝑙 − 𝛼 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 < 0

𝑘𝜃𝑟𝑒𝑙 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 𝑖𝑓 𝜃𝑟𝑒𝑙 < 0 ∧  𝑘𝜃𝑟𝑒𝑙 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 < 0

0 𝑖𝑓 𝜃𝑟𝑒𝑙 < 0 ∧  𝑘𝜃𝑟𝑒𝑙 + 𝑐𝜃𝑑 ,𝑟𝑒𝑙 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑛𝑜𝑐𝑜𝑛𝑡𝑎𝑐𝑡 
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2.2 Sensors 

Before being used to close the relative control loops, the signals of the joint angu-

lar position, motor angular velocity, and current coming from the moto-reducers re-

spectively pass through blocks used to simulate the presence of three sensors: 

1. Resolver: a magnetic encoder, integral with the joint shaft, which measures the 

feedback angular position (qFB) used to close the position control loop; 

2. Optical encoder: mounted on the motor shaft to measure its angular position (qM,FB) 

and velocity (qdM,FB) used to close the motor speed control loop. 

3. Current sensor: it measures the motor current (iFB) used to close the relative loop. 

First-order transfer functions have been adopted to simulate the current sensors, 

while second-order ones have been implemented for the two encoders. In addition, to 

replicate a real device, white noise, with the same standard deviation as the one of the 

signals measured from the UR5, has been added to the simulated quantities which 

have been then digitalized using a Sample and Hold circuit and a quantizer [9]. 

3 Simulations Results 

Since, according to [17], robots are mainly used for handling tasks, it has been de-

cided to study the effect of backlash on the UR5 TCP position during the pick-and-

place of a 2 kg mass. The trajectory taken as a reference in this work is the second of 

the five ones described in [9] which have been designed to represent the movements 

usually performed by an anthropomorphic manipulator during such applications. As 

an example, in Fig. 3, are reported the deviations of the position of the TCP in case of 

a backlash α equal to 0.1° in different joints of a UR5 cobot. 

 

Fig. 3. Effects of backlash in different joints on the robot TCP position over the same pick-and-

place trajectory. 
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Since the value of the backlash α over which Universal Robots manipulators au-

tonomously detect a failure is not known, a trial-and-error approach has been used to 

detect such a threshold. Pick-and-place applications do not often require high accura-

cy in the positioning of an object. So, a maximum deviation of 0.5 mm, with respect 

to the nominal TCP position, has been labeled as not acceptable for the correct execu-

tion of the task. On the contrary, for other uses such as assembly or welding, which 

demand high precision movements, lower acceptability thresholds could be chosen. 

This information allows identifying the corresponding maximum acceptable level of 

backlash α, equal to 0.1°, which, as shown in Fig. 3, would lead to a deviation of the 

TCP position from the desired path higher than the above-mentioned limit. 

From the simulations, it is possible to see that, for the proposed case study, the 

most critical joints are the ones of the base, the shoulder, and the elbow. This can be 

attributed to the fact that in general, for industrial manipulators, the wrist group is 

quite compact, while longer links connect the first three joints of a robot arm. So, 

each joint has a different impact on the proper position and orientation of the TCP, 

although similar results have been obtained in [9] for other trajectories.  

Nevertheless, since the TCP pose derives from the forward kinematics applied to 

the joints angular positions, unless it is measured by external devices, it cannot be 

directly used to detect the presence of backlash in a robot arm. Instead, this can be 

done by comparing the measurements coming from the two encoders, mounted before 

and after the gearbox, integral with the motor and the joint shaft respectively. In the 

presence of backlash, there would be a mismatch between the two signals which will 

not be scaled only by the gear ratio. In addition, as reported in Fig. 4, current signals 

are also affected by the presence of such a fault and can be then used to detect an 

anomaly in the robot behavior. 

 

Fig. 4. Comparison of the effects of different levels of backlash on the motor current of the 

shoulder joint during a pick-and-place trajectory. 

In the proposed case study, the analysis of the motor currents has been performed 

only in the case of a backlash on the shoulder joint. This choice has been driven by 
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the fact that, as already mentioned, this component is the only one in which the motor 

is modeled as a three-phase, as it actually is in the robot. In Fig. 4, it can be observed 

that, due to the presence of the backlash, whenever the sign of the quadrature current 

undergoes a variation, the transmitted torque is null for the time required to recover 

the clearance. This is due to the loss of contact among the gear teeth that can be 

caused by both a commanded inversion of the joint motion or by a change in the di-

rection of the combined action of gravity and inertia forces. This leads to a mismatch 

between the reference and the feedback signals of the joint angular velocity which 

makes the current control loop command an increment, in absolute value, of the motor 

voltage to compensate such error, represented in Fig. 4 by the current spikes whose 

magnitude is correlated to the level of backlash. 

4 Conclusions 

The present paper provides a first insight into the macroscopic effects that the 

presence of backlash inside a joint of a collaborative manipulator can have on its 

overall performance. To do this, a mathematical model of a UR5 collaborative robot 

has been developed to study the deviations of the TCP positions and the motor cur-

rents from their nominal operating conditions in a pick-and-place application. Other 

typical robot tasks, such as welding, polishing, and drilling will be an object of future 

research. 

For the proposed case study, simulation results suggest that the mismatch between 

joint angular positions measured by the two encoders and the spikes in the motor 

currents could be used as possible features candidates for studies aimed to assess the 

health status of an industrial robot.  

Future work will be focused on the validation of the UR5 simulation model in non-

nominal operating conditions. For more accurate results, the three-phase AC motor 

model will be extended to all the robot joints which will be also equipped with a more 

detailed model of the gearbox as the one introduced in [8]. An extensive simulation 

campaign will be then run to simulate the presence of other failure modes, both me-

chanical and electrical, in order to support data-driven algorithms for faults and fail-

ures identification, classification, and prognosis. 
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