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Network Support for High-performance
Distributed Machine Learning

Francesco Malandrino, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,
Nuria Molner, Student Member, IEEE, and Antonio de la Oliva, Member, IEEE

Abstract—The traditional approach to distributed machine
learning is to adapt learning algorithms to the network, e.g.,
reducing updates to curb overhead. Networks based on intelligent
edge, instead, make it possible to follow the opposite approach,
i.e., to define the logical network topology around the learning
task to perform, so as to meet the desired learning performance.
In this paper, we propose a system model that captures such
aspects in the context of supervised machine learning, accounting
for both learning nodes (that perform computations) and infor-
mation nodes (that provide data). We then formulate the problem
of selecting (i) which learning and information nodes should
cooperate to complete the learning task, and (ii) the number
of epochs to run, in order to minimize the learning cost while
meeting the target prediction error and execution time. After
proving important properties of the above problem, we devise
an algorithm, named DoubleClimb, that can find a 1 + 1/|I|-
competitive solution (with I being the set of information nodes),
with cubic worst-case complexity. Our performance evaluation,
leveraging a real-world network topology and considering both
classification and regression tasks, also shows that DoubleClimb
closely matches the optimum, outperforming state-of-the-art
alternatives.

Index Terms—Network orchestration, machine learning, edge
computing.

I. INTRODUCTION

Owing to the ever-increasing scale and complexity of the
learning tasks to perform, machine learning (ML) algorithms
have swiftly been extended to work in a distributed fashion,
with the purpose of leveraging the computational capability
of multiple nodes, possibly across multiple datacenters [1]–
[4] and/or allowing nodes belonging to different parties to
cooperate in a learning task without sharing sensitive data [5]–
[7].

More recently, distributed ML has emerged also as an
excellent match for new generation (5G-and-beyond) net-
works. It can be used for the management of the network
(as envisioned by such initiatives as ETSI ZSM [8], ENI [9],
and O-RAN [10]), as well as to enable user services within
the so-called intelligent edge [11]. In general, new generation
networks can (a) integrate a wide number of heterogeneous
nodes, including those that can provide the data used for ML
tasks, (b) provide a distributed computational infrastructure
needed to run the ML algorithms (see e.g., [12]), and (c) be
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dynamically reconfigured so as to perform the ML task at hand
with the required performance.

However, implementing an ML task in a 5G-and-beyond
network also poses important challenges. Specifically, it re-
quires to define the logical topology of the nodes that coop-
erate towards the ML task, i.e., making decisions on:

• which computing nodes in the different locations of the
network edge should interact during the learning process;

• how many (and which) data sources to exploit, and which
computing nodes should receive their data.

The above decisions influence each other, often in coun-
terintuitive ways: as an example, seeking information from
too many nodes may result in longer learning times, due to
the additional waiting. Furthermore, a given target learning
error (e.g., classification accuracy) may be reached through
alternative, completely different approaches, e.g., collecting a
significant quantity of information or performing more epochs
to process a smaller set of data.

In spite of the wide usage of ML in mobile networks and
the considerable attention devoted to it, most of the works aim
at exploiting the network more efficiently, e.g., reducing the
overhead [1], [13] or dealing with straggling nodes [14]. Just
a small number of recent works [5], [15] have characterized
the impact of the network topology on the performance of
distributed ML, providing interesting insights on, e.g., the
optimal network connectivity. However, none of these works
tackle the problem of defining the logical network topology
around the ML task to perform.

In this work, we focus on distributed, supervised learning,
and aim at filling this gap by making the following main
contributions:

• we develop a system model that can represent several
relevant supervised ML tasks and account for the specific
features of a 5G-and-beyond environment, most notably, the
interaction between learning nodes and information nodes;

• we formulate the problem of choosing the computing nodes
and data sources, as well as the links connecting them, with
the goal of minimizing the (monetary or energy) cost of the
learning process, subject to prediction quality and learning
time requirements;

• we prove that the problem is NP hard, but also, and most
importantly, that it is submodular. In particular, although its
constraints are not monotonically increasing, we show that
it can be solved via an iterative algorithm with excellent
competitive ratio guarantees;



• we propose an iterative algorithm, called DoubleClimb,
which has cubic worst-case time complexity and attains a
1 + 1/|I| competitive ratio, with I being the set of infor-
mation nodes. We evaluate DoubleClimb over a real-world
topology, showing that it closely matches optimal decisions
and substantially outperforms state-of-the-art alternatives.
The rest of the paper is organized as follows. After review-

ing related work in Sec. II, we describe our system model
and how it can represent different supervised ML tasks in
Sec. III. In Sec. IV, we formulate the problem we tackle
and discuss its complexity. Sec. V characterizes the learning
performance, while important properties of our problem are
proven in Sec. VI. We then present the DoubleClimb algorithm
and analyze its complexity in Sec. VII, before evaluating its
performance in Sec. VIII. We conclude the paper in Sec. IX.

II. RELATED WORK

Our work is related to the body of research works on
distributed learning. In this context, in the simplest scenar-
ios [16], all training data is known before the training itself
starts, and the purpose of performing distributed learning
is simply to leverage more computational power. A more
complex variation is represented by active learning where
new information arrives during the learning process, and is
combined with the offline training set [17], [18]. Applications
include drone planning [2] and network management [19],
[20].

Federated learning is a more recent trend, tackling scenarios
where participating devices are not required to share poten-
tially sensitive data [7], [21]. Depending upon the specific
scenario, new data may or may not arrive during the training
process.

Several works propose generic methodologies to mitigate
common hurdles of distributed ML, including scaling the
parameter servers [1], dealing with slower nodes [14], and
trading learning efficiency for convergence speed [13]. All
these works propose novel algorithms and/or approaches to
adapt to the existing network structure, e.g., by limiting the
overhead, to perform the learning task at hand as efficiently
as possible. Importantly, none of them envision to do the
opposite, i.e., adapting the nodes’ interaction to the learning
task.

Some works seek to theoretically characterize the conver-
gence of supervised ML and how it is influenced by the coop-
eration among learning nodes. The study in [4] characterizes
the convergence of a wide class of multi-agent algorithms.
Using tools from spectral graph analysis, it establishes a
relation between the topology formed by pairs of cooperating
nodes and the convergence of the algorithm they run. [15]
focuses on distributed ML over regular topologies, and seeks
to establish the graph degree associated with the shortest
convergence time – as opposed to the lowest number of epochs
–, finding that such a degree depends on the distribution
of the nodes’ computing time. Through similar steps and
targeting a resource-constrained edge-computing scenario, [5]
searches for the optimal trade-off between local computation
and global parameter exchange in federated learning scenarios.

TABLE I
MAIN NOTATION

Symbol Meaning
L, I L-nodes and I-nodes set (resp.)
ρi(t) pdf of sample generation time at I-node i ∈ I
ri ave. no. of samples per epoch by I-node i

Xk
l

amount of samples at the beginning of epoch k

at L-node l

cl, ci operational cost of L-node l and I-node i (resp.)
cl,l� communication cost between L-nodes l, l�

ci,l communication cost between I-node i and L-node l

�max maximum learning error
Tmax maximum duration of the learning process

p(l, l�)
binary variable determining if L-nodes

l and l� cooperate (matrix P)

q(i, l)
binary variable determining if L-node node l obtains

samples from I-node i (matrix Q)
K number of epochs to run

τkl (t) pdf of the computation time at L-node l and epoch k

�K(P,Q) global error at the end of the whole learning process
TK(P,Q) expected time to complete the whole learning process
CK(P,Q) global cost for running the whole learning process

With respect to [4], [5], [15], we (i) seek to adapt the logical
network topology to the learning task, and (ii) consider not
only learning nodes (in charge of processing information), but
also information nodes, where data comes from. The latter is
especially critical, as it allows us to characterize and study
the trade-off between gathering information and extracting
knowledge from it.

III. SYSTEM MODEL

Our system model addresses a generic distributed, super-
vised ML task where multiple nodes cooperatively seek to
minimize a loss function, via gradient descent approaches such
as the stochastic gradient descent (SGD) algorithm [3], [5],
[15], [22]. In the following, we discuss how the behavior
of individual nodes and their interactions are described by
our system model, with reference to different real-world ML
approaches.

Nodes’ interactions. A unique feature of our model is its
ability to capture the presence of two different types of nodes:
• learning nodes, or L-nodes for short, that, having computa-

tional capabilities, run the ML algorithm and can exchange
gradient data during learning; we denote their set by L;

• information nodes, or I-nodes for short, which can provide
information to the L-nodes; we denote their set by I.

Real-world counterparts of L-nodes include physical servers
and virtual machines running at the intelligent network
edge [11] or in the cloud. I-nodes, on the other hand, represent
such entities as monitoring platforms, network nodes, and
sensors.

In our system model, L-nodes behave in a similar way
to their equivalents in [5], [15]. Their high-level goal is
to cooperatively train a ML model network, and do so by
minimizing a loss function via distributed optimization. The
computation time at each epoch of the learning process at
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a generic node l ∈ L follows an arbitrary distribution with
probability density function (pdf) τkl (t), which also accounts
for the node capability and the performance of the algorithm it
runs. Note that, in the most general case, such a pdf depends on
the current epoch (k) of the learning process, since the amount
of samples used for learning may vary from an epoch to the
next one. This reflects the need to exploit all the available
data as soon as it becomes available [18], [23], as opposed
to training on a fixed number of samples as in more static
scenarios. L-nodes are logically connected to form an arbitrary
logical topology, i.e., a graph where vertices represent L-nodes
and edges, hereinafter referred to as L-L edges, represent the
logical links connecting them. As exemplified in Fig. 1 (steps
3–4), after every epoch, each L-node sends its gradient data to
its neighboring L-nodes on the logical topology, and waits for
them to do the same before moving on. The logical topology,
i.e., which pairs of L-nodes are neighbors and exchange
gradient data, is one of our main decision variables.

I-node 1 L-node 1 L-node 2 I-node 2

1: gradient
iteration 1

2: gradient
iteration 1

3: gradient data
iter. 1

4: gradient data
iter. 1

5: request reading

6: reading
7: gradient
iteration 2

8: request reading

9: reading
10: gradient
iteration 2

Fig. 1. Scheme of the interactions between L- and I-nodes in a general case.

Each L-node can be logically connected to one or more
I-nodes, through the so-called I-L edges. Only I-nodes that
are connected to at least one L-node are added to the logical
topology. After each epoch of the learning process, an L-node
requests data from the I-nodes it is connected to (steps 5 and 8
in Fig. 1), receiving such data (steps 6 and 9 in Fig. 1) after a
sample sending time modeled by pdf ρi(t). In the following,
we denote with ri the expected number of samples provided
by I-node i at each epoch. The received samples are used
by an L-node l to perform the next epoch, in addition to the
data it received in the previous epochs and the number X0

l of
(offline) samples initially available at l. Note that this behavior
is compatible with current, widely deployed applications (e.g.,
IoT) using publish/subscribe mechanisms, such as MQTT [24],
or Zenoh [25], or even the notification mechanisms included
in the 3GPP Service Based Architecture [26] of Release 15

and above.
Both L-nodes and I-nodes have per-epoch operational costs,

denoted by cl and ci, respectively. Moreover, communication
between nodes that are neighbors in the logical topology
involve additional costs, denoted by cl,l� or ci,l depending on
the type of nodes. In general, such costs vary across different
pairs of nodes, which also account for the fact that a logical
link may correspond to multiple physical ones, hence, entail
a higher cost due to energy and/or infrastructure payments.

Modeling real-world supervised ML tasks. As mentioned,
our model can describe a wide range of real-world ML tasks,
falling in the category of supervised learning, for which a
ground truth is available. The most prominent examples of
supervised learning tasks are classification (where the quantity
to predict is discrete, e.g., whether or not a given transaction
is fraudulent) and regression (where the quantity to predict is
continuous).

In a distributed setting, supervised learning can be per-
formed in two main modes:
• distributed learning with static data, where no new data

arrive during the learning process. In this case, there are no
I-nodes, and each L-node learns from its X0

l initial samples,
as well as the gradient data from the other L-nodes;

• active learning [17], where new samples can be collected
from data sources (e.g., sensors) during the learning process
so as to improve the learning quality. In this case, the
network topology includes both L- and I-nodes.

Importantly, our model can also capture federated learning [5],
[6], [27], an emerging paradigm whereby different devices
(e.g., smartphones) cooperatively train a model without shar-
ing (potentially sensitive) data. In this case, each device is
modeled as an L-node; if, in the specific scenario at hand,
devices collect or generate additional information while learn-
ing, an I-node per device is added, only connected to the
corresponding L-node.

For all tasks and approaches, our model can capture the
cases where the communication between nodes happens in
a peer-to-peer fashion [4], [15], as well as those when it is
mediated by a parameter server, also known as broker [5],
[13], [27]. In the latter case, the logical topology created by
the L-nodes is fully connected.

IV. PROBLEM FORMULATION AND APPROACH

Our decisions concern which nodes’ interactions should
be enabled, and the number of epochs to execute during
the learning process. We thus define the following decision
variables:
• the set of binary variables p(l, l�) ∈ {0, 1}, expressing

whether L-nodes l and l� cooperate during learning;
• the set of binary variables q(i, l) ∈ {0, 1}, expressing

whether L-node l ∈ L obtains samples from I-node i ∈ I;
• the total number of epochs, K, to perform so that the learn-

ing task meets the desired learning quality and execution
time.

For compactness of notation, we will collect the p- and q-
variables in matrices P = {p(l, l�)} and Q = {q(i, l)},
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respectively. Given the decisions P, Q, and K, we can
compute the following system performance metrics:
• the expected time required to the system to complete the

learning process, denoted by TK(P,Q);
• the total cost CK(P,Q), incurred by the system to complete

the learning process, which accounts for (i) the cost of the
infrastructure required to run the distributed learning, and
(ii) the cost of the communication between the involved
nodes;

• the (system-wide) learning error �K(P,Q) at the end of the
learning process (i.e., after K epochs).

Notice that the above error, cost, and learning time may depend
upon other quantities, e.g., the number of samples available
for training; however, to simplify the notation, we will write
explicitly only the dependences on our decision variables K,
P and Q as their indices. Also, it is important to point out
that in general the concrete definition of error � depends on
the type of learning task being performed, e.g.,
• for classification tasks, � � 1 − α, where α is the classifi-

cation accuracy (i.e., the rate of correctly labeled items);
• for regression tasks, � � 1−R2, where R2 is the coefficient

of determination [28].
In both cases, � = 0 corresponds to perfect learning, while
larger � values identify worse learning quality, i.e., higher
error. In the remainder of the paper, we use learning error or
learning quality when referring to generic machine learning,
and more precise terms (e.g., accuracy for classification) when
discussing specific learning tasks.

Our objective is to minimize the total cost, while ensuring
that the final learning error does not exceed the limit �max, i.e.,
�K(P,Q) ≤ �max, and the learning is completed within the
target time, i.e., TK(P,Q) ≤ Tmax. The problem can then
be synthetically formulated as:

min
P,Q,K

CK(P,Q), (1)

s.t.min

�
�max

�K(P,Q)
,

Tmax

TK(P,Q)

�
≥ 1. (2)

The problem is combinatorial in nature and includes a large
number of binary variables (the elements of matrices P and
Q). This makes it very hard to solve, even without consid-
ering the complexity of computing the quantities CK(P,Q),
�K(P,Q), and TK(P,Q). Specifically, we prove in Sec. VI
that the problem is NP hard.

Remarkably, in spite of the problem complexity, we can
design an efficient and provably effective solution strategy.
We do so by first characterizing the system performance as
functions of the problem decision variables (Sec. V), and
then showing that the problem in (1) and (2) is submodular
(Sec. VI). Leveraging this result, we can devise the Double-
Climb algorithm (Sec. VII), which has cubic worst-case time
complexity and proves to be 1 + 1/|I| competitive.

V. CHARACTERIZING THE BEHAVIOR OF THE LEARNING
PROCESS

In order to make our decisions, i.e., to choose the best values
for the P and Q matrices, we need to understand their impact

on the learning behavior, e.g., how the learning quality evolves
across epochs. In spite of its importance, and the vast quantity
of research devoted to it, the goal of fully characterizing
a learning process has not yet been achieved. Indeed, as
reported in [29], the learning process can best be described
as empirically predictable. In other words, (i) learning tasks
consistently behave according to the same laws, but (ii) the
parameters of such laws depend upon the concrete learning
task at hand (e.g., the selected neural network architecture and
the data used for training). In this section, we describe how
to characterize the learning accuracy (Sec. V-A), the time it
takes (Sec. V-B), and the associated cost (Sec. V-C).

A. Learning accuracy

One of the main metrics in our problem is the learning qual-
ity, or, equivalently, error �, and how it changes according to
(i) the number of epochs being performed, (ii) the connectivity
among L-nodes, and (iii) the connectivity between I- and L-
nodes. Concerning the first two aspects, [4], [15] have derived
a square-root behavior, which can be expressed as:

�K = a1 +
a2√
Kγ

where K is the number of epochs performed, and γ is the
spectral gap1 of the graph describing the cooperation among
L-nodes. Notice that such a result has been proven without
reference to a specific dataset or neural network architecture;
these elements are accounted for through the a1 and a2
coefficients.

Then let us define X as the number of available samples,
averaged over epochs and learning nodes. The relationship
between the average size X of local datasets and the learning
quality is a case of “empirical predictability”: in spite of
the lack of theoretical results explaining such a behavior, all
measurement works we have surveyed [3], [17], [30]–[32],
as well as our own experiments, have invariably found a
logarithmic law, i.e.,

�K ∝ log (a3 +X) .

Combining the two above expressions, we can write:

�K = c1 +
c2 log(c3 +X)√

Kγ
. (3)

In terms of our decision variables P and Q, γ is the difference
between the first and second eigenvalues of matrix P, i.e.,

γ = |eig1(P)|− |eig2(P)|,

while the size X of local datasets can be written as:

X =
1

K|L|
�

l∈L

K�

k=1

�
X0

l +
�

i∈I
kriq(i, l)

�
,

where q(i, l) ∈ {0, 1} is the element of Q describing whether
I-node i is connected with L-node l. Notice that, by using
expected values, we are able to write (3) using deterministic,

1The spectral gap of a graph is the difference between the moduli of the
two largest eigenvalues of its adjacency matrix.
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known quantities, in spite of the fact that the underlying
process is stochastic in nature.

The generic law in (3) describes, as confirmed by over-
whelming evidence [3]–[5], [15], [17], [29]–[32] a very wide
set of ML tasks in a very large set of applications. However,
the concrete values of coefficients c1–c3 depend upon the
concrete learning task at hand, including the DNN architecture
and dataset being used. As a consequence, a small-scale
profiling of the selected DNN and dataset is necessary, in
order to establish the c1–c3 coefficients; afterwards, our system
model and the solution strategy described in Sec. VII can be
leveraged to optimize the actual, large-scale learning. Such an
approach has been used in [29], and successfully validated
over multiple learning tasks, models, datasets, and applica-
tions, including speech recognition using LSTM networks,
image classification with convolutional networks, and human
attention model with recurrent networks.

Importantly, once the concrete learning task to perform is
known and the profiling phase has been completed, the exact
values of all the quantities needed to compute (3) are known,
i.e., such values are known parameters of our problem (as
opposed to random variables).

B. Learning time

We now consider that the total number of epochs K, the
pdfs ρi(t) of the sample generation time at each I-node i,
and the pdfs τkl (t) of the computation time of each L-
node l at epoch k are given. Recall that τkl (t) depends on
k, as the presence of I-nodes in our system model implies
that the computation time distribution must account for the
quantity Xk

l of available data at L-node l and epoch k. In
view of the fact that the computation time of DNNs grows
linearly [33] with the quantity of data, we can write:

τkl (t) =
Xk

l

X0
τ0l (t) . (4)

Notice how the linear relationship in (4) is consistent with
real-world measurements [29], theoretical studies [5], [15], and
the intuition that, especially when data is processed in (mini-)
batches, processing twice the data requires twice the effort.

Also, we define the sets Il = {i ∈ I : q(i, l) = 1} and Ll =
{l� ∈ L : p(l, l�) = 1} of I-nodes and L-nodes (resp.) each L-
node is connected with. Our goal is to compute TK(P,Q),
i.e., the total time required to complete the whole learning
process.

As highlighted in Fig. 1, at every epoch each L-node must
perform the following steps:
• wait for the information coming from the I-nodes i ∈ Il;
• perform its own gradient computation;
• wait for the gradient data coming from the other L-

nodes l� ∈ Ll it is cooperating with.
The first step is complete when all nodes in Il send their

samples. Recalling that each I-node has a sample generation
time distributed with pdf ρi(t), we can derive the cumulative
distribution function (CDF) of the maximum of a set of
independent random variables as the product of individual
CDFs Ri(t), i.e.,

�
i∈Il

Ri(t). Once all data arrive, l can

perform its own gradient computation, whose duration is
distributed according to pdf τkl (t). Recalling that the pdf of the
sum of two independent random variables is the convolution of
individual pdfs, we can write: hk

l (t) = τkl (t) ∗
d(

�
i∈Il

Ri(t))

dt .
For the system as a whole to move to the next epoch,

all L-nodes must have received the gradient data they need.
This, in turn, requires the slowest L-node to have obtained
its information and have performed the computation. Working
again with CDFs, the time taken by such a node is distributed
according to: Hk(t) =

�
l∈L Hk

l (t), where Hk
l (t) denotes the

CDF of the time to complete epoch k at L-node l. By letting
hk(t) = dHk(t)

dt , the expected duration of the learning process
is then given by:

TK(P,Q) =

K�

k=1

� ∞

0

xhk(t)dt.

A numerical example. Fig. 2 exemplifies our methodology
in a case where both the I-node sample generation times
and the L-node computation times are uniformly distributed;
specifically, ρi(t) ∼ U(0.1, 1.9) and τkl (t) ∼ U(1.35, 1.65).
Furthermore, there are |L| = 10 L-nodes, each connected
to |I| = 5 I-nodes.

We begin from the blue line in the plot, representing ρi(t).
To obtain the pdf of the sample generation time of the slowest
I-node, we have to integrate ρi(t) (obtaining Ri(t), a ramp-
like function), then raise it to the |I|-th power (obtaining a
5th-degree polynomial), and finally derive it, obtaining the 4th-
degree polynomial shown by the red line in Fig. 2.

��� ��� ��� ��� ��� ��� ��� ��� ���

����

�

�

�

�

�

�

�
�
�

���������� ����

��������������

������������� �
�
���

������������������
�
���

����������������������

Fig. 2. Toy scenario with |L| = 10 and |I| = 5 where both I-node sample
generation times and L-node computation times are uniformly distributed.
Left: pdfs of the I-node generation time ρi(t) (blue), of the time required by
the slowest I-node (red) and of the compute time τkl (t) (yellow). Right: pdfs
of the time taken by local (green) and global (gray) epochs.

We next perform the convolution between the latter pdf
and τkl (t), represented by the yellow line in the plot. The
result is hk

l (t), represented by the green line in Fig. 2. The
last step consists in computing the distribution of the time
taken by the whole learning epoch, hence, by the slowest
L-node. Integrating hk

l (t), we obtain Hk
l (t), which we raise

to the |L| = 10-th power, and then derive it, obtaining the
pdf hk(t) shown by the gray curve in Fig. 2.

Fig. 3 presents two Gantt charts showing the activity of I-
and L-nodes (blue and yellow bars, respectively) over three
epochs. The top plot refers to the case where all L-nodes use
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3.172 6.286 9.191
Time [s]

i1
l1
l2
i2
l3
l4
i3
l5
l6
i4
l7
l8
i5
l9
l10

N
od

e

Fig. 3. Toy scenario with |L| = 10 and |I| = 5 where both I-node sample
generation times and L-node computation times are uniformly distributed.
Gantt charts show the activity of I- and L-nodes (blue and yellow bars,
respectively), when all L-nodes use all I-nodes (top) and when each L-node
only uses one I-node (bottom). Black vertical lines mark the end time of each
epoch.

all I-nodes, as in Fig. 2: accordingly, it is possible to observe
how all yellow bars start at the same time, after all blue bars
finish. In the bottom plot, we move to a scenario where each
L-node uses only one I-node (specifically, l1 and l2 use i1,
l3 and l4 use i2, etc.). This allows many L-nodes to begin
their work early, however, as we can see from the vertical
bars, the overall decrease in epoch duration is modest – even
absent in the first epoch, where the slowest L-node had to
wait for the slowest I-node. This is due to the fact that, in
this toy example, both the I-node sample generation times
and the L-node computation times are uniformly distributed:
indeed, as also [15] reports, pruning I-L links is most beneficial
when computation and generation times follow more skewed
distributions. At last, we note that the limited reduction in the
learning time shown in the figure is due to the small size of
the scenario; nonetheless, such a gain validates our approach.

Closed-form expression for special cases. The method-
ology outlined above does not require any assumption on
the τkl (t) and ρi(t) distributions, nor on the logical links
between nodes, and the computations it requires can always
be performed numerically. However, closed-form expressions
are available in relevant special cases. Let us focus on a
scenario where (i) all nodes are connected to each other,
and (ii) the computation and the sample generation times are
i.i.d. and exponentially distributed with parameter λk

L and λI ,
respectively. Such a scenario is sufficiently simple to result in
manageable expressions, but also sufficiently complex to allow
us to properly illustrate the power of our methodology.

The computation time TK can be written as:

TK=−
K�

k=1

�

A⊂N :
|A|=|I|+2�
a∈A a=|L|

�|L|
A

� �|I|+2
w=1 (Ak(A, w))aw

λI

�|I|
w=1 waw + λk

La|I|+2

.

In the above expression, the sum over k accounts for all epoch,
k = 1, . . . ,K. The inner sum comes from the multinomial
expansion [34] of a sum of |I|+2 terms (one for each I-node,
one for the L-node connected to them, and one representing
the coefficient) raised to the |L|-th power, where each term is
a polynomial (see also the expression of hk

l (t)). Therefore, the
inner summation is over all sets A of natural numbers such that
their size is |I|+2 and their sum is |L|, and

�|L|
A
�
= |L|!�

a∈A a!

is the multinomial coefficient. The term Ak(A, w) associated
with the w-th element of each set A is:

Ak(A, w) =





�|I|
z=1

�|I|
z

�
(−1)z+1, if w=|I|+ 1�|I|

z=1

�|I|
z

�
(−1)z+1 zλI

λk
L−wλI

, if w=|A|
�|I|
w

�
(−1)w+1 λk

L

wλI−λk
L

, otherwise.

A closed-form expression for the expected duration of the
learning process can also be obtained when each L-node
receives information from all I-nodes, and the I-nodes’ sample
generation times and the L-nodes’s computation times are
i.i.d. and uniformly distributed over (aI , bI) and (akL, b

k
L),

respectively. For simplicity and without loss of generality, let
us assume akL ≤ aI ≤ bI ≤ bkL, ∀k; then, we have:

TK=

K�

k=1

�

A⊂N :
|A|=|I|+2�
a∈A a=|L|

�|L|
A

� �|I|+1
w=1 waw�|I|+1

w=1 waw + 1
×

×
�|I|+2�

w=1

(Ak
1(A, w))aw

�
Z

|I|+1�
w=1

waw+1

1 −Z

|I|+1�
w=1

waw+1

2

�

+

|I|+2�

w=1

(Ak
2(A, w))aw

�
Z

|I|+1�
w=1

waw+1

3 −Z

|I|+1�
w=1

waw+1

4

�

+

|I|+2�

w=1

(Ak
3(A, w))aw

�
Z

|I|+1�
w=1

waw+1

5 −Z

|I|+1�
w=1

waw+1

6

��

where Z1 = akL+bI , Z2 = akL+aI , Z3 = bkL+aI , Z4 =
akL+bI , Z5 = bkL+bI , Z6 = bkL+aI . As in the previous
case, the above expression comes from the multinomial ex-
pansion [34], and, after some algebra, one can obtain the
terms Ak

1(A, w), Ak
2(A, w), and Ak

3(A, w) associated with the
w-th element of each set A, as:

Ak
1(A, w)=





(−2aI)
|I|−(ak

L−aI)
|I|

(bI−aI)
|I|(bkL−ak

L)
, if w=1

(ak
L−aI)

|I|
(|I|(ak

L+aI)+2aI)+(−2aI)
|I|+1

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, if w=|A|

(|I|+1
w )(−2aI)

|I|+1−w

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, else.
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Ak
2(A, w)=





Ak
1(A, |A|)+

|I|+1�
z=1

Ak
1(A, z)(akL+bI)

z+

+
(ak

L−aI)
|I|+1−(ak

L+bI−2aI)
|I|+1

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
+

+ (bI+aI)
|I|+1−(2aI)

|I|+1

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, if w=|A|

−(|I|+1
w )((−bI−aI)

|I|+1−w−(−2aI)
|I|+1−w)

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, else.

Ak
3(A, w) =





(bkL−aI)
|I|−(bI+aI)

|I|(−1)|I|

(bI−aI)
|I|(bkL−ak

L)
, if w=1

Ak
2(A, |A|)+

|I|+1�
z=1

Ak
2(A, z)(bkL+aI)

z−

− (|I|+1)(bkL−aI)
|I|

(bkL+aI)

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
+

+
(−bkL−aI)

|I|+1−(bkL−bI)
|I|+1

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, if w=|A|

(|I|+1
w )(−bI−aI)

|I|+1−w

(|I|+1)(bI−aI)
|I|(bkL−ak

L)
, else.

Intuitively, the three different terms Ak
∗(A, w) are due to the

convolution of the pdfs, which results in a piece-wise function
(see also the expression of hk

l (t)). The support of the different
pieces of the function are as follows:

�
akL + aI , a

k
L + bI

�
for

the first piece where only one pdf is active,
�
akL + bI , b

k
L + aI

�

for the second piece where both pdfs are active and overlap,
and

�
bkL + aI , b

k
L + bI

�
for the third piece where only the other

pdf is active.

C. Learning cost

We define the per-epoch cost as the sum of operational and
communication costs of the L- and I- nodes contributing to
each epoch, i.e.,

C(P,Q) =
�

l∈L

�
cl+

�

l�∈L
cl,l�p(l, l

�)+
�

i∈I
ci,lq(i, l)

�

+
�

i∈I
ci1∃q(i,l)>0 . (5)

Then, we can write the total learning cost over the K epochs
as CK(P,Q) = K · C(P,Q).

D. Number of epochs

The number K of epochs needed to reach the target er-
ror �max depends on two factors. The first is the quantity of
available training data: the more data is available, the more
the learning quality improves at each epoch. The second is
the level of cooperation between L-nodes: the more nodes
cooperate, the higher the quality achieved at each epoch. From
(3), we get:

K ∝ log2 X

γ (�max)
2 .

On the one hand, a high degree of L-nodes makes the learning
process faster, as convergence requires fewer epochs; on the
other hand, each epoch takes longer to complete as there are
more nodes to wait for.

VI. PROBLEM ANALYSIS

We first prove that the problem at hand, formulated in
Sec. IV, is NP hard. On the positive side, we also show
that the problem objective function is submodular and non-
decreasing, while the constraint is submodular and exhibits
only one maximum (we prove the latter part separately for
I-L and L-L edges).

Lemma 1. The problem of optimally configuring the system
for an ML task, expressed in (1) and (2), is NP hard.

Proof: The proof can be obtained via a reduction from the
knapsack problem [35], a combinatorial optimization problem
where a set of S items (with cardinality S) is given, each of
them associated with a weight ωs and a value νs. The goal is
to select a subset of items with maximum total value and total
weight less or equal to a maximum given capacity, Ω. Our
reduction maps any given instance of the knapsack problem
to a simpler, special-case instance of our own, as set forth
next.

The sets of L-nodes and I-nodes are, respectively, L = {l1}
and I = {i1 . . . iS}, i.e., there is only one L-node and as
many I-nodes as the number of items in the knapsack problem.
Further, the L-node is connected with all the I-nodes. We also
set the number of epochs to an arbitrary number K̂ > 0, and
the number of samples generated by each I-node to an arbitrary
number r > 0.

Given the above, P is fixed and the decisions concern only
Q, which is now a vector with elements q(is, l1), mapping
into the xs variables in the knapsack problem. Specifically,
we activate edge (is, l1) in our problem if and only if xs = 1,
i.e., q(is, l1) ← xs. Furthermore, we map edge costs in
our problem into item weights in the knapsack problem. In
particular, let νs correspond to the opposite of the link cost
cis,l1 , then we have a perfect correspondence between the
objective of the knapsack problem and that in (1).

Next, we need to map the capacity constraint in the knap-
sack problem to constraint (2). To this end, we first set
Tmax ← ∞. Then, given that P is fixed, γ = 1, and the
L-node can only receive data from any number of I-nodes, the
amount of data received by L-node l1 in each epoch is r or 0,
depending on the value of xs. A correspondence between the
constraint in the knapsack problem and that in our problem
is then established by fixing �max ← Ω, and setting the c1–c3
coefficients in (3) in such a way that setting xs to 1 results in
an increase of learning quality of ωs, i.e.,

log(c3 +X +Xs)− log(c3 +X)√
K

c2 = ωs,

where Xs = r(K+1)
2 is the increase in the expected number

of samples obtained by using I-node is. In other words, the
equation above represents the increase in the value of learning
quality (see (3)) obtained by activating is; we thus set the
parameters of our problem so that the above increase results
to be equal to the weight ωs assigned to s in the knapsack
problem.

Last, we need the reduction to take (at most) polynomial
time. In our case, it is straightforward to see that the mapping
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takes linear time, namely O(|L| + |I|), hence, the condition
is fulfilled.

In summary, any instance of an NP-hard problem can be
transformed into a special-case instance of our own, which
proves the thesis.

In spite of its complexity, the problem of minimizing (1)
subject to constraint (2) presents several features that can be
exploited to solve it efficiently and effectively. Specifically,
both the objective in (1) and the constraint in (2) are sub-
modular (intuitively, the set-wise equivalent of convex [36]).
Submodular optimization problems can often be solved with
polynomial- or even linear-time greedy algorithms, with very
good, even constant, competitive ratios [37]. Notice how both
the results in [36] and [37] are presented with reference to
abstract, generic problems where the goal is to select some
elements from set X , with no reference (hence, no reliance)
on specific scenarios.

Let us indicate with f(Y) the objective function in (1), and
with g(Y) the constraint in (2). In our case, the set X of
elements to choose from is given by X = L×L∪L×I, i.e.,
the set of possible I-L and L-L edges we can create, and Y is
the subset of actually selected edges.

The objective f(Y) and constraint g(Y) of our problem
have several interesting and useful properties. Concerning the
former, it is possible to prove the following result.

Property 1. The objective function in (1) is submodular and
non-decreasing.

Proof: Let j = (a, b) be an edge in our logical topology
graph, with a ∈ L and b ∈ L ∪ I; let S ⊂ X be the set
of currently selected edges. By adding j, we incur the per-
edge communication cost ca,b; also, we may incur per-node
operational costs ca or cb, depending on whether or not there
are already edges in S with a or b as endpoints. Similar
arguments hold for the cost of adding j to T ⊃ S . Thus,

f(S ∪ {j})− f(S) = ca,b + ca1a�∈S + cb1b�∈S
f(T ∪ {j})− f(T ) = ca,b + ca1a�∈T + cb1b�∈T .

Since S is a subset of T , it also holds that 1a�∈S ≥ 1a�∈T
and 1b�∈S ≥ 1b�∈T , from which it follows that f(S ∪ {j}) −
f(S) ≥ f(T ∪ {j}) − f(T ), i.e., the very definition of
submodularity [36]. The fact that (1) is non-decreasing trivially
comes from the observation that, as more I-L or L-L edges are
added, the cost always increases.

As for the constraint, the analysis is a little more complex,
and we perform it separately for I-L and L-L edges, proving
first Property 2 concerning the former, and then Proposition 1
concerning the latter.

For simplicity of notation, we drop the dependency on P
and Q while presenting our derivations.

Property 2. When the choices are limited to I-L edges,
i.e., X = L × I, then the constraint in (2) is submodular
and has exactly one maximum.

Proof: Let us study the two parts of the constraint
(2) separately, writing g1 = �max

�K
, g2 = Tmax

TK ,
and g(Y) = min{g1, g2}, as exemplified in Fig. 4. From

Number of active edges
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g1 = εmax/εK

g2 = Tmax/TK

g() =min{g1, g2}

Fig. 4. Qualitative example of the constraint in (2) and its components.

(3), g1 = �max√γK
c1

√
γK+c2 log (c3+X)

, and its second derivative is
c2�

max√γK

(c3+X)2(c1
√
γK+c2 log (c3+X))

2+
2c2

2�max√γK

(c3+X)2(c1
√
γk+c2 log (c3+X))

3 .

Such a derivative is always positive, hence, g1 is submodular.
The behavior of g2 is more complex: we know from (3) that

the number of epochs decreases as X increases, according to
an inverse-log law. Also, as shown in Sec. V, τkl (t) and dHk(t)

dt
are proportional to Xk

l and
�

l∈I Xk
l , respectively. Thus, TK

is proportional to K and
�

l∈I Xk
l . Replacing K with (3), we

get that TK behaves like
�

l∈I Xk
l

logX , i.e., it can be shown that
it decreases until it reaches a minimum, and then increases. It
follows that g2 = Tmax

TK is concave, hence, submodular.
Looking now at g(Y), the minimum of two submodular

functions is not guaranteed to be submodular in general; how-
ever, since g1 is not only submodular but also monotonically
increasing, the submodularity of g2 also implies that g(Y)
as a whole is submodular [36]. Next, consider the maximum
of g(Y), with the latter being equal to min{g1, g2}. As
exemplified in Fig. 4, we know that g1 starts from a value close
to �max and then monotonically increases towards infinity,
while g2 starts with a small value, increases until it has a global
maximum, and then decreases again. If g2 is always smaller
than g1, then g(Y) = g2 has exactly one global maximum,
consistently with the hypothesis. If they cross (as in Fig. 4)),
they do so in exactly two points, say A and B, such that the
maximum of g2 is between A and B. Then, the following
holds: (i) before A, g(Y) = g2, which is increasing before its
maximum; (ii) between A and B, g(Y) = g1, which is always
increasing; (iii) after B, g(Y) = g2 and, since we are after
its maximum, g(Y) is decreasing – hence, B is g(Y)’s only
maximum. Therefore, in all cases g(Y) is submodular and has
exactly one maximum, and, until such a maximum is reached,
g(Y) is also monotonically non-decreasing.

As for L-L edges, their influence on the learning process can
be quantified by studying the graph they form. Specifically, we
are able to state the following result concerning regular graphs:

Proposition 1. When the choices are limited to sets of L-
L edges such that the graph created by L-nodes is uniform,
then the constraint (2) is submodular and has exactly one
maximum.

Proof: The arguments in support of Proposition 1 can
be summarized as follows: 1) the error reached after a given
number K of epoch is proportional to 1/γ [15, Eq. (7)]; 2)
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the learning time is proportional to 1/γ [15, Eq. (18)]; 3) for
random regular graphs, the relationship between the spectral
gap and the graph degree has been shown [38], [39] to follow
a square-root law, which is concave. Recalling that concavity
is the continuous equivalent of submodularity, the first part of
the proposition follows. The second part follows from the fact
that (2) is the minimum between a monotonic function (as
we add more L-L edges, the error decreases) and a function
with at most one maximum (the inverse of the learning time,
which decreases until an optimal degree is reached and then
increases, as shown in [15]).

Combining Property 2 and Proposition 1, we can now prove
the following result:

Corollary 1. When the graph created by L-nodes is uniform,
constraint (2) is submodular and has exactly one maximum.

Proof: The possible actions are either adding an I-L edge,
or an L-L one. As per (respectively) Property 2 and Proposi-
tion 1, both actions preserve the submodularity property, and
result in a function with exactly one maximum.

VII. THE DOUBLECLIMB ALGORITHM

We now seek to solve the problem stated in Sec. IV,
i.e., determining the P, Q and K resulting in the lowest
cost (1) subject to the constraint in (2), in a practical and
efficient way. To this end, we first extend existing results
on the performance of greedy algorithms when optimizing
submodular problems, in Sec. VII-A. Based on such results,
we present our own DoubleClimb algorithm in Sec. VII-B,
and analyze its properties in Sec. VII-C.

A. Greedy solutions to submodular problems

Let us consider Alg. 1, which solves submodular problems
with non-decreasing objective and constraints. More formally,
it selects a subset S ⊆ X of elements subject to a submodular
non-decreasing constraint g(S) ≥ 1, while minimizing a sub-
modular non-decreasing cost function f(S). At every iteration,
Line 3 selects the element minimizing the cost to benefit ratio
f(S∪{j})−f(S)
g(S∪{j})−g(S) ; such an element is then added to S (Line 4).
As shown in [40, Thm. 4.7], Alg. 1 is 1 + 1

|X | -competitive.
However, the original proof requires both the objective and
the constraint to be submodular and non-decreasing. In our
case, Property 2 and Proposition 1 prove weaker properties,
in that our constraint is not guaranteed to be non decreasing,
as in Fig. 4; therefore, the result in [40] cannot immediately
be applied to our problem.

None the less, it is possible to prove that a less restrictive
condition than being non-decreasing, namely, having only one
maximum, is sufficient for the result to hold:

Algorithm 1 Greedy algorithm for submodular problems
1: S ← ∅
2: while g(S) ≥ c do
3: j∗ ← argminX\S

cj
g(S∪{j})−g(S)

4: S ← S ∪ {j}
5: return S

Property 3. If f(Y) is submodular non-decreasing and g(Y)
is submodular and has only one maximum, then the above
algorithm minimizes f(Y) s.t. g(Y) > 0, with a competitive
ratio of 1 + 1

|X | .

Proof: The property generalizes the results in [40,
Thm. 4.7]. The proof therein follows from analyzing the steps
of the above algorithm until its convergence, and leverag-
ing the fact that the sequences of marginal cost increases
and constraint improvements are (resp.) monotonically non-
decreasing and monotonically non-increasing. This is of course
true if, as in the original hypotheses, g(Y) is monotonically
non-decreasing. However, this also holds if g(Y) has only
one maximum, as per the hypothesis of our property. This is
because, if the algorithm cannot find a feasible solution before
the maximum of g(Y), i.e., as constraints become closer to
being satisfied, it will also be impossible to find a feasible
solution after the maximum, i.e., when constraints will get
farther from being met. Thus, the sequences of marginal costs
and improvements of the selected elements of X have the
required behavior. Indeed, the behavior of g(Y) for the non-
selected items of X has no impact on the validity of [40,
Thm. 4.7], nor of this property.

B. Algorithm description

Property 3 implies that the algorithm in Sec. VII-A could
efficiently select the L-L links P and the I-L links Q, i.e.,
which L-L nodes cooperate with one another and which
information they can leverage if such decisions could be made
independently, without one impacting the other. However, they
are clearly interlinked; thus, we propose a more complex solu-
tion strategy, called DoubleClimb, which operates as follows.
• First, based on the nodes capabilities defined in Sec. III,

DoubleClimb determines P and Q. It does so by selecting
I-L and L-L edges in two nested loops, with L-L edges
resulting in a uniform graph [15]. It also selects the most
appropriate value of K for each set of selected edges.

• Given such decisions, it computes the system performance
characterized in Sec. V, thus yielding the error �K(P,Q),
the learning time TK(P,Q), as well as the cost CK(P,Q).

• It then compares the obtained values for the learning time
and error against the limits �max and Tmax, and evaluates
whether a sufficiently low cost has been achieved. If so,
DoubleClimb returns the problem solution; otherwise, it
tries to improve the decisions until the system constraints
are met and the cost is further reduced.

Intuitively, we begin with a sparsely connected graph with
no L-L and no I-L edges, and then we keep increasing the
connectivity until the constraints are satisfied.

The DoubleClimb algorithm is presented in Alg. 2 and
detailed below. It begins (Line 1) by setting to zero the degree
dL of the subgraph made of L-L edges, and to the empty set
the best solution best_sol. Then, while dL < |L|, i.e., while
such a subgraph is not a clique, dL is first incremented by
one (Line 4), and then the cheapest L-L uniform subgraph of
degree dL is chosen in Line 5.

Given such a choice of L-L edges, the algorithm selects
the I-L edges essentially in the same way as described in
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Algorithm 2 The DoubleClimb algorithm
1: dL ← 0
2: best_sol ← ∅
3: while dL < |L| do
4: dL ← dL + 1
5: ll ← cheapest uniform(dL)
6: il ← ∅
7: while (2) is not verified ∧il �≡ I × L do
8: i∗, j∗← argmini,l

ci,l
g(il)−g(il∪{(i,l)})

9: il ← il ∪ {(i∗, j∗)}
10: if Ccurr < Cbest then
11: best_sol ← ll ∪ il
12: else if Ccurr

LL > Cbest
LL ∧ Ccurr

IL > Cbest
IL then

13: break
14: return best_sol

Sec. VII-A: for all possible edges, the cost/benefit ratio – i.e.,
the ratio between the cost of adding the edge and how closer to
feasibility the problem becomes by doing so – is computed in
Line 8, and the edge associated with the lowest ratio is chosen.
The loop continues until either all I-L edges are exhausted, or a
feasible solution, satisfying constraint (2), is found (Line 7). In
the latter case, the cost of the current solution Ccurr, computed
as per (5), is compared to the one of the best solution found
so far (Cbest); note that, by convention, the cost of the empty
set is equal to ∞. If warranted, the best solution is updated
(Line 11), otherwise we perform the check in Line 12 to assess
whether other solutions should be explored. Indeed, as proven
in Proposition 2 below, the submodularity of costs implies that
trying higher values of dL does not lead to cheaper solutions.

If neither happens, the next value of dL is tried. After all
values of dL are exhausted, the best solution best_sol is
returned in Line 14. If no feasible solution has been found,
the problem instance is infeasible and the algorithm returns ∅.

C. Algorithm analysis

We now prove that Alg. 2 has an excellent competitive ratio
as well as low complexity. As first step, we show that the
stopping condition in Line 12 is valid, i.e., no solution better
than best_sol is ignored by halting the algorithm when the
condition is met.

Proposition 2. If the condition specified in Line 12 of Alg. 2 is
met, then no solution cheaper than best_sol will be found
for higher values of dL.

Proof: Let dbest
L be the value of dL for which the current

best solution was found, and Cbest
LL and Cbest

IL the corresponding
costs for L-L and I-L edges (resp.). At the current iteration,
we have dL = Lcurr > Lbest, and the corresponding costs
are Ccurr

LL > Cbest
LL and Ccurr

IL > Cbest
IL . Let us now consider a

future iteration where the value of dL is dnext
L > dcurr

L > dbest
L .

Cnext
LL depends on two effects: if we increase the number of

L-L edges, the cost due to L-L edges will increase. However,
more L-L edges also imply fewer epochs, thus they may lead
to a reduced cost. Since similar observations hold for Cnext

IL ,
which effect prevails depends on how strong the benefit of

increasing dL is. However, as per the submodularity property
(Proposition 1), the benefit of adding L-L edges and I-L edges
decreases as dL increases: if moving from dbest

L to dcurr
L actually

increased the cost of L-L and I-L edges, it is not possible that
moving to dnext

L will provide a better solution.
Thanks to Proposition 2 and Property 3, we can now prove

our main result about the competitive ratio of Alg. 2, i.e., the
ratio of the cost of the solution it yields to the one of the
optimal solution.

Theorem 1. Alg. 2 has 1 + 1
|I| competitive ratio.

Proof: There are two possible sources of suboptimality,
namely, the choice of dL and that of the I-L edges to select. By
Proposition 2 and considering that, if the condition in Line 12
is never triggered, all possible values of dL are tried out, the
choice of dL is optimal. As for the I-L edges, Line 7–Line 9
of Alg. 2 reflect exactly the same algorithmic steps reported
in Sec. VII-A which, as per Property 3, lead to a 1 + 1

|I|
competitive ratio in our case.

Finally, we can prove that Alg. 2 has a very low, namely,
cubic worst-case computational complexity.

Property 4. Alg. 2 has a worst-case computational complexity
of O(|L|2|I|).

Proof: From inspection of the nested loops in Alg. 2,
one can see that the outer one is run at most once for each
value of dL, i.e., at most |L| times. The inner one is ran at
most once for each possible I-L edge, i.e., at most |L||I|
times. As for the set of edges to activate for each value
of dL (function cheapest uniform in Line 5), they can be
pre-computed and thus do not influence the overall complexity.

It is also worth stressing that Property 4 concerns the worst-
case complexity, but the actual one is often much lower.
Indeed, in Line 7–Line 9 we are likely to compute the
same costs in different iterations; if such costs are cached,
à la dynamic programming, run time can be dramatically
decreased, to be slightly more than linear in |L|+ |I|.

VIII. NUMERICAL RESULTS

In the following, we describe the reference scenario and
benchmark solutions we consider (Sec. VIII-A), before study-
ing the performance of DoubleClimb (Sec. VIII-C).

A. Reference scenario

We consider an Internet-of-things (IoT) environment similar
to the one referred in [5], whereby:
• individual sensors produce samples, either periodically or as

a reaction to an external event;
• aggregators, also known as gateways, collect and summarize

the samples, before forwarding them in uplink;
• distributed ML algorithms, running at the edge of the

network, leverage the samples to gather insights on the
changes in external conditions.

In terms of our system model, aggregators correspond to I-
nodes, and edge nodes running the ML algorithms corre-
spond to L-nodes. New samples arrive every few seconds,
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and updating the gradient computations takes a comparable
time. Note that similar approaches have been proposed for
such applications as smart-city monitoring [41], support of
connected vehicles [42], and attack/anomaly detection [43].

With reference to the taxonomy in Sec. I, we fall in
the active learning case, as the data arrival and gradient
computation are interleaved but not synchronized, e.g., new
data can arrive both before and after a gradient computation
is complete.

Fig. 5. Our reference topology, depicting the network of a major operator
(source: [44]).

We refer to the real-world urban topology presented in [44]
and shown in Fig. 5, depicting the network of a major operator.
Specifically, the network nodes represented in brown act as
aggregators, hence, as I-nodes, while those in blue are edge
nodes acting as L-nodes. As shown in Fig. 5, all L-nodes can
be connected with one another, while each I-node can only be
connected to one L-node.

Normalized sample generation and gradient computation
times are distributed exponentially with mean 1, while the
I-L and L-L edges are randomly assigned a normalized cost
between 0 and 1 units. I- and L-nodes have no operational
cost, reflecting the fact that, in our reference environment,
they cannot be switched off without discontinuing the service.
In the basic version of the scenario, at every epoch each I-
node generates between 10 and 100 samples; such a value is
proportional to the traffic served by each node in the real-world
topology [44]. In the rich scenario, representing applications
where data is plentiful, such a value is multiplied by five.

Benchmark solutions. We compare DoubleClimb against
two benchmark solutions. The first, called Opt-Unif, follows
the approach used (among others) by [15], and returns the
cheapest solution among the feasible ones such that both the
graphs formed by L-L and I-L edges have uniform degree.

The second benchmark, labeled as “Optimum/GA” in the
plots, performs the selection of the I-L edges (i.e., the inner
loop in Alg. 2) leveraging a genetic algorithm (GA) approach
with the following parameters:
• number of generations: 50;
• solutions per population 100;
• parents mating: 4;
• mutation probability: 15%;

• crossover type: single point;
• gene space: {0, 1};
• number of genes: |I||L|.
Each solution corresponds to a string of binary values whose
length equals the number of possible I-L edges: having a 1
in a given position means that the corresponding I-L edge
is activated. The relatively large mutation probability reflects
the importance of exploring multiple different solutions (i.e.,
exploration), given the combinatorial nature of the problem at
hand and the fact that similar strings do not necessarily yield
similar performance. When the size of the problem made it
possible (i.e., dL ≤ 6), we have compared the performance of
the genetic algorithm against the optimum obtained through
brute force, and found that the two closely match.

B. Learning tasks
We conduct our performance evaluation with reference to

the two most relevant supervised learning tasks, namely:
• a classification task on the famous MNIST digit

database [45];
• a regression task on the dataset used for the ITU AI Chal-

lenge [46], with the goal of predicting the throughput of a
set of Wi-Fi nodes leveraging their position and settings.

Through these two datasets, we can show how our method-
ology works for the two most common and relevant types
of supervised learning. We tackle both learning tasks via the
virtually-ubiquitous tool of deep neural networks (DNNs).
Specifically, we employ a fully-connected DNN including thee
hidden layers, whose sizes are 100, 50, 20 neurons, respec-
tively. The DNN is trained via stochastic gradient descent
(SGD), with a learning rate of 0.01. All experiments are
implemented in Python using the pytorch library.

As per the methodology presented in Sec. V-A and vali-
dated, among others, in [29], we obtain the following values
for the parameters in (3):
• for the classification task: c1 = 0.6799, c2 = 0.4978, c3 =
542.1;

• for the regression task: c1 = 0.0956, c2 = 0.5203, c3 =
963.2.

We quantify the goodness of fit through the mean square
error (MSE) metric; in our experiments, the MSE for the
classification and regression tasks is, respectively, 0.0027
and 9.87 · 10−6. It is interesting to remark that, while the c1–
c3 parameters are quite different in the two cases, the error is
remarkably small in both instances.

In both cases, we profiled federated learning (FL)
with |L| = 10 learning nodes assisted by a central learn-
ing server, and varied the number of samples between 50%
and 100% of the whole dataset. Local models are therefore
averaged at every epoch, following the FedAvg [21] averaging
strategy. Results have been averaged over 10 runs, changing
the composition of the local datasets across different runs.

C. Performance comparison
We leverage the parameters for c1–c3 above to compare the

performance of DoubleClimb and its alternatives, for both the
tasks described earlier.
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Fig. 6. Classification task: comparison between DoubleClimb, Opt-Unif and the optimum (obtained via brute-force) in the basic and rich scenarios, for
different values of |L|. From left to right: total cost; selected value of dL, normalized (to the maximum); fraction of selected I-L edges; total number of extra
samples per epoch.
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Fig. 7. Classification task: cost of the solutions examined at each iteration by DoubleClimb (first two plots) and Opt-Unif (last two plots), in the basic (first
and third plot) and rich (second and fourth plot) scenarios.
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Fig. 8. Classification task: normalized time and error of the solutions examined at each iteration by DoubleClimb (left), Opt-Unif (center), and GA (right),
in the basic scenario. Different colors correspond to different values of dL, as in Fig. 7.
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Fig. 9. Classification task: normalized time and error of the solutions examined at each iteration by DoubleClimb (left), Opt-Unif (center), and GA (right),
in the rich scenario. Different colors correspond to different values of dL, as in Fig. 7.
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Fig. 10. Regression task: comparison between DoubleClimb, Opt-Unif and the optimum (obtained via brute-force) in the basic and rich scenarios, for
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We begin with the classification task and show, in the first
plot in Fig. 6, the cost of DoubleClimb and its benchmarks, for
different numbers of L-nodes. As expected, the cost increases
with |L| and decreases in the rich scenario, where the higher
quantity of data results in faster convergence. Also, it is clear
that the cost yielded by DoubleClimb is much lower than that
of Opt-Unif and matches that of Optimum/GA. GA approaches
are not, in general, guaranteed to yield optimal performance;
therefore, we cannot conclude that DoubleClimb makes opti-
mal decisions other than for dL ≤ 6, when the comparison
with brute force was possible. However, GA approaches have
long been known to be remarkably good at finding optimal
or near-optimal solutions for combinatorial problems such as
the one at hand, at the price of long run times, as shown in
Fig. 8 and Fig. 9 next. Observing that DoubleClimb matches
Optimum/GA in all scenarios and for all values of dL therefore
boosts our confidence in the algorithm’s effectiveness.

We now look deeper into the decisions made by each
strategy. The second plot in Fig. 6 depicts the selected value
of dL, normalized to |L|. Interestingly, such a value is lower
in the rich scenario, confirming our intuition that a tighter
cooperation between L-nodes and more data coming from I-
nodes are, to an extent, alternative solutions to achieve faster
learning. DoubleClimb and Opt-Unif make exactly the same
decisions in all cases, which suggests that the difference in
cost shown in the first plot only comes from the choice of
I-L edges. Accordingly, the third plot in Fig. 6, depicting the
fraction of I-L edges selected by each strategy, highlights how
DoubleClimb uses substantially fewer edges than Opt-Unif.
This highlights how the greater flexibility in the choice of I-L
edges is an important asset of our approach, allowing us to
beat state-of-the-art alternatives.

The fourth plot in Fig. 6 shows how DoubleClimb not only
uses fewer I-L edges, but also chooses the right ones. The plot
depicts the number of new samples arriving at each epoch and
highlights how, in spite of the substantially smaller number of
selected I-L edges, DoubleClimb obtains a similar number of
samples as Opt-Unif. Such an effect is especially evident for
the basic scenario, where the number of samples provided by
each I-node is smaller.

Comparing the DoubleClimb and Optimum/GA curves, we
can observe that in some cases Optimum/GA can activate
slightly fewer I-L edges than the base scenario, e.g., for
dL = 8. This corresponds to solutions that DoubleClimb
is unable to reach due to its hill-climbing nature; however,
the impact on the overall cost (see the first plot in Fig. 6)
is negligible. Interestingly, DoubleClimb and Optimum/GA
make the very same decisions in the rich scenario, confirming
the somehow counterintuitive notion stated in Property 3, i.e.,
that, the solutions yielded by DoubleClimb tend to be closer
to the optimum.

In Fig. 7, we seek to better understand how DoubleClimb
and Opt-Unif operate. Every marker in the plots corresponds
to one solution examined by the algorithms; feasible solutions
are denoted by a silver circle, the cheapest of such solutions
is denoted by a black star. Note that Opt-Unif explores fewer
solutions than DoubleClimb, as it is restricted to creating
uniform logical topologies. Also, under the rich scenario it

is easier for DoubleClimb to reach a high-quality solution,
hence, the algorithm ends earlier.

The first two plots, representing DoubleClimb in the basic
and the rich scenario, respectively, clearly depict the behavior
of Alg. 2. The algorithm begins with the lowest possible value
of dL and no I-L edges, hence, with a low cost. Then, new
edges are added until either a feasible solution is found, or
all I-L edges are exhausted (as it happens in the first plot,
representing the basic scenario). The double vertical lines in
the first two plots correspond to the triggering of the condition
in Line 12 of Alg. 2; the plots confirm that enforcing such a
condition does not result in ignoring cheaper feasible solutions.

The last two plots in Fig. 7 represent Opt-Unif (again in
the basic and the rich scenario, resp.), and clearly highlight its
differences from DoubleClimb. As mentioned, Opt-Unif tries
fewer solutions; also, multiple feasible solutions are tried out
for the same value of dL, since there is no stopping criterion
analogous to the one in Line 13 in Alg. 2. Importantly, the
feasible solutions explored by Opt-Unif are more costly than
those explored by DoubleClimb for the same value of dL, a
further confirmation of the importance of a flexible choice of
I-L edges.

Last, in Fig. 8 and Fig. 9, we examine the error and
learning time associated with each of the solutions examined
by DoubleClimb and its benchmark solutions, respectively in
the basic and rich scenarios. Both quantities are normalized
to their respective limits, thus both lines do not exceed 1
if the corresponding solution is feasible. It is interesting to
note how adding I-L edges (moving from one solution to the
next) affects error and time. The former (dotted lines) steadily
decreases until its limit is reached, and then stays constant
– recall that the learning process is interrupted upon reach-
ing �max, so the normalized error never drops substantially
below 1. The time (solid lines) increases at first, owing to the
need to wait for more I-nodes; then, it decreases due to the fact
that learning can be completed with fewer epochs. Importantly,
both behaviors exactly match those described in Property 2
for g1 and g2. The third plots of both Fig. 8 and Fig. 9 highlight
the behavior of GA approaches, which try multiple different
solutions of varying quality and, in the interest of exploration,
tend not to abandon low-quality solutions, on the grounds that
they may mutate into high-quality solutions at some later stage.

The x-axis of the plots in Fig. 8 and Fig. 9 highlight the
number of solutions being tried out by each of the approaches
we study. Comparing the first and last plots of each figure,
referring to DoubleClimb and Optimal/GA, it is easy to
observe how the latter examines a number of solutions that
is orders of magnitude higher than the former. Recalling that,
as per Fig. 6, the two approaches yield a similar performance,
it is clear the major efficiency gain brought by DoubleClimb.

Finally, in Fig. 10 we examine the performance of Dou-
bleClimb and its alternatives for the regression task. One
can observe that the behavior of DoubleClimb and the other
solutions shown in Fig. 10 is consistent with that presented
in Fig. 6, i.e., DoubleClimb can achieve the target learning
quality at a lower cost than Opt-Unif, by obtaining a similar
quantity of data while activating fewer I-L edges. Further,
the performance of DoubleClimb matches that of the genetic
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algorithm. This confirms how our model and solution strategy
can seamlessly deal with different learning tasks.

IX. CONCLUSION

We addressed the problem of defining an optimal level of
cooperation among network nodes performing a supervised
learning task. We first developed a system model accounting
for the presence of both learning nodes and information nodes
interacting with each other. Then we formulated the problem
of choosing which learning nodes should cooperate to com-
plete the learning task, and the information nodes that should
provide them with data, as well as the number of epochs to
perform. Although being NP hard, we showed some important
properties of our problem, most notably its submodularity,
which allowed us to define a solution algorithm that has cubic
worst-case time complexity and is 1+1/|I|-competitive, with
I being the set of information nodes. Numerical results also
show that our approach closely matches the optimum and
outperforms state-of-the-art solutions.
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