POLITECNICO DI TORINO
Repository ISTITUZIONALE

Remotizing and Virtualizing Chips and Circuits for Hardware-based Capture-the-Flag Challenges

Original

Remotizing and Virtualizing Chips and Circuits for Hardware-based Capture-the-Flag Challenges / Roascio, Gianluca;
Cerini, Samuele Yves; Prinetto, Paolo. - ELETTRONICO. - (2022), pp. 477-485. (Intervento presentato al convegno 2022
IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) tenutosi a Genoa (ITA) nel 06-10 June
2022) [10.1109/EuroSPW55150.2022.00057].

Availability:
This version is available at: 11583/2969414 since: 2022-07-04T14:16:20Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/EuroSPW55150.2022.00057

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

10 April 2024

Remotizing and Virtualizing Chips and Circuits for Hardware-based
Capture-the-Flag Challenges

Gianluca Roascio
Politecnico di Torino, Italy
CINI Cybersecurity National Lab.
gianluca.roascio @polito.it

Abstract—In the very rapid digital revolution we are ex-
periencing, the availability of cybersecurity experts becomes
critical in every organization and at multiple levels. However,
classical and theory-oriented training seems to lack effective-
ness and power of attraction, while professional selection and
training processes based on cybersecurity gamification are
being successfully experimented, among which Capture-the-
Flag (CTF) competitions certainly stand out.

Nevertheless, careful analysis reveals that such initiatives
have a major shortcoming in addressing security issues when
training people to tackle hardware-related security issues.
Several motivations can be identified, including the inade-
quate technical knowledge of the White Teams charged of the
challenges preparations, and the evident logistic problems
posed by the availability of real hardware devices when the
numbers of trainees significantly scales up.

This paper presents a platform able to provide as a
service hardware-based CTF challenges and exercises, in-
volving circuits and chips that can be physically connected
to a server or simulated, to deal with topics such as hardware
bugs, flaws and backdoors, vulnerabilities in test infrastruc-
tures, and side-channel attacks. The platform is presented
from a technical perspective, and data for deducting related
efficiency, stability and scalability are offered.

Index Terms—cybersecurity, education, training, gamifica-
tion, capture-the-flag, challenge, hardware, hardware secu-
rity

1. Introduction

The process of continuous digitization that the world
is experiencing touches so many areas of our societies
that it becomes impossible not to address the security
aspects related to the data produced and exchanged by
this huge multitude of devices. The topic of cybersecurity
has become crucial in every discussion, and at every level
of organizations. As a result, in both the public and private
sector, a significant gap has arisen between the demand
for the workforce as security experts and its supply. The
Cybersecurity Workforce Study of 2021, provided by the
(ISC)? Association, estimates the shortage of cybersecu-
rity professionals to be 2.72 million globally [1]. On the
other hand, according to a study conducted by the ISACA
Institute, about 50% of human resources managers say
they do not believe that people hired in cybersecurity are
truly qualified for their role, and an additional 16% even
believe they are unable to accurately assess it [2].

Samuele Yves Cerini
CINI Cybersecurity National Lab.
samuele.cerini@consorzio-cini.it

Paolo Prinetto
Politecnico di Torino, Italy
IMT Lucca, Italy
CINI Cybersecurity National Lab.
paolo.prinetto @polito.it

This alarming picture is very complex to justify in
terms of causes on a worldwide level, but surely it
must take into account the difficulty with which training
courses, at university level and not, adapt to the demand in
such a dynamic scenario. Especially, even when they try
to decrease the deficit, they often do it in an inadequate
manner, by adopting a prevalently theoretical and notional
training. More than concepts, to cover the demand it
would be necessary to have people skilled from a practical
point of view: in front of the dynamic nature, the adapt-
ability, and the ability to think “out of the box” of the
attackers, it would be necessary to oppose white hackers
with the same characteristics [3]. In this regard, the good
potential of the education through gamification [4] has
been recently demonstrated: students are pushed to acquire
practical knowledge through riddles and challenges that
trace real and daily problems in the field of cybersecurity.
Among the most famous examples of cybersecurity gam-
ification, there are undoubtedly Capture-the-Flag (CTF)
challenges, for which prestigious competitions are orga-
nized at a global level. In these challenges, participants
earn points by decrypting ciphers, reversing binary code,
or configuring network for access protection. The mix
of learned practical knowledge and acquired adversarial
thinking ultimately ensures greater efficiency than more
classic face-to-face education [5] [6].

In the global panorama, the CTFs have plenty of
different participation and development modes, as well as
focus on the most different topics, ranging from cryp-
tography to software reversing and cracking, from web
security to analysis and filtering of network packets. On
the other hand, challenges that deal with security problems
linked to the lowest level of computing systems, i.e., the
hardware, tend to lack. The research carried out for this
study shows how hardware-based challenges are mainly
relegated to specific events on the subject, and aimed
at people who are often already operating in the sector.
As for the CTF platforms open to ethical hacker teams
from all over the world, the label “hardware” is often
used to classify challenges that, for example, are instead
related to software that runs on embedded platforms, or
do not require any knowledge of digital hardware or
CPU architectures. Such a poor offer is also witnessed by
exponents of leading companies in the hardware sector [7],
who recognize gamification as an important contribution
to the training of professionals prepared also from the
point of view of hardware security.

Among the causes of this imbalance, it is wrong to

include a supposed lower risk related to this layer, as very
powerful hardware vulnerabilities and attacks, capable
of severely endangering the entire architecture of an IT
system, are known by the community [8]. More reasonable
causes are probably the recent widespread awareness of
the problem as a result of very famous hardware vulnera-
bilities disclosure (such as Meltdown [9] and Spectre [10]
of Intel processors), and the shortage of personnel with
the necessary knowledge to give practical sessions on the
subject, and even less to set up challenges.

Moreover, objective logistical difficulties in organizing
challenges based on physical devices can be added. If in
the context of a competition localized in time and space
the problem can be limited, this can considerably widen,
for example, in the case of:

« offering these challenges in the context of courses
and training phases, with hundreds or thousands of
people located in the most disparate places, to which
it is impossible to provide all the necessary material;

o variety of devices that need to be purchased, pro-
grammed individually, checked against any possible
misuse or irreparable damage to be used again;

o remote participation: Covid-19 pandemic has im-
posed these needs as well in the last two years;

and so on.

Thanks to the work of the CyberChallenge.IT project!
in Italy, for two years the diffusion of this type of
challenges has been encouraged in the audience of the
participants (aged from 16 to 24), and a development track
has started up to the implementation of a platform to host
training and competitions in the CTF format, based on
emulated or physical hardware devices. These are reached
remotely via containerized TCP services, designed to offer
the challenges to a large number of contemporary partici-
pants, despite the limited resources both on the servers and
in relation to the number of physical devices available.

This paper aims to present the three main environ-
ments of this platform, describing them from the technical
point of view and the context in which they operate in
Sections 3 and 4. Before this, Section 2 gives an overview
of the concept of CTF challenge and hardware-based
challenge that drives this work. Finally, Section 5 presents
the data related to the technical measurements made on
the environments, and Section 6 offers a glimpse of the
state of the art of the CTF events, their involvement in this
topic, and the methods of offering the related challenges.
Section 7 concludes the paper.

2. Background

Capture-the-Flag (CTF) is the name given to a game
that consists of breaching one or more IT assets (e.g.,
algorithms, applications, files, devices), which are artifi-
cially made vulnerable so that players can exploit these
vulnerabilities with the hacking techniques and tools they
know within a given timeframe. In the game, the correct
discovery and exploitation of such flaws guarantees the
player the acquisition of a flag [11], a unique string forged
by the game organizers, which, if submitted to a challenge
service, increases the score. The CTF challenges are of
multiple types, of which the two most famous are:

1. https://cyberchallenge.it/

o Jeopardy, in which participants stand individually or
in groups in front of the vulnerable asset, which is
the only opponent in the challenge, and must try to
find the entry point for the flag;

o Attack/Defense (A/D), in which the individual or
grouped participants are given control of a vulner-
able asset (vulnbox), identical for each participant,
which must be defended (via patch or filter) from
the attacks of the other participants, and at the same
time, vulnbox instances of all the other opponents
must be attacked.

The challenges are then grouped according to the topic
they deal with. Usually, they can be clustered in these
categories:

e Binary: related to software applications that contain
vulnerabilities exploitable at the binary code level.
These can be further classified in two categories, not
necessarily separated:

— Reversing: based on the reconstruction of the ap-
plication behavior through static analysis of the
binary code;

— Pwn: based on the actual exploitation of vulnera-
bilities on a running application instance;

o Web: related to common website vulnerabilities, such
as command and code injection, malicious SQL
queries, malicious use of cookies, etc.;

o Crypto: related to vulnerable encryption schemes;

e Network: related to typical network attacks such as
bypassing firewalls and access policies, spoofing and
poisoning attacks, etc.;

e Miscellaneous: not very specific to a topic and/or
mainly aimed at stimulating the logic/reasoning skills
of the participants;

e Hardware: for this category of challenge, the com-
munity does not seem to have a universal definition,
also for the reasons listed in the previous Section. In
some major world competitions, like Insomni’Hack
or Cyber Apocalypse, challenges have been labeled as
“hardware” even when simply involving the presence
of a physical board, on which firmware reversing or
pwning was necessary, or based on the reconstruction
of a message exchanged through a communication
protocol usually adopted between hardware modules,
such as I>C or SPI, as it is shown later. The definition
accepted for this paper is the one expressed in [12],
according to which a hardware-based CTF challenge
is a challenge that must have vulnerabilities residing
in the hardware structure of a digital system, and
whose resolution requires specific knowledge of the
methodologies and techniques of hardware design,
validation and verification.

As well, from [12] derives the taxonomy accepted by
this work for this last type of challenge, which may deal
with different sub-topics, including:

Hardware trojans [13];

Unprotected test infrastructures [14];

Undocumented functions and features [15];

Design bugs and flaws [8];

Side-channel and fault injection attacks: [16] [17]

[18];

o Weak implementations of hardware-based security
modules: such as buggy implementations (or anyway

https://cyberchallenge.it/

exploitable) for hardware ciphers, random number

generators, authenticators, etc.

The taxonomy also defines 3 different execution
modes:

o Inspection-based: the challenge target a description
of a digital hardware (usually schematics and/or
Hardware Description Language (HDL) files, related
to devices described at the gate or register-transfer
level, but also reports from its synthesis or operation).
The challenge is solvable through static analysis of
these files, and/or possibly using local emulation
tools on participants’ PC if needed. Usually, the flag
is the encoding of the answer to a question related
to the target (e.g., the input pattern that triggers a
certain condition, or a unique code that can only be
recovered from the exact location of the vulnerability,
etc.);

o Simulation-based: here, the target is a device sim-
ulated through a hardware logic simulator, offering
a “live” interface with the participants, that in most
of cases can only write input and read outputs, and
possibly control internal signals depending on the
challenge difficulty. Participants are given a descrip-
tion of the target (e.g., HDL, schematics or other),
which they use for preliminary understanding and
possibly local simulations before sending an exploit
to the service hosting the running target. Here, the
use of a remote service is essential to prevent access
to a hard-coded flag within the design: the participant
is obviously provided with a sanitized copy, i.e.,
without the flag;

o Device-based: here, participants face a real hardware
device, containing a vulnerability that leads to the
flag capture. In this mode, the interaction with the
device is always initiated by an application that has
the primary task of reading the inputs and transmit-
ting them to the device, and allowing the exit of
the outputs. A copy of the device can be physically
delivered into the hands of the participants, or be
connected to a remote service. In the first case,
the interaction application must be installed on the
participants’ machine, while in the second case, it can
run behind a TCP socket accessible to participants.
In both cases, as for the previous mode, participants
are provided with a sanitized representation of the
target.

As mentioned in the previous Section, the Italian
project CyberChallenge.IT has been playing a key role
in the dissemination of this category of CTF. Cyber-
Challenge.IT is an initiative of the Italian Cybersecurity
National Laboratory?, and represents the main Italian track
for cybersecurity education of young people, aged from 16
to 24 and coming from Italian high schools and universi-
ties. The course includes a selection and an initial training
phase, which combines more classical teaching with train-
ing on a very extensive set of CTF Jeopardy, uploaded
on a unique platform and authored by the community
of experts throughout Italy. At this stage, the training
is organized by venues, spread across the country, and
each venue selects a team of about 20 participants. At
the end of the course, there are two final events: a local

2. https://cybersecnatlab.it/

Jeopardy competition among the members of a venue,
and a national A/D competition in which the local teams
compete against each other to elect the winning venue.
The 2022 edition has had 5344 participation requests from
34 different venues, including 2 military academies.

Starting from the 2020 edition, the first inspection-
based challenges have been introduced. The flag was in
some cases the activation sequence of a trojan internal
to the device, or the operational code of an undocu-
mented instruction. In the local finals of the 2021 edition,
simulation-based challenges, remotely accessible via the
competition portal, were submitted to participants. The
Italian CTF competition mOleCon 2021, held in Turin in
December, hosted a device-based challenge, implemented
on the SEcube™ board® by the Maltese Blu5 Group,
that also includes an FPGA on the chip. The FPGA
was programmed with the challenge’s vulnerable target.
Teams who were present were given a copy of the device,
while remote teams were provided with a virtual machine
reachable through the competition’s VPN and physically
connected to the device.

The efforts made to include within these competitions
some challenges based on digital hardware, emulated and
physical, have led to the consolidation of a first implemen-
tation of the environments described in the next Sections
of this paper, and their subsequent expansion to the current
point. The work was made possible by the inclusion of
these environments within PAIDEUSIS [19], the hybrid
cyber range of the Cybersecurity National Laboratory.

3. CTF Infrastructure for Hardware Flaws
and Backdoors

The platform presented in this Section is designed
to offer as a service hardware-based Jeopardy challenges
that deal with issues related to security flaws in digital
circuits, or related to the presence of backdoors and trojans
inside them. The platform therefore allows to simulate
a circuit description in an HDL, or to execute it in a
physical way on a reprogrammable device (FPGA), and to
offer the participant a “live” interface with it. The service
is a classic character-based TCP service, architected to
read commands in a specific encoding, allowing basic
operations on the target hardware, such as: (i) setting
inputs, (ii) observing outputs (and possibly also internal
states) and (iii) advancing time (in case of simulation
only).

In the following Subsections, details about the envi-
ronment based on the circuit simulation are explained first,
and following, those about the environment based on their
physical execution on FPGAs.

3.1. Simulation-based Environment

This environment relies on the use of ModelSim?*, the
most popular framework in the hardware design com-
munity for simulating logic circuits described in many
different HDLs. Inside, the entire toolchain for HDL
compilation and simulation is present, as well as a set of
commands already predefined for the operations described

3. https://www.secube.bluSgroup.com/
4. https://eda.sw.siemens.com/en- US/ic/modelsim/

https://cybersecnatlab.it/
https://www.secube.blu5group.com/
https://eda.sw.siemens.com/en-US/ic/modelsim/

above. Therefore, for the setup of this environment, it has
been necessary to enclose ModelSim behind a wrapper
based on Python, allowing to filter commands and signal
names as needed.

The wrapper is hosted though the Linux tool socat,
able to accept connections from the internet. It launches
a ModelSim instance for every user that connects to the
service. Sharing a single instance between participants has
been avoided, not to introduce a software scheduler and
wait time for interacting with the target. The instance starts
the circuit simulation from the initial time, i.e., from the
beginning of the main stimulation process of the testbench
entity. In fact, the target is not directly simulated as a top
entity, but is enclosed in a portless top entity (precisely, a
testbench), which initializes the inputs, resets the circuit,
and automatically starts the clock where present. From
this point on, the player interacts with the circuit through
the following commands (Figure 1):

e force <signal_name> <value>, used to set
the value of a signal;

e examine <signal_name>, displaying the value
of a signal;

e run <time>, used to advance the simulation.

arthemises@DESKTOP-SCSRS4L :
WELCOME TO THE OTP8 SERVICE!

$ nc 10.18.1.2 16003

WRITE command_list TO SEE THE AVAILABLE COMMANDS

vsim> force TMS 1

vsim> examine TMS

u

vsim> run 10

vsim> examine TMS
H 1

Figure 1: User interface of the simulation-based environ-
ment.

The last command is particularly important because
the player, for practical reasons, is not usually allowed to
directly control the clock signal, which is automatically
managed by the testbench. Therefore, the time advance-
ment determines the advancement of a precise number of
clock cycles, on the basis of a known operating frequency
of the circuit.

In order to analyze and process the user commands,
a filter is needed between the socket and the ModelSim
instance. The filter analyzes the user inputs and discards
the forbidden ones, resorting to some configuration files
provided by the challenge designers. In particular, the
power of the force command must be carefully limited,
as it can be used to set the value of internal signals, trying
to escape from some circuit logic, and find the flag in
an easier way. The system acknowledges the presence of
three configuration files:

e whitelist.conf: contains the list of allowed
ModelSim commands. Any other command is re-
jected through notification to user;

e blacklist.conf: contains the set of words that
must not appear in the input string sent by the
challenge participant. For instance, the name of the

HDL signal or constant storing the flag must be
surely blacklisted. Usually, the same applies for all
internal signals and variables, unless an internal state
is needed for the challenge resolution. As well, it
contains all forbidden punctuation symbols that may
allow to gain access outside the interface or crash the
environment;

e blacklist—-force.conf: is a special blacklist
for the force command only, containing the set of
signals and variables that the participant must not be
able to directly set.

It is important to note here that any challenge designer,
as long as they provide a testbench in accordance with
the features described above, and this triple of files, can
include their challenge in the environment, whatever are
the features of their target.

When a disconnection from the service is sensed, the
software cleans temporary files and folders created by the
simulation instance, and kills it in order to free memory
and CPU occupation. Alternatively, as it is reasonable
to assume, the service also features a timeout of a few
seconds to prevent congestion. In fact, it is assumed that
the resolution of the challenge is done by automating the
sequence of commands.

The entire service is encapsulated into a Docker’ con-
tainer. Docker allows to build lightweight Linux images
that bundle all the necessary dependencies to run a spe-
cific application, massively improving reproducibility. The
result is a fast and stable deployment of applications and
isolated environments with respect to the hosting machine.

3.2. FPGA-based Environment

This environment leverages the use of the SEcube™
chip by Blu5 Group (Figure 2). SEcube™ is a 3D System-
in-Package designed for security applications, that con-
tains an STM32F4 microcontroller with an ARM Cortex-
M4 core, a Lattice MachX02 FPGA, and an Infineon
smart card. For the purposes of this project, the FPGA
is used to host the challenge target, and the MCU to
handle communication between it and the outside world.
Using an FPGA versus a simulation certainly brings more
effectiveness to the challenge, which can fit into a more
realistic storytelling, where there is really a vulnerable
hardware device to interact with, even if remote.

In this environment, the role previously played by
the wrapper is entrusted to a host application, which
physically connects to the board via USB. In addition
to providing the interface through socat, the host ap-
plication is tasked to filter the commands and send them
to the firmware running on the MCU of the board. The
firmware plays the same role previously assigned to the
testbench: since the MCU has a GPIO interface with the
FPGA, it provides a continuous clock to the target, applies
the inputs and reads the outputs, sending them back to the
host application.

Also in this case, any target described in HDL can
be hosted by the board, and challenge designers are only
asked to provide their HDL files, while they do not need
to deal with the communication part managed by the
firmware. As for the host application, since the interface

5. https://www.docker.com/

https://www.docker.com/

Figure 2: The SEcube™ Development Kit and its compo-
nents.

with the target is not defined by a standard as it was for
ModelSim commands, the challenge designer can program
it using a preferred scheme. The particular setup of this
environment can also allow to host challenges where the
interaction with the hardware takes place at a higher level.
For example, thanks to the USB connection, the target on
the FPGA could play the role of a vulnerable coproces-
sor or peripheral, which could be passed a sequence of
instructions and data instead of native inputs.

With respect to the simulation-based environment,
several different aspects must be considered server-side,
relating to the containerization of the service and the
enqueuing of the requests. In fact, when a user connects, it
is not just a matter of launching an execution instance, but
the connection with a real hardware is required, and this
hardware must be ready and not busy. To this purpose,
the host machine enumerates all the connected devices,
and for each of these, a Docker container is created with
the host application described above. This application is
executed on a socket that is initially not accessible from
the outside. To coordinate the access to the challenge,
during the setup of the environment, the HAProxy® service
is executed: this remaps all sockets on a single TCP port
accessible on the internet, enqueues all the requests, and
correctly balances the load on the containers that host the
copies of the challenge.

At this point, a punctual connection is established
between a user and a board. This is maintaned until the
user quits, or until a timeout expires, set with similar
constraints to the simulation-based environment.

4. CTF Infrastructure for Side-Channel
Attacks

This environment is aimed at training on hardware
security issues intrinsically linked to the physicality of
the device, and offers the possibility to conduct real power
side-channel attacks [17] on real chips. The environment

6. http://www.haproxy.org/

makes use of the ChipWhisperer platform’, from the
company NewAE Technology (Figure 3).

Figure 3: The ChipWhisperer.

As you can also see from the Figure, the platform con-
sists of two parts: an STM32F0 microcontroller that acts
as a “victim”, on which firmware executing cryptographic
algorithms is loaded. The fundamental pins of this chip,
such as the clock and the power supply, are connected to
a second “attacker” system, with a more complex Atmel
processor that manages the interaction with the user, the
implementation of side-channel and fault injection attacks,
and the collection of data from the victim for analysis. The
platform is entirely based on Python libraries, which allow
an easy and abstract use compared to the complexity of
the attack operations.

The environment involves a dispatcher service on the
hosting machine to process requests, and the development
of a Docker container to be downloaded and launched
by the users in order to set a local environment. In
fact, processing and visualization of the capture data is
done locally by the users, and the remote service is only
responsible for serving the capture requests.

From the user point of view, each challenge consists of
a Jupyter Notebook file®. In short, a Jupyter Notebook file
can be seen as a Markdown file enriched with interactive
graphs and executable code snippets. The file is rendered
to the users as a webpage, and the code snippets execution
is handled by an underlying Python kernel. The webpage
has editable code boxes, allowing the users to test and re-
iterate multiple attack mechanisms, and obtain the related
results in both graphical and numerical representations
(Figure 4). Inside the container that users download, all
the tools needed to run and display the Notebook are al-
ready present (i.e., Jupyter engine, ChipWhisperer library,
Python’s matplotlib, etc.)

The remote service is responsible of handling all the
incoming requests of capture operation sent by the users.
Each request includes a set of configuration data such as
the one reserved to the ChipWhisperer scope board and the
one related to the capture configuration. The service has
then to bind the incoming request to the correct ChipWhis-
perer, and uses a “direct mapping”-like approach: given m
the number of boards available, all the requests are equally
partitioned on m queues. Conversely to the FPGA-based
environment, here all the boards only respond to a single

7. https://rtfm.newae.com/Capture/ChipWhisperer-Nano/
8. https://docs.jupyter.org/en/latest/

http://www.haproxy.org/
https://rtfm.newae.com/Capture/ChipWhisperer-Nano/
https://docs.jupyter.org/en/latest/

In [9]: #Example - capture 'h' — end with newline '\
trace_h = cap_pass_trace("h\n")

n' as serial protocol expects that

print(trace_h)

smatplotlib notebook
import matplotlib.pyplet as plt
plt.figure(figsize=[7,5])
plt.plot(cap_pass_trace("h\n"))
plt.plot (cap_pass_trace("e\n"))
plt.show()

WARNING:root:SAM3U Serial buffers OVERRUN - data loss has occurred
[-0.05859375 0.09765625 -0.05078125 ...

e

\‘l MW \ i[l“,“whh .;- L I

-0.1171875 -0.00390625

&

600

In [7]: attack = cwa.cpa(project, cwa.leakage_models.sbox_output)
results = attack.run()

print(results)

Subkey KGuess Correlation
[e]¢] 0x2B 0.76781

01 OxTE 0.75389
02 @x15 @.80293
03 0x16 @.74749
04 0x28 ©.78206
05 AXAE 9.70145
06 @xD2 0.72779
oT OxA6 0.73236
[o2:3 OxAB 0.75005

Figure 4: Screenshots from Jupyter Notebooks perform-
ing offline side-channel analysis.

capture request, after which the connection is immediately
closed. The rest of the computation necessary for the
advancement of the exercise is accomplished within the
users’ local container.

The various backend components are all encapsulated
within a Docker container as well. Each of these is able
to write useful logs, and also to report the most critical
errors as Telegram notifications to the system maintainer,
allowing for a timely problem resolution when necessary.

5. Evaluation

Still in the absence of comprehensive data evaluat-
ing the reception and effectiveness of these environments
within the audience, for the purposes of this article and in
the intention of the authors, it is meaningful to offer data
that especially assess:

« the impact of the services on the host machines in
terms of computational cost;

« the user’s perception of the service, measured by
waiting times to receive an answer (net of the user’s
geographical location and possible connection issues
or delays).

The environments are currently hosted on two of
the servers in the PAIDEUSIS hybrid cyber range [19],
maintained by the Cybersecurity National Laboratory. One
server is allocated for the two environments described in
Section 3, and another for the one described in Section
4. The machines have 40 Intel Xeon E5-2650 CPUs
and 128 GB of RAM, and run Ubuntu Server 21.10. It

is to be noted that each service application is enclosed
within a container - which means every instance for the
simulation-based environment, and both the dispatcher
and all the device-specific container for FPGA-based
and ChipWhisperer-based environment. All containers are
based on Ubuntu Focal 20.04. The bandwidth assigned
to services is 1 Gbps symmetrical. The current sizing
is based on the expected use of events like CyberChal-
lenge.IT, where this type of challenges represents about
10% of the total offer in both phases (the training one of
4 months, and the competition one of 8 hours at the end)
and where the number of participants is about 700.

The simulation-based environment is totally indepen-
dent from additional hardware, and therefore it is more
similar to a classic TCP service. In the tests conducted,
each instance never exceeded 50% occupancy of a physi-
cal core, and 70 MB of RAM. The time between receiving
a command and executing it is less than 10 ms as long as
resources are available.

The FPGA-based environment is much lighter from
the point of view of server computation, since the task
of the host application is minimal and only related to the
correct passing of commands to the board. Both from the
HAProxy and from the single container points of view, for
each board, the impact on RAM is negligible and also the
impact on CPU. The bottleneck is obviously related to the
presence of the physical boards, which mainly results in a
dispatching time of the request towards a free board. Given
t the connection timeout (which starts when the service
starts listening to a user), n the number of connected
users, and m the number of present boards, the maximum
response time 7' is obtained as

" _
T— OS, 1 n<=m 1)
[xts ifn>m

For example, if the timeout is 3 seconds, the physical
boards are 40, and there are simultaneously 100 users
requesting access to the service (which is very unlikely in
competitions with characteristics such as those described),
the maximum experienced wait time is 6 seconds. The
processing time of the request by the board is negligible
compared to this time.

In the last environment presented, the one for the
side-channel analysis, the same considerations cannot be
applied: although the computationally-intensive analysis
is done in local, there is still the need to account a
certain computation effort to capture traces and pack data.
Figure 5 shows the latency in the response to the user
as a function of the number of traces whose capture is
requested. There is a roughly linear progression, going
from 8.14 seconds for capturing 50 tracks to 39.64 seconds
for capturing 800 tracks. Also for this environment, there
is a certain additional latency due to the queue of users,
and the times can scale up to a nx factor with respect to
those presented in the worst case, if n is the number of
users queued on a single ChipWhisperer. The length of
this queue is obviously decreased in a natural way as the
number of present devices increases.

As far as resource occupation is concerned, the tests
showed that a single container for a physical device never
exceeds 60% occupation of a physical core, and 120 MB
of memory. Since all services are containerized, all the

ency Progression
— latency

35

N} w
a S

Latency (seconds)
N
S

15

10

50 100 200 800

400
Traces Collected

Figure 5: Latency of a request vs. number of requested
traces in the ChipWhisperer-based environment.

results presented here have been obtained using docker
stats.

6. Related Work

Given the premises stated in the introductory part of
this paper, the placement of this work within the current
landscape is far from conventional. For example, a recent
work by Kucek et al. [20] surveys very well 19 CTF
platforms, of which 8 are open-source (CTFd, pbctf, Hack-
TheArch, Mellivora, Pedagogic-CTF, PicoCTF, RootThe-
Box, WrathCTF), analyzing them from the point of view
of the tools used and required, the proposed challenges,
and the scoring system. The work performs an evaluation
for the open platforms by creating a set of test challenges,
based on mainstream topics in CTFs, such as cryptography
or web-based code injection attacks. No mention is made
for challenges that are in any way hardware-related, and
none of these platforms seem to be able to support them.
Very similar work has been done in [21].

As already mentioned, when looking for references
to challenges with type “hardware” within CTF platforms
and events, two types of instances are mainly encountered:

1) the specific ones, which propose challenges that can
be reasonably defined as advanced, and target an
audience that is already mostly expert in the field;

2) the generic ones, that since some time have begun
to introduce challenges that deal with or involve
hardware, but often the knowledge about security
issues related to the electronic domain is not really
stimulated.

HackAT events®, organized since 2018 as part of ma-
jor hardware design and test conferences such as DAC
(Design Automation Conference)'®, USENIX Security
Symposium!!, and CHES (Conference on Cryptographic
Hardware and Embedded Systems)'2, involve a specific
competition held in two phases: in the first, prior to
the conference, participants are given a description of a

9. https://hackatevent.org/

10. https://www.dac.com/

11. https://www.usenix.org/conference/usenixsecurity22
12. https://ches.iacr.org/

vulnerable SoC of which they must be able to discover
as many vulnerabilities as possible, using any tool. In the
second phase, teams are provided with a second vulnerable
SoC, and the finalists compete in a live, time-limited
CTF, which always consists of accumulating points by
submitting identified vulnerabilities.

The Hardwear.io platform'? also runs a CTF competi-
tion in the format focusing on radio protocols, automotive,
side-channel analysis, and even physical invasive attacks
on chips. Its special Capture-the-Signal (CTS) '* internal
track is exclusively based on reverse engineering of radio
signals: participants are put in front of Jeopardy challenges
of increasing difficulty, ranging from simple reading to
signal demodulation and decryption.

Another example is the CTF RHme event'>, organized
from 2015 to 2018 by the company Riscure, which op-
erates in the field of automotive hardware security. In
this event, there is a multi-level challenge based on the
Arduino platform'®: participants are given a firmware to
flash (or already flashed) on the board, and the score
is increased by carrying out exploits involving binary
reversing and pwning, but also related to cryptography,
side-channel analysis and fault injection attacks.

As for the most famous CTF competitions worldwide,
we conducted a survey by collecting a sample of 40
challenges tagged as “hardware”, and offered in the edi-
tions of the last 3 years (2019, 2020, 2021) of 18 major
competitions:

Aero CTF

ALLES! CTF

Chujowy CTF
CONFidence CTF

CTF Internacional MetaRed
Cyber Apocalypse

Google Capture The Flag
HTB Uni CTF

ICHSA CTF
Insomni’hack

KnightCTF

Ledger Donjon CTF
pbctf

phOwn

Pwn2Win CTF

UIUCTF

WPICTF

X-MAS CTF

The research has been conducted through the use of
the CTFTime.org portal'’, which is the main CTF collec-
tion portal, continuously uploaded by teams from all over
the world. For reasons of space, we do not report here all
the names of the individual challenges analyzed, which
in any case can be found by simply connecting to the
portal, searching challenges for the “hardware” tag only,
and discarding the results prior to 2019.

5 challenges out of 40 involve the use of physical
hardware (local in 2 cases and remote in 3 cases), of the
ARM or Atmel family. All of these challenges are actually

13. https://hardwear.io/

14. https://hardwear.io/usa-2021/ctf.php
15. https://www.riscure.com/challenge
16. https://www.arduino.cc/

17. https://ctftime.org/

https://hackatevent.org/
https://www.dac.com/
https://www.usenix.org/conference/usenixsecurity22
https://ches.iacr.org/
https://hardwear.io/
https://hardwear.io/usa-2021/ctf.php
https://www.riscure.com/challenge
https://www.arduino.cc/
https://ctftime.org/

focused on binary reversing and pwning activities over
the software running on the board, and none seem to fall
within the definition given in [12]: no knowledge of the
CPU architecture is required, or no schematic or descrip-
tive code of the hardware is given to the participants.

Another 9 out of 40 are based on remote hardware
emulation. A known processor architecture (RISCV, In-
tel or Atmel) is emulated in 8 cases out of 9, while
only in one case the service is provided by a program
written in C++ which interacts with a module written
in SystemVerilog and “executed” through Verilator'8. In
the other 8 mentioned, no detail is given on how the
hardware is simulated, but it is easy to assume that this is
done via a fully-software instruction set simulator (such
as Unicorn!?), not involving any simulation of HDL code.
In fact, there would be no need, as the vulnerabilities lie
in modules external to the processor and connected to it.

Only in 5 of these 9 challenges, some HDL code is
provided to the participants, and the flag is reached by exe-
cuting a code that triggers the vulnerability in the external
module. We can therefore categorize these challenges as
a mix between binary and hardware. In the remaining 4
challenges of this subset, the only activities are reversing
and pwning on the binary code. The challenge with the
module described in SystemVerilog is therefore the only
one that purely demands knowledge of digital hardware.

In total, the challenges where the HDL code is in-
volved are 7 out of 40, and another 8 out of 40 require
the presence of schematics, for a total of 15 challenges
out of the 40 analyzed. Beyond the 5 described above
that involve remote emulation, the other 10 can be all
categorized as inspection-based (see Section 2). 40% of
the remaining 25 challenges of the set are based on binary
reversing and pwning activities: even if they involve the
presence of local or remote hardware, or a remote emu-
lation service, the knowledge about their hardware details
is however irrelevant for the resolution. The other 60%
is composed by challenges requiring the extrapolation
of information from a capture of waveforms, relating
to communications on physical protocols (such as CAN,
12C, SPI), for which no specific knowledge of hardware
is actually required, and for which the probable best
categorization is as miscellaneous challenges (see Section
2).

7. Conclusions

This paper presented a platform capable of offering
CTF challenges focused on hardware security aspects,
through remote interaction with physical or simulated
circuits using standard tools from the hardware designers
community. The challenges that can be proposed through
the platform stimulate knowledge about flaws or back-
doors inserted in the design of the chips, vulnerabilities
in their test infrastructures, and attacks based on power
side-channel analysis. Required and used tools were listed,
and the technical characteristics and performance of the
platform were described in a quantitative manner, high-
lighting data to assess efficiency, security, usability and
portability.

18. https://www.veripool.org/verilator/
19. https://www.unicorn-engine.org/

The platform is already currently in use on the training
portal of the CyberChallenge.IT program, but work is
underway to refine and expand the platform, in relation
to all the environments presented, for the final events of
this and other initiatives scheduled for 2022. In particular,
the simulation-based environment is moving from Mod-
elSim to GHDL?, an open framework much lighter than
the previous one in terms of resource consumption, and
also allowing more features like waveform plotting. As
for the FPGA-based environment, it is migrating to the
Zilinx Pynq platform?!', which allows for larger circuit
sizes, faster reconfiguration times, and easier and more
customizable user interaction based on Jupyter Notebooks,
already employed for the ChipWhisperer environment.

Moreover, the platform currently supports Jeopardy-
type challenges only. A new system to host At-
tack/Defense challenges has already been architected, with
the main purpose to be stable and to allow an agile recon-
figurability of hardware-based vulnbox services without
this significantly impacting game time.

Certainly, subject of next studies will be the collection
of data on the reception of these challenges by the diver-
sified audience that will use the platform in the coming
months, on the criticalities encountered, and on a definitive
systematization of the topic of hardware-based challenges,
taking into account the experience in the field.

8. Acknowledgments

The activities presented in this paper are supported
by: (i) the Italian CINI Cybersecurity National Lab. via
the program CyberChallenge.IT, (ii) the European Union’s
Horizon 2020 research and innovation programme, under
grant agreement No. 830892, project SPARTA and (iii)
Blu5 Labs in Malta.

References

[1] I C. W. Study, “A resilient cybersecurity profession charts the
path forward,” https://www.isc2.org//-/media/ISC2/Research/2021/
ISC2-Cybersecurity- Workforce-Study-2021.ashx, 2021, [Online;
Accessed 2022, March 2nd].

[2] ISACA, “State of cybersecurity 2021 - part 1: Global
update on workforce efforts, resources and budgets,”
https://securitydelta.nl/media/com_hsd/report/424/document/state-
of-cybersecurity-2021-part- 1.pdf, 2021, [Online; Accessed 2022,
March 2nd].

[3] S. Bratus, “What hackers learn that the rest of us don’t: Notes on
hacker curriculum,” IEEE Security & Privacy, vol. 5, no. 4, pp.
72-75, 2007.

[4] A. Anil Yasin and A. Abbas, “Role of gamification in engineering
education: A systematic literature review,” in 2021 IEEE Global
Engineering Education Conference (EDUCON), 2021, pp. 210—
213.

[5] K. Leune and S. J. Petrilli Jr, “Using capture-the-flag to enhance
the effectiveness of cybersecurity education,” in Proceedings of
the 18th Annual Conference on Information Technology Education,
2017, pp. 47-52.

[6] J. Vykopal, V. §vébensk5/, and E.-C. Chang, “Benefits and pitfalls
of using capture the flag games in university courses,” in Proceed-
ings of the 51st ACM Technical Symposium on Computer Science
Education, 2020, pp. 752-758.

20. http://ghdl.free.fr/
21. http://www.pynq.io/

https://www.veripool.org/verilator/
https://www.unicorn-engine.org/
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://securitydelta.nl/media/com_hsd/report/424/document/state-of-cybersecurity-2021-part-1.pdf
https://securitydelta.nl/media/com_hsd/report/424/document/state-of-cybersecurity-2021-part-1.pdf
http://ghdl.free.fr/
http://www.pynq.io/

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

(20]

[21]

J. M. Fung, “Capture-the-flag competitions need to
include hardware,” https://www.eetimes.com/capture-the-flag-
competitions-need-to-include-hardware/, 2020, [Online; Accessed
2022, March 9th].

P. Prinetto and G. Roascio, “Hardware security, vulnerabilities, and
attacks: A comprehensive taxonomy,” in /TASEC, 2020, pp. 177-
189.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown:
Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 973-990.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp.
1-19.

C. Eagle, “Computer security competitions: Expanding educational
outcomes,” IEEE Security & Privacy, vol. 11, no. 4, pp. 69-71,
2013.

P. Prinetto, G. Roascio, and A. Varriale, “Hardware-based capture-
the-flag challenges,” in 2020 IEEE East-West Design & Test Sym-
posium (EWDTS), 2020, pp. 1-8.

K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,”
ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 22, no. 1, p. 6, 2016.

A. Cui, Y. Luo, and C.-H. Chang, “Static and dynamic obfusca-
tions of scan data against scan-based side-channel attacks,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 2,
pp. 363-376, 2017.

C. Domas, “Hardware backdoors in x86 cpus,” 2018.

Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches
and countermeasures,” Journal of Hardware and Systems Security,
vol. 2, no. 1, pp. 33-50, 2018.

M. Randolph and W. Diehl, “Power side-channel attack analysis: A
review of 20 years of study for the layman,” Cryptography, vol. 4,
no. 2, p. 15, 2020.

A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures,” Proceedings of the IEEE, vol. 100, no. 11, pp.
3056-3076, 2012.

G. Berra, G. Ferraro, M. Fornero, N. Maunero, P. Prinetto, and
G. Roascio, “Paideusis: A remote hybrid cyber range for hardware,
network, and iot security training,” in ITASEC, 2021, pp. 284-297.

S. Kucek and M. Leitner, “An empirical survey of functions and
configurations of open-source capture the flag (ctf) environments,”
Journal of Network and Computer Applications, vol. 151, p.
102470, 2020.

M. Swann, J. Rose, G. Bendiab, S. Shiaeles, and F. Li, “Open
source and commercial capture the flag cyber security learning
platforms - a case study,” in 2021 IEEE International Conference
on Cyber Security and Resilience (CSR), 2021, pp. 198-205.

https://www.eetimes.com/capture-the-flag-competitions-need-to-include-hardware/
https://www.eetimes.com/capture-the-flag-competitions-need-to-include-hardware/

	Introduction
	Background
	CTF Infrastructure for Hardware Flaws and Backdoors
	Simulation-based Environment
	FPGA-based Environment

	CTF Infrastructure for Side-Channel Attacks
	Evaluation
	Related Work
	Conclusions
	Acknowledgments
	References

