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Regularized and Compressed Large-Scale Rational
Macromodeling: Theory and Application to

Energy-Selective Shielding Enclosures
Marco De Stefano, Student Member, IEEE, Torben Wendt, Student Member, IEEE, Cheng Yang, Member, IEEE,

Stefano Grivet-Talocia, Fellow, IEEE, and Christian Schuster, Senior Member, IEEE

Abstract—This paper introduces a robust procedure for the
extraction of passive rational macromodels of low-loss electro-
magnetic structures with massive port counts. Such structures
pose inherent challenges that make standard macromodeling
tools and approaches inadequate, mainly due to complexity and
sensitivity at low frequency. The proposed approach involves a
preprocessing stage where port response data from a full-wave
electromagnetic solver are regularized and extrapolated to DC
using an asymptotic modal representation. The resulting data
samples are then processed by a dedicated compression algorithm
that represents the full set of input-output responses in terms of
few basis functions, which are constructed by enforcing an exact
low-frequency modal asymptotic behavior, possibly including
higher-order DC zeros. These zeros are preserved in any stage
of rational fitting and passivity enforcement, resulting in DC
and low-frequency compliant compressed passive macromodels.
Numerical results with up to 400 ports demonstrate the superior
performance and accuracy of the computed models with respect
to state of the art approaches. In particular, the resulting models
preserve their accuracy irrespective of the loading conditions,
including the limit cases of short and open terminations.

Index Terms—low-frequency, large-scale, macromodeling, data
reduction, field circuit coupling, nonlinear circuits

I. INTRODUCTION

System-level simulation of interconnected electromagnetic
systems and components is often enabled by passive macro-
models constructed by rational fitting algorithms [1]–[4]. Such
rational models are easily cast as equivalent circuits [5], [6]
and can be used as blocks in any circuit simulation envi-
ronment. This approach is ubiquitous in several application
fields [1], [7], [8].

When low-loss electromagnetic structures with a large num-
ber of interface ports are considered, standard passive macro-
modeling algorithms may fail. Although advanced formula-
tions of rational fitting and passivity enforcement algorithms
exist [9]–[11], including parallelization for multicore [12] and
dedicated (GPU) hardware [13], several open issues remain
in the generation of robust macromodels. One main aspect is
model sensitivity to loading conditions.
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A black-box macromodel is usually very accurate in the
input-output representation used for its training. For instance,
fitting scattering responses with port reference R0 usually
results in a model that is very accurate when loaded with
resistances close to R0. However, when the terminations differ
significantly, the model accuracy may deteriorate [14]. Con-
sider as an example the limit cases of short and open circuit
terminations, for which model behavior can be checked by
computing its admittance or impedance responses. Due to the
nonlinear transformation that converts scattering to impedance
or admittance, the inevitable approximation errors affecting
the model may be amplified, resulting in dramatically wrong
and nonphysical behavior [15], [16]. This phenomenon is
particularly evident when the system is low-loss, in which case
the scattering responses (eigenvalues) approach magnitude
one at low frequency. Increasing the number of ports further
exacerbates this sensitivity, in addition to posing additional
challenges due to computational requirements.

This paper proposes a sequence of steps aimed at reduc-
ing and possibly eliminating the above sensitivity problems,
including the case of missing samples at low frequency. This
situation is common due to low frequency limitations of full
wave solvers, yet the low frequency band is typically the range
where sensitivity induces its worse effects.

Both theory and numerical results are here illustrated on
a particular class of structures intended for energy-selective
shielding [17]. These structures are chosen not only for the
specific application interest, but also because their electromag-
netic behavior includes all ingredients that induce a worst-case
sensitivity scenario: combined presence of large-scale low-
loss multiport electromagnetic systems with massive nonlinear
loading. In view of this application, motivation and objectives
of this work are now outlined with more details.

A. Motivation and Objectives

The left panel of Fig. 1 depicts a cubic box-shaped shielding
enclosure (each side 500mm) with a square aperture (side of
250mm). A regular grid of P = p × p lumped ports covers
the aperture, with p parallel segments each including p ports
connected in series by metal strips (width 2mm). The DC
conducting paths are illustrated in the right panel of Fig. 1,
together with the port numbering order. The shield material is
assumed to be a Perfect Electric Conductor (PEC). This test
case will be used as a running example to illustrate all steps
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Fig. 1. Left: A box with P = 25 ports, arranged in p = 5 parallel branches,
each including p vertically aligned ports. Right: DC equivalent circuit; the
return path by the enclosure is represented by the short circuit on the right.

of proposed approach. We remark that the proposed approach
can be trivially generalized to apertures with arbitrary shape
and non-square grids.

It has been shown [18]–[21] that loading the ports by nonlin-
ear elements, e.g. back-to-back diode pairs, turns the structure
into an energy-selective shield. Penetration of an incident wave
into the box is permitted when the field amplitude is below
the critical threshold that triggers diode conduction. A higher-
energy field switches diodes into conduction mode, thereby
shorting the conductive paths of the strips and increasing
shielding effectiveness. The result is an energy-selective shield
which can be used to protect any enclosed equipment from
high-amplitude incident fields while allowing intended low-
power communication.

The shielding enclosure with its P unloaded ports is a linear
electromagnetic structure, which can be characterized through
its frequency-domain responses within the desired frequency
band through a field solver. These responses can be used as the
training dataset for the extraction of a rational macromodel,
which in turn can be synthesized as an equivalent circuit,
terminated by the required nonlinear loads, and simulated
in time domain to verify the overall shielding performance.
See [18] for a complete description of this characterization
and modeling framework.

The top panel of Fig. 2 reports the impedance responses
obtained by a Method of Moments (MoM) solver [22]. Native
samples from field solvers {H(jωk), k = 1, . . . ,K} are
typically available in scattering representation (H = S),
conversion to impedance Z or admittance Y is performed as a
post-processing. The data cover a frequency band ωk ∈ ΩD =
ΩL ∪ ΩH , where ΩL is the frequency band over which the
structure can be assumed to be electrically small, where the
corresponding impedance responses exhibit a clear asymptotic
behavior, and ΩH is the higher frequency band where box
resonances start to appear. Due to limitations in the adopted
field solver, only responses starting from a minimum frequency
fmin are available, thus causing a gap in the frequency band
ΩG = (0, fmin). Note that that such low frequency limitations
affect most full-wave field solvers, and that the presence of a
low frequency gap ΩG is very common.

The responses in Fig. 2 present the following challenges:
1) the DC (zero-frequency) point is missing. The behavior of

the structure under static conditions is however essential

Fig. 2. Full set of responses of a 25-port shielding enclosure. Top: all
impedance matrix data from field solver. Bottom: field solver data after
conversion to the asymptotic modal domain via (6). See text for details.

for a correct setup of any circuit simulation in time-
domain. Since the field solver is unable to provide the DC
responses accurately, a common practice is to evaluate
the DC point via a physics-based approach [23] or via
a numerical solution through a static solver. In fact, the
right panel of Fig. 1 provides the DC circuit, whose direct
analysis shows that both impedance and admittance matri-
ces do not exist. This is due to the presence of a dominant
pole at DC, which is well visible from the asymptotic
behavior of the impedance samples in Fig. 2. The same
behavior can be observed in the admittance responses
(not shown). Allowing this DC pole in a macromodel
would result in time-domain simulation difficulties due
to lack of asymptotic stability. Therefore, some sort of
regularization at DC is necessary, in order to guarantee
success in subsequent transient circuit simulations.

2) Even if a physically-consistent and regularized DC point
is provided, the presence of a wide low-frequency gap ΩG

prevents full control of the macromodel response in this
frequency range, which is however essential to control
the transient response. Even in case of high-frequency
incident field excitation, the nonlinear terminations may
enhance the low frequency portion of the port signal
spectra, which are in turn affected by the low frequency
model response.
Figure 3 reports the impedance model responses obtained
by a state of the art passive macromodeling tool [24],
by fitting scattering responses with exact enforcement of
a physics-based DC point. We see that the impedance
responses of the model in a broad low frequency band
are completely wrong. We conclude that some sort of data
extrapolation is required to provide a smooth connection
between the field solver data and the DC point, so that



3

Fig. 3. Modeling a 25-port shielding enclosure with a standard passive
macromodeling tool [24]. Scattering parameters were fitted by enforcing an
exact DC point (top panel). Low-frequency accuracy is not preserved after
model conversion to the impedance parameters.

the model can be properly trained. We will see that a
direct naive extrapolation of impedance (or admittance
or scattering) responses by extending the asymptotic
behavior to low frequencies is not sufficient, and a more
sophisticated regularized modal extrapolation is required.

3) The third macromodeling challenge relates to complexity,
especially in terms of the number of ports P . For practical
applications, this number can grow to several hundreds or
more, due to the requirement of uniformly covering the
shielding aperture with nonlinear blocking devices. An
approach that has the potential to scale favorably with
the number of ports is therefore required.

These challenges will be addressed as follows. First, a com-
bined low-frequency regularization and extrapolation based
on asymptotic modes [25] is discussed in Sec. II, by ex-
tending the preliminary results of [26]. We will see that this
preprocessing stage smoothly extends to DC the solver data,
while at the same time avoiding the low-frequency degeneracy
observed in Fig. 2. Data and model complexity are addressed
through a compression algorithm based on the Singular Value
Decomposition (SVD). We extend the approach of [27] by
proposing a Block-Diagonal SVD (BD-SVD) and a Hierarchi-
cal SVD (Hi-SVD). These alternative solutions compress the
full set of input-output responses into a small number of basis
functions, each with a well-defined low-frequency asymptotic
behavior and number of expected DC zeros. The generation
of regularized and compressed macromodels is discussed in
Sec. IV, where an approach is presented for rational fitting the
individual basis functions while preserving the number of DC
zeros in the model. A full set of numerical results presented in
Sec. V demonstrates the reduced sensitivity of the proposed
models by increasing the number of ports up to P = 400.
Conclusions are finally drawn in Sec. VI.
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Fig. 4. Proposed regularized topology.

Before proceeding, we set some basic notation used
throughout this document. We denote scalars with normal
font x, vectors with lower case bold fonts x, and matrices
with upper case bold fonts X, with In being the identity
matrix of size n. The transpose and Hermitian transpose of
a matrix will be indicated with XT and XH, respectively. The
singular values of a matrix X will be indicated as σ{X}, while
Re {·} and Im {·} extract the real and imaginary part of their
arguments.

II. REGULARIZATION AND LOW-FREQUENCY
EXTRAPOLATION

Since a low frequency gap ΩG prevents control of model
accuracy and sensitivity, we propose in this section a simple
and robust procedure to fill this gap with physically-consistent
extrapolated samples, such that the frequency responses are
well-defined and nonsingular at any frequency (including DC)
for any input-output representation.

A. DC Regularization

Let us consider the DC circuit of a box structure with no
metal losses, depicted in Fig. 1. As already mentioned, both
admittance and impedance matrices are ill-defined at DC:

• exciting all ports with independent current sources at-
tempting to evaluate impedance parameters leads to an
ill-defined DC circuit due to the presence of p(p − 1)
independent current source cutsets;

• exciting all ports with independent voltage sources at-
tempting to evaluate admittance parameters leads to an ill-
defined DC circuit due to the presence of p independent
voltage source loops.

Therefore, both admittance Y0 = Y(s = 0) and impedance
parameters Z0 = Z(s = 0) are ill-defined at DC, since both
Y(s) and Z(s) have a pole at s = 0. This pole can be moved
off the imaginary axis by

1) adding a shunt resistance R to each port, leading to
regularization of Z(s);

2) adding a series resistance r to each port, leading to
regularization of Y(s).

This procedure leads to the DC regularized topology of
Fig. 4, which is non-singular for any cardinal representation.
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Fig. 5. Selected responses of regularized impedance parameters of a 5 × 5
box (P = 25) via Algorithm 1 (R = 100 MΩ, r = 0.1 Ω). Black dotted
lines represent the DC values from (1); the inset provides a detail on high-
frequency.

In fact, a direct calculation leads to the following expressions
for the DC impedance, admittance and scattering matrices

Z0 = Ip ⊗ Z′
0, Z′

0 = r Ip +R (Ip − ϑuuT) (1)

Y0 = Ip ⊗Y′
0, Y′

0 =
(p rIp +RuuT)

p(Rr + r2)
(2)

S0 = Ip ⊗ S′
0, S′

0 =
Φ′ − 1

Φ′ + 1
Ip −

2ϑΦuuT

(Φ′ + 1)(φ+ 1)
(3)

where p is the number of vertically aligned ports, ϑ = 1/p,
uT = [1, · · · , 1], u ∈ Rp, Φ = R/R0, φ = r/R0, Φ′ = Φ+φ,
with R0 denoting the scattering port reference impedance.

B. Regularization of MoM data
Redefinition of the DC behavior according to Fig. 4 makes

the frequency samples obtained from the field solver not
compatible with the extrapolated DC responses. Therefore, a
full-bandwidth regularization process must be applied, so that
all frequency samples in ΩD are compatible with the above-
computed DC values. This regularization is accomplished by
Algorithm 1, which evaluates a set of modified responses
obtained by connecting a shunt resistance R at each port and,
in a second step, a series resistance r at each port. Note that
all steps are well-defined, since the DC point is assumed to be
missing from the data, so that all matrices are invertible at any
available (finite) frequency point. The results of this process
are depicted in Fig. 5.

Figure 5 shows that the perturbation of the available fre-
quency samples from the MoM solver is negligible, consid-
ering the values used for series (r = 0.1 Ω) and parallel
(R = 100 MΩ) regularization. As a general guideline, the
values of r and R should be very small and very large,
respectively, in order to preserve all features in the original
responses. Figure 5 also shows that the regularized DC values
do not connect smoothly to the frequency responses starting
from the first frequency sample at fmin. The gap in the
responses due to the low-frequency limit of the field solver
is still too large and must be filled with suitably extrapolated
response samples.

C. Low Frequency Extrapolation
An extrapolation of the frequency responses below the first

available frequency point is not trivial, since both admittance

Algorithm 1 Data regularization
Require: Frequency data {H(jωk), ωk ∈ ΩD}, R, r

1: H(jωk)← 0.5(H(jωk) +H(jωk)
T)

2: Convert H(jωk) to admittance Y(jωk)
3: Regularize admittance as Y(jωk)← Y(jωk) +

1
R IP

4: Convert to impedance Z(jωk) = [Y(jωk)]
−1

5: Regularize impedance as Z(jωk)← Z(jωk) + rIP
6: Add DC point Z0 from (1) as Z(jω)|ω=0 = Z0

7: return Z(jωk): regularized data including DC point

and impedance responses Y(jω) → ∞ and Z(jω) → ∞ for
ω → 0. The structure is characterized by the presence of
both inductive and capacitive modes at low frequency, which
are responsible for the singularity of both admittance and
impedance. A direct extrapolation of admittance (impedance)
matrix elements would lead to a good approximation of the
inductive (capacitive) modes, respectively, leaving the other
modes very inaccurate.

This problem can be effectively solved by conversion to
a modal domain, where inductive and capacitive modes are
well separated and can be extrapolated concurrently [26].
This operation is best performed on the raw data (lossless)
from the field solver, before applying Algorithm 1. Differently
from [28], in order to improve numerical robustness and
provide an extrapolation scheme that is immune from the field
solver inaccuracies that can be expected at low frequencies, we
base the definition of the modal basis on the regularized DC
admittance Y0 derived analytically in (2). This choice leads
to the additional benefit of a purely real and orthogonal modal
transformation, which is required for preserving causality [29],
[30] in all subsequent macromodeling steps.

We compute the following eigendecomposition

Y0 = QΛ0Q
T, Λ0 = QTY0Q =

[
1
R′ Ic 0
0 1

r Iℓ

]
(4)

where R′ = R + r. We note that the eigenvalue 1/R′ has
multiplicity c = p(p− 1), while the eigenvalue 1/r has mul-
tiplicity ℓ = p. We will see shortly that c and ℓ correspond to
the number of capacitive and inductive modes of the structure.
Since Y0 is symmetric, the modal matrix Q =

[
Qp Qs

]
is

orthogonal, so that QT
sQs = Iℓ, QT

pQp = Ic, and QT
pQs = 0.

Consequently,

Y0 =
1

R′QpQ
T
p +

1

r
QsQ

T
s . (5)

For any frequency ωk ∈ ΩD, the data from the field solver
is converted to the DC asymptotic modal domain via

Ym(jωk) = QTY(jωk)Q , ωk ∈ ΩD. (6)

The same transformation can be applied in scattering or
impedance representation. The bottom panel of Fig. 2 de-
picts the obtained modal impedance responses, where the
±20 dB/dec slope associated to purely inductive/capacitive
modes is evident for frequencies in the subband ΩL. Note
that the modes that converge to zero in the impedance repre-
sentation are those modes that explode to∞ in the admittance
representation, and vice versa.
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With reference to Fig. 2, we now restrict our analysis to the
subband ΩL where the projected solver data can be assumed to
behave asymptotically. We can assume the following frequency
dependence

Ym(jω) ≈ 1

jω
Γm + jωCm =

[
jωC̃ jωX̃

jωX̃T 1
jω Γ̃

]
, ω ∈ ΩL (7)

where Γm and Cm are constant matrices such that (Γm)ij ̸=
0 ⇒ (Cm)ij = 0 for any i, j, and vice versa. The structure
of the dominant terms is also detailed in (7), in terms of the
constant matrix blocks C̃, Γ̃, and including the off-diagonal
blocks X̃. These constant matrices are determined via a two-
step elementwise regression.

First, we assign each matrix element (i, j) to the capacitive
or inductive subset by determining the dominant slope of the
modal admittance magnitude. For ωk ∈ ΩL, we compute ξk =
log10 ωk, yij;k = log10 |Ym;ij(jωk)| and we perform a least
squares fit to determine the coefficient µij such that

yij;k ≈ µij ξk + νij , ∀ωk ∈ ΩL (8)

Acceptable values for this coefficient are µij = +1, in which
case element (i, j) is assigned to the capacitive terms Cm,
and µij = −1, corresponding to the inductive terms Γm.
Coefficient νij is disregarded.

As a second step, we identify the actual elements of
constant matrices Cm and Γm. This is achieved by a sec-
ond least squares fit based on the imaginary part ηij;k =
Im {Ym;ij(jωk)}, performed differently for capacitive and
inductive terms as

µij = +1 : ωkCm;ij ≈ ηij;k, ∀ωk ∈ ΩL

µij = −1 : −ω−1
k Γm;ij ≈ ηij;k, ∀ωk ∈ ΩL

(9)

Using the coefficients from (9), we generate a desired number
KGL of new samples according to the asymptotic modal
expansion

Υm(jωk) =
1

jωk
Γm + jωkCm, ωk ∈ ΩG ∪ ΩL (10)

Note that, in addition to new samples in the low frequency
gap ΩG, we also evaluate the asymptotic model in its training
band ΩL, expecting a minimum deviation with respect to the
projected solver data. These are used to assemble all native
and extrapolated samples as

Ym(jωk)←


Λ0 ωk = 0

Υm(jωk) ∀ωk ∈ ΩG

αkYm(jωk) + βkΥm(jωk) ∀ωk ∈ ΩL

Ym(jωk) ∀ωk ∈ ΩH

(11)
where αk and βk are frequency-dependent coefficients such
that αk+βk = 1, that are respectively (linearly or logarithmi-
cally) increasing and decreasing from 0 to 1 in ΩL, providing a
smooth transition between the synthetically-generated asymp-
totic samples Υm(jωk) and the field solver data Ym(jωk).

Fig. 6. Comparison of the original MoM data with the full-bandwidth
impedance parameters of the 25-port shielding enclosure, obtained after the
proposed regularization/extrapolation procedure

D. Regularization in the modal domain

The last step in the proposed data conditioning process
is regularization, which is performed directly in the modal
domain by processing the extrapolated data (11). The main
advantage of this approach is that only the individual modes
that are responsible for the singularity of a given (modal)
matrix representation are regularized, leaving the other modes
unperturbed.

Starting from Ym(jωk) defined in (11), for any frequency
ωk ̸= 0 we perform the following steps.

1) Regularize the capacitive block to prevent the degeneracy
of Ym(jω) for ω → 0

Ŷm(jωk) = Ym(jωk) +

[
1
R′ Ic 0
0 0

]
, ωk ∈ ΩG ∪ ΩD.

(12)
The resulting matrix is invertible at any frequency.

2) Convert to impedance and regularize the inductive block
to prevent its degeneracy for ω → 0

Z̆m(jωk) = Ŷm(jωk)
−1 +

[
0 0
0 rIℓ

]
, ωk ∈ ΩG ∪ ΩD.

(13)
3) Return to the physical domain through inverse modal

transformation

Z̆(jωk) = QZ̆m(jωk)Q
T, ωk ∈ ΩG ∪ ΩD. (14)

Figure 6 depicts the impedance responses after the complete
extrapolation and regularization, compared to the native field
solver samples. This plot confirms that in-band samples are
practically left unchanged, and that data are smoothly extrap-
olated throughout both the transition band ΩL and the low-
frequency gap ΩG.

It can be easily shown that the resulting data samples in
the low frequency gap ΩG, obtained as a regularization of the
lossless extrapolation (10), have the modal structure

Z̆m(jω) =

[
R′Ic + ⋆1 ⋆2

⋆2 rIℓ + ⋆1

]
, ω ∈ ΩG, (15)

where the symbol ⋆ν denotes a frequency-dependent matrix
with leading order (jω)ν for ω → 0. This structure is fully
compatible with the direct (physical-domain) regularization of
Algorithm 1 and with the DC physics-based circuit in Fig. 4.
The modal impedance matrix thus exploits elements that
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converge to a constant (the diagonal entries), elements with
a first-order zero, and off diagonal blocks with a second-order
zero. This structure applies also to the scattering responses
in ΩG, as confirmed later by Fig. 9d. Classification of these
matrix elements is important for data compression, discussed
next.

E. Extensions

The extension of the proposed procedure to a general mul-
tiport structures with possibly different asymptotic behavior
at DC is straightforward, once a proper regularization circuit
is defined (e.g. Fig. 4). Indeed, the general procedure can be
easily modified to deal with purely inductive or capacitive
modes, corresponding to admittance or impedance matrices
being ill-defined at DC.

We also remark that the proposed regularization procedure
was conceived to handle the case of a completely missing DC
characterization, with the objective of providing a synthetic
DC point that will not create problems in later modeling and
simulation steps. In other situations, a DC characterization
may be available, either from direct measurement or from a
separate DC or quasi-static solver. If available, such DC char-
acterization can be used directly within proposed framework,
by replacing the expressions (1)-(3). The eigendecomposition
and modal regularization then applies without significant mod-
ifications.

III. DATA REDUCTION AND STRUCTURED MACROMODELS

In this section, we address the scalability of macromodel
extraction with the number of interface ports. For the consid-
ered energy-selective shielding application, we expect grids
with hundreds of ports P . For such large number of ports, the
complexity of both model generation and model exploitation
in successive transient simulations may become impractical,
due to the requirements of concurrently fitting P 2 responses.
Although the Fast VF algorithm [9] and its parallel imple-
mentations [12], [13] somewhat improve the model fitting
phase by compressing the least squares system returning the
model coefficients at each VF iteration, there is still signif-
icant margin for improvement. In fact, the set of frequency
responses usually exhibit a high degree of redundancy, which
can be removed by a suitable data compression strategy. The
structure of the model can thus be improved to take advantage
of such redundancy, rather than adopting a standard rational
expansion of each individual response with common poles and
independent P × P residue matrices.

In this direction, a data compression technique based on a
standard Singular Value Decomposition (SVD) was originally
presented in [27]. This method allows to obtain a compressed-
macromodel via VF taking advantage of the spatial correlation
between ports and describing the overall system with a limited
number of basis functions. In [27], these functions are the
singular-vectors of a truncated SVD. Here, we generalize and
customize this approach to the particular modal structure of
the frequency responses of shielding enclosures, in particular
to reproduce accurately the number of modal DC zeros.
We first recall some background notation and material in

Sec. III-A. Our proposed extended and generalized version
of this algorithm is presented in Sec. III-B.

A. SVD Data Compression: Background

The data compression approach of [27] starts with a set
of frequency (typically scattering) responses H(jωk) = Hk

of a P -port linear time-invariant system, sampled at suitable
frequency points ωk, with k = 1, . . . ,K. The first step of
the procedure stacks the columns of Hk ∈ CP×P at each
frequency ωk in a row vector defined as

xk = vec(Hk)
T (16)

where xk ∈ CP 2

. The equivalent mapping (xk)ℓ = (Hk)i,j
can be defined as

ℓ = i+ (j − 1)P,

{
i = 1 +mod(ℓ− 1, P )

j = ⌈ℓ/P ⌉ (17)

where ⌈·⌉ rounds towards infinity and mod is the remainder
of integer division. All these row vectors are collected in a
matrix X ∈ CP 2

as

X =

←− x1 −→
...

...
...

←− xK −→

 =

 ↑ · · · ↑
m1 · · · mP 2

↓ · · · ↓

 . (18)

Following [27], real and imaginary parts of X are stacked
in a real matrix, which is subjected to a truncated SVD[

Re {X}
Im {X}

]
≈ ŪΣ̄V̄T (19)

where the ρ leading singular values are collected in Σ̄ ∈ Rρ×ρ,
while the left and right singular vectors correspond to the
columns of Ū ∈ R2K×ρ and V̄ ∈ RP 2×ρ, respectively. We
recall that ŪTŪ = Iρ and V̄TV̄ = Iρ, while V̄V̄T ̸= IP 2

due to SVD truncation. Next, we define the following matrix

W̄ =
[
IK jIK

]
ŪΣ̄ (20)

which recombines real and imaginary parts of scaled singular
vectors, allowing to approximate the system responses in (18)
as

X ≈ X̄ = W̄V̄T . (21)

In particular, the ℓ-th column of X can be reconstructed using

mℓ ≈
ρ∑

q=1

vℓ,qw̄q . (22)

where w̄q denotes the q-th column of W̄. The set of w̄q is here
denoted as basis functions. From (21) or (22), we see that each
frequency response out of a set of P 2 can be approximated
with only ρ basis functions through a simple SVD data
preprocessing. Therefore, a VF macromodel of the P × P
system can be built by constructing rational approximations
of the basis functions {w̄q, q = 1, · · · , ρ}, which is a very
efficient operation when ρ ≪ P 2. Moreover, as indicated
in [27], the error introduced by (21) is bounded by

E =
∥∥X− X̄

∥∥
2
≤
√
2σρ+1 . (23)
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Fig. 7. Standard SVD compression [27] applied to a 25-port shielding
enclosure. Top panel: representative responses with DC zeros of different
orders, not recovered after the data compression. Bottom: subset of the
resulting ρ = 73 basis functions (threshold σρ+1 = 10−6). All basis
functions are nonvanishing at DC.

where σρ+1 is the first neglected singular value. Note that (23)
sets the limit of accuracy of the overall macromodeling
procedure: any error introduced at this step will not be
recovered in later steps, so that the number of retained singular
values should be such that σρ+1 is sufficiently small for the
considered application.

If we apply the above framework to scattering responses of
shielding enclosures, the structure of the responses is not pre-
served by the truncated approximation (21). Figure 7 confirms
that, even if the threshold used for SVD truncation is very
aggressive, the presence of single or double zeros at DC for
some responses is not preserved. The data before compression
for this example were obtained following the regularization
and extrapolation discussed in Section II-C, using series and
parallel resistances r = 0.1Ω and R = 100MΩ. The resulting
number of frequency samples is K = 8904 in the range
[0, 1]GHz, including 904 low-frequency extrapolated samples
and the DC point. The SVD data compression was applied
using a truncation threshold σ < 10−6, resulting in ρ = 73
basis functions, see bottom panel of Fig. 7. All these basis
functions are nonzero at DC, so that the presence of a DC
zero in any of the system responses would be enforced through
a linear combination (22) of nonvanishing basis functions,
relying on numerical cancellation. Machine precision and
SVD truncation thresholds prevent this cancellation, so that
a low-frequency saturation appears and destroys any DC zero,
see top panel of Fig. 7. This saturation can be interpreted
as an artificial additional loss at low frequency, which may
compromise the overall reliability and accuracy of the model,
especially in transient simulations with nonlinear terminations.
The presence of DC zeros must be preserved at all steps of the
modeling process, including data compression. Therefore, we

Fig. 8. Grouping responses of a 25-port box according to the order of
DC zeros. Top: magnitude of the modal responses. Bottom: examples of
responses with DC zeros which are recovered after proposed data compression
approaches.

need to extend the basic SVD compression of [27] in order to
guarantee a proper structure preservation.

B. Structured SVD Compression
The main idea that motivates the following data reduction

procedure is to obtain a specific set of basis functions that
reflect structural properties in the original response data. This
is applied here to preserve DC zeros of a given multiplicity
(up to two in the following), although the procedure is general
and can be applied to preserve any other feature of interest.

The starting point is (18), which collects all P ×P system
responses as columns of matrix X, ordered according to the
column stacking operator (16). As a first step, we reorder the
columns of X through a suitable permutation matrix P such
that PPT = I as

X = MP =
[
M1 M2 M3

]
P, (24)

where the first block M1 ∈ CK×P1 stores the responses of
H(s) that saturate to a nonvanishing DC value, while the
second and third blocks M2 and M3 collect all responses with
a zero at DC of order 1 or 2, respectively. In the following,
we indicate with Pν the number of columns of each group
of responses Mν , with ν = {1, 2, 3} and

∑
ν Pν = P 2. An

example of these three sets is reported in the top panel of
Figure 8, see also Fig. 9d.

Applying a standard (unstructured) SVD compression to the
reordered matrix M and highligting the 3× 3 block structure
leads to

M =
[
M1 M2 M3

]
=

[
W1 W2 W3

]
VT = (25)

=
[
W1 W2 W3

] V11 V12 V13

V21 V22 V23

V31 V32 V33

 .
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where matrices Wν collect groups of basis functions to be
associated to the three groups of responses Mν , with ν =
{1, 2, 3}. Expanding (25) provides

M1 = W1V11 +W2V21 +W3V31

M2 = W1V12 +W2V22 +W3V32

M3 = W1V13 +W2V23 +W3V33

(26)

which shows that each group of responses depends on all
basis functions in all groups ν = {1, 2, 3}. Let us assume
now that basis functions W3 are constructed only using the
responses in M3. Since all these responses have a double
zero at DC, then each basis function in W3 will retain a
double zero at DC. In order for the reconstructed M3 in (26)
to preserve this double zero, the terms V13 and V23 must
vanish identically. Similarly, assuming that the basis functions
W2 are constructed only based on the subset M2, single DC
zero preservation in (26) is guaranteed if V12 = 0. In other
words enforcing VT to be block-lower-triangular guarantees
preservation of DC zeros in the data compression, provided
that individual basis functions in the three groups Wν are
constructed using only the proper subsets of responses. We
can realize this condition using two different strategies.

1) Block-Diagonal SVD (BD-SVD): The block-diagonal
approach considers each subset of responses Mν for ν =
{1, 2, 3} as independent, by applying individual SVD com-
pression. Therefore, we compute

M̃ν =

[
Re {Mν}
Im {Mν}

]
≈ ŪνΣ̄νV̄

T
ν , ν = 1, 2, 3 (27)

where Σ̄ν collects the leading ρν singular values in descending
order, and where Ūν ∈ R2K×ρν , V̄ν ∈ RPν×ρν , with
ŪT

ν Ūν = I and V̄T
ν V̄ν = I. We then define

W̄ν =
[
IK jIK

]
ŪνΣ̄ν , V̄′

ν = V̄T
ν , ν = 1, 2, 3 (28)

and rewrite (27) as

Mν ≈ M̄ν = W̄νV̄
′
ν , ν = 1, 2, 3. (29)

Collecting all groups leads to the Block-Diagonal SVD ap-
proximation

M ≈ M̄ =
[
M̄1 M̄2 M̄3

]
=

=
[
W̄1 W̄2 W̄3

] V̄′
1 0 0
0 V̄′

2 0
0 0 V̄′

3

 . (30)

The advantages of the BD-SVD compression are
• the guarantee that particular features in different groups

of responses are preserved in the compressed dataset,
including DC zeros;

• the ability to tune the accuracy on each set of responses
Mν individually, which allows to control the DC error
when working in the modal reference systems. Indeed, in
the latter case the diagonal terms of the transfer function
are the only responsible for the accuracy at s = 0.

• the high level of sparsity in the transformation matrix V̄,
hence in the compressed model.

These advantages are counterbalanced by a potentially larger
number of total basis functions ρ =

∑
ν ρν with respect to a

global unstructured SVD.

2) Hierarchical SVD (Hi-SVD): The Hierarchical SVD
does not consider each subset of responses Mν for ν =
{1, 2, 3} as independent, but it applies a hierarchical strategy
to iteratively remove the contribution of a given set from the
others by projection. The final result is represented by a block-
triangular structure

M ≈ M̄ =
[
M̄1 M̄2 M̄3

]
= (31)

=
[
W̄1 W̄2 W̄3

]  V̄′
1 0 0

V̄′
2,1 V̄′

2 0
V̄′

3,1 V̄′
3,2 V̄′

3

 . (32)

where individual matrix blocks are iteratively defined for ℓ =
{3, 2, 1} through a truncated SVD

M̃ℓ −
3∑

j=ℓ+1

ŪjV̄
′
j,ℓ ≈ ŪℓΣ̄ℓV̄

T
ℓ = ŪℓV̄

′
ℓ (33)

with V̄′
ℓ = Σ̄ℓV̄

T
ℓ and V̄′

j,ℓ = ŪT
j M̃ℓ.

This representation preserves the same advantages of the
BD-SVD compression, but it generally requires a smaller
number of basis functions ρ =

∑
ν ρν to obtain the same

level of accuracy.
The same 25-port example of Sec. III-A is used here

to demonstrate the effectiveness of the proposed strategies.
Modal scattering responses were subjected to the BD-SVD and
the Hi-SVD, using truncation thresholds {10−8, 10−6, 10−6}
for M1, M2 and M3, respectively. The value for M1

was chosen to preserve an accurate DC reconstruction for
the nonvanishing responses at DC (the diagonal entries of
Sm(jω)). Figure 8 confirms preservation of DC zeros for all
modal responses. All compression techniques provide a similar
accuracy for all reconstructed scattering elements, see Fig. 9.
The top panel of Fig. 10 depicts selected basis functions for
each block with DC zeros of different order.

IV. STRUCTURED COMPRESSED MACROMODELING

The compressed data representation (21) obtained either
with the standard [27] or the proposed DC-preserving struc-
tured compression methods of Sec. III can be used as a starting
point to construct a low-complexity structured macromodel.
We review the general framework [27] in Sec. IV-A, and
we present the proposed DC-preserving generalization in
Sec. IV-B.

A. Compressed Macromodeling: Background

For each individual basis function w̄q available as a column
of matrix W̄ ∈ CK×ρ, we construct a rational macromodel in
form

wq(s) = rq∞ +

Nw∑
n=1

rqn
s− pn

(34)

where pn are the system poles (common to all basis functions),
rqn are the model residues and rq∞ is the direct coupling term.
The model is computed by processing all basis functions at
once through the Fast VF algorithm [9], by enforcing the fitting
condition

wq(jωk) ≈ (w̄q)k, q = 1, . . . , ρ, k = 1, . . . ,K (35)
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Fig. 9. Data compression applied to a 25-port shielding enclosure. Accuracy
on all transfer function elements after compression via the Standard SVD
(a) and the proposed Block-Diagonal SVD (b) and Hierarchical SVD (c).
Panel (d) highlights the groups of responses according to the order of the DC
zeros.

considering that the k-th component (w̄q)k of each basis
vector w̄q corresponds by definition to the frequency ωk.

All basis function models (34) are collected in a row vector
denoted as compressed macromodel

w(s) =
[
w1(s) w2(s) · · · wρ(s)

]
, (36)

that can be further cast in a state-space form as

w(s)T = Cw(sI−Aw)
−1bw + dw . (37)

with Aw ∈ RNw×Nw storing the poles pn in its main diagonal,
bw = 1Nw

column vector of ones, Cw ∈ Rρ×Nw collecting
the residues rqn, and dw ∈ Rρ collecting the direct coupling
constants rq∞. Standard modifications apply [1] in case of
complex conjugate model poles.

The main advantage of this approach is the computational
cost reduction in building the macromodel. Indeed, instead of
fitting P 2 responses (or P (P + 1)/2 in case of reciprocal
structures), the compressed-macromodel requires only ρ ele-
ments (the set of basis functions) to be fitted. This corresponds
to a major reduction in terms of model coefficients, i.e. a
smaller amount of decision variables both for the fitting and
the subsequent passivity enforcement, to be discussed below.

B. Structure-Preserving Compressed Macromodeling

One of the main contributions of this work is in the
definition of a compressed structured macromodel

ŵ(s) =
[
ŵ1(s) ŵ2(s) · · · ŵρ(s)

]
(38)

where the rational model ŵq(s) for each basis function inherits
the features of the corresponding column w̄q of W̄, in
particular the presence of DC zeros of a given order. For the

particular application to shelding enclosures, where we need
to model three blocks ν = 1, 2, 3 with ρν basis functions each
and a DC zero of order 0, 1, 2 respectively, this is achieved by
defining

ŵ(s)T = Γ(s) ·w(s)T (39)

where

Γ(s) =

m1(s) · Iρ1
0 0

0 m2(s) · Iρ2
0

0 0 m3(s) · Iρ3

 (40)

with frequency-dependent rational weighting factors

m2(s) =
s

s− p∞2
, m3(s) =

s

s− p∞2
· s

s− p∞3

and m1(s) = 1. Assuming the components of w(s) in
rational form (34), these high-pass filters enforce DC zeros of
appropriate multiplicity, while remaining compatible with the
requirement that scattering responses must be unitary bounded,
since |mν(jω)| ≤ 1 for ν = 1, 2, 3 and ∀ω ∈ R. The poles
p∞2,3 are selected to be outside the modeling band to minimize
their effects in the modeling bandwidth,

ωmax <
∣∣p∞2,3∣∣ (41)

where ωmax is the maximum frequency used to fit the model.
Since

lim
s→∞

Γ(s) = Iρ (42)

the asymptotic behavior of ŵ(s) and w(s) is identical, so
that the model response of ŵ(s) at s = ∞ is controlled by
the direct coupling terms rq∞ of (36).

1) Model Fitting: Here, we show how the filtering term
Γ(s) defining the compressed structured macromodel (39) can
be accounted for without any modification of a standard VF or
FastVF engine [9]. Direct enforcement of model structure (39)
would in fact require a modification of the VF basis functions
in order to account for the presence of the two additional high-
frequency poles p∞2,3. Instead, we rescale the basis vectors by
the inverse of the weighting matrix Γ−1

k = Γ(jωk)
−1, and

we enforce a standard VF fit with a compressed model in
form (34). The resulting fitting condition for each rescaled
basis vector reads

wq(jωk) ≈ (w̃q)k = (Γk)
−1
qq (w̄q)k,

q = 1, . . . , ρ, k = 1, . . . ,K. (43)

The right-hand side in (43) takes a nonzero finite value
at DC, due to the inverse rescaling factor which cancels
the corresponding DC zeros. Therefore, a standard rational
model with structure (34) can be used to perform the rational
approximation (43). The final structured model with DC
zeros is obtained through multiplication by the filtering terms
through (39).

Figure 10 reports the set of basis functions before and after
rescaling by (43). In order to improve numerical conditioning
and accuracy, each q-th basis vector can be further normalized
by its 2-norm or RMS value, embedded as an additional weight
in the corresponding diagonal element Γqq(s) of the filtering
matrix in (39) and (43).
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Fig. 10. Top panel: subset of basis functions obtained with the proposed
Block-Diagonal SVD (BD-SVD); bottom panel: the same rescaled basis
functions via (43).

In addition to the slope, a correct DC level of the model is
obtained by enforcing the additional equality constraint

(w̃q)1 = rq∞ +

Nw∑
n=1

rqn
−pn

q = 1, . . . , ρ, (44)

while solving (43) in least squares sense using VF or FastVF,
where it is assumed that the DC value is available as the first
frequency sample k = 1 as s1 = jω1 = 0.

The compressed structured macromodel (38) can be mapped
to the original multi-port scattering representation H(s)
through a constant algebraic transformation

H(s) = mat(V̄ŵ(s)T) (45)

where the mat operator reshapes a vector of P 2 elements into
a P × P matrix.

2) Enforcing Model Passivity: We now address the pas-
sivity enforcement of the structured compressed (scattering)
macromodel defined in (45), assumed to be asymptotically
stable by construction as obtained by VF. We recall that a
scattering macromodel is passive if its transfer function is
bounded real, which is implied under the working stability
assumptions by condition

σmax{H(jω)} ≤ 1 ∀ω ∈ R, (46)

where σmax is the largest singular value of its matrix argument.
The scheme that we adopt is the method of choice in most

state of the art tools, based on iterative local perturbation
singular values that violate (46). Let us consider a single
frequency ωk at which this passivity condition is violated, and
compute the singular value decomposition

Hk = H(jωk) = UkΣkV
H
k (47)

where Uk,Vk are unitary, and Σk stores in its diagonal the
singular values of Hk. We define σk > 1 as the largest singular

value, with uk and vk the corresponding left and right singular
vectors. Following standard results [1], [10] we write a first-
order singular value perturbation

σ̂k ≈ σk +∆σk = σk +Re
{
uH
k∆Hkvk

}
(48)

where ∆Hk is the corresponding model perturbation. Requir-
ing σ̂k to be less than one leads to the following first-order
condition for local passivity at ωk

Re
{
uH
k∆Hkvk

}
≤ 1− σk. (49)

Rather than following a two-step process as in [27] by
enforcing asymptotic passivity first, followed by an iterative
enforcement loop at all finite frequencies, we follow here a
direct approach to perturb concurrently all model coefficients
while enforcing (49) at all (finite and infinite) frequencies.
First, we define the model perturbation in terms of its coeffi-
cients, by introducing the vectorized variable

xw = vec(∆Rw) (50)

where ∆Rw is a perturbation to be determined for all model
parameters rqn, rq∞ collected in matrix Rw ∈ R(Nw+1)×ρ, in-
cluding also the direct coupling constants that are responsible
for the asymptotic behavior of the model. A straightforward
algebraic calculation allows to write

Re
{
uH
k∆Hkvk

}
= Re

{
(vT

k ⊗ uH
k )vec(∆Hk)

}
(51)

= Re
{
(vT

k ⊗ uH
k )V̄ Γk(Iρ ⊗φT

k )
}︸ ︷︷ ︸

pT
k

xw

where φk = φ(jωk) ∈ CNw+1 stacks the partial fraction basis
functions φ0(sk) = 1, φn(jωk) = (jωk − pn)

−1. Therefore,
the local passivity constraint (49) can be written in a compact
form as

pT
kxw ≤ 1− σk. (52)

A standard adaptive sampling-based passivity characterization
such as [31] is used to detect the frequencies ωk where
passivity violations are located, leading to multiple concurrent
constraints (52).

Model accuracy during passivity enforcement is preserved
by minimizing the following cost function

E2 =

ρ∑
q=1

E2q =

ρ∑
q=1

K∑
k=1

|∆w̃q(jωk)|2 (53)

which is a quadratic form of the decision variables xw.
Passivity enforcement is applied in a standard way by mini-
mizing (53) subject to inequality constraints (52), and possibly
equality constraints (44) for DC point preservation, within an
iterative loop.

We remark that the number of decision variables in xw is
only ρ · (Nw + 1), since the compressed macromodel form
is perturbed, although the passivity of the large-sized P × P
macromodel is being enforced. Therefore, the complexity of
the quadratic optimization problem that is solved at each
passivity enforcement iteration is not affected by the number
of I/O ports of the structure under modeling, but only by
the number of basis functions. Note also that the filtering
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matrix Γ(s) that defines the proposed compressed structured
macromodel with DC zeros is applied as a weight, since
its poles p∞2,3 are fixed, so that no additional unknowns are
introduced.

V. NUMERICAL RESULTS

In this section, we report several results that confirm the
effectiveness of proposed macromodeling strategy. All numer-
ical results have been obtained using a prototypal MATLAB
code on a Workstation based on Core i9-7900X CPU running
at 3.3 GHz with 64 GB of RAM.

A. A 25-port box example

We report the final result for the 25-port box that was
used as a running example to demonstrate all intermediate
steps of proposed macromodeling flow. Here, two compressed
macromodels are constructed and compared. The first is built
following [27] using the set of unstructured basis functions
reported in Fig. 7. The second is built on the basis set
of Fig. 10 following the proposed approach of Sec. IV, in
particular by enforcing in the model structure the presence of
DC zeros of order 1 and 2 wherever appropriate. Both models
are trained in the scattering domain, with a fixed number of
poles n̄ = 89. A comparison of these models is presented in
Fig. 11, where the main systems representations (scattering,
admittance and impedance) are plotted, the latter two obtained
by post-processing.

The proposed structured model has been processed through
a passivity enforcement scheme, as described in Sec-
tion IV-B2, that resulted in a passive model in 53 iterations
and an overall elapsed time of ≈ 290 seconds. The maxi-
mum singular values before and after the proposed passivity
enforcement are reported in panel (a) of Fig. 11. Panels (b)-
(d) confirm that the proposed structured approach outperforms
the reference in terms of full-band accuracy, in all three
representations. As an additional reference for comparison,
the model obtained by a standard approach [24], without any
preprocessing except addition of the physics-based DC point,
is completely wrong in the low-frequency gap, see Fig. 3.

To further emphasize the importance of model behavior in
the low-frequency gap ΩG, Fig. 12 compares the transient
simulation results obtained using the proposed model and a
standard VF model (the same as depicted in Fig. 3). This
result confirms that an inappropriate modeling flow at low
frequencies has a strong impact also when performing time-
domain simulations.

B. Scaling up to 400 ports

In this section, we summarize the results of the proposed
procedure on several shielding enclosures of increasing size
of the regular p × p series/parallel grid, corresponding to a
number of ports P = p2. We focus in particular on grids with
p = 8, 10, 15, 20 branches resulting in systems with P = 64,
100, 225 and 400 ports, respectively.

The regularization and extrapolation procedure of Sec-
tion II-C was applied to obtain set of (modal) scattering

Fig. 11. Modeling a 25-port shielding enclosure: (a) envelop of the maximum
singular values of scattering model responses before and after Passivity
Enforcement (PE); (b)-(d) validation of standard and proposed macromodel
responses in scattering, admittance and impedance representation.

Fig. 12. Transient simulation of proposed model compared to a standard VF
model. The excitation field is a double exponential (HEMP) waveform [32]
defined as Einc = E0(e−at − e−bt)u(t) with a = 40 × 106 s−1, b =
476× 106 s−1 and amplitude E0 = 50 kV/m.
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TABLE I
SUMMARY OF DATA COMPRESSION. SECOND COLUMN SHOWS THE

NUMBER OF RESPONSES OF THE UPPER-TRIANGULAR ELEMENTS OF THE
TF, USED AS REFERENCE FOR THE COMPRESSION.

P P (P + 1)/2 SVD as in [27] Block-SVD
Total ρ % of Total Time (s) ρ % of Total Time (s)

25 325 73 22.46 0.81 151 46.46 0.43
64 2080 80 3.85 13.7 198 9.52 4.89

100 5050 82 1.62 2.13 205 4.05 2.60
225 25425 79 0.31 14.5 212 0.83 18.51
400 80200 85 0.11 40.0 238 0.30 42.89

TABLE II
STRUCTURED COMPRESSED MACROMODELING RESULTS

Ports Order VF Passivity Enforcement RMS error
Time (s) Time (min) Iterations on S(jω)

25 89 86.11 3.5 53 6.77 · 10−4

64 85 76.0 13.0 101 3.62 · 10−3

100 79 41.5 9.65 43 7.79 · 10−4

225 79 58.1 30 41 4.78 · 10−4

400 79 65.2 152 52 9.57 · 10−4

responses in the range [0, 1] GHz. Regularization resistances
were set to r = 0.1Ω and R = 100MΩ in order to minimize
the perturbation on the original MoM data. Different values
of resistors with R ∈ [106, 109] Ω and r ∈ [10−3, 1] Ω were
also tested, with no practical impact in the overall modeling
process except for a slightly different DC response and induced
perturbation amount on the original data. The Block-Diagonal
SVD compression strategy was then applied with truncation
thresholds of {10−8, 10−6, 10−6} for M1, M2 and M3,
respectively. Note that the threshold on M1 was determined
compatibly with the estimated field solver accuracy, in order
to guarantee a consistent reconstruction of the DC matrix after
compression.

A summary of the proposed data compression results for
all test cases is reported in Table I. This table shows that
increasing the number of ports leads to a drastic compres-
sion in terms of basis functions ρ, already considering as
a reference only the upper triangular part of the transfer
function with P (P − 1)/2 responses. Although, the proposed
structured compression approximately doubles the number of
basis functions ρ with respect to the standard compression
of [27], the required elapsed time is practically not affected.

The procedure of Sec. IV was applied to build a set
of macromodels preserving the LF content of the data. In
particular, the adaptive sampling method of [31] was used to
create the constraints (49) required by each iteration of the
passivity enforcement. The results are summarized in Table II.
All models are highly accurate. As far as runtime, the rational
fitting phase shows almost no dependence on the number of
ports, since mainly affected by the number ρ of compressed
basis functions. Most of the execution time is required to
enforce macromodels passivity. For the adopted passivity
enforcement scheme, this time cannot be predicted a priori
since depending on the particular singular value trajectories
and on number of required iterations.

Figures 13 and 14 provide a comprehensive report on model

Fig. 13. As in Fig. 11, but for a 100-port shielding enclosure.

accuracy in all system representations (scattering, admittance
and impedance) in the physical domain, after conversion from
the modal reference system used for compression and models
identification. Results are shown only for P = 100 and P =
400, since nearly identical results were achieved for P = 64
and P = 225. All examples show a major improvement in
the accuracy with respect to the models obtained with [27],
especially at low-frequencies and DC.

VI. CONCLUSION

This paper provided a general methodology to construct
rational macromodels of low-loss electromagnetic systems
having a large number of interface ports, starting from possibly
incomplete frequency characterization due to a low-frequency
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Fig. 14. As in Fig. 11, but for a 400-port shielding enclosure.

gap in data samples from a full-wave solver. This situation
is known to be extremely challenging for macromodeling
applications, with a low-frequency sensitivity to approximation
errors that is exacerbated by the low-loss nature and by the
large number of ports. The proposed strategy combines a data
preprocessing involving regularization and extrapolation in a
suitably defined physics-based asymptotic modal domain, a
structured data compression based on a customized Singular
Value Decomposition, and a structured rational fitting process
based on compressed data. The result is a robust framework
that is able to preserve full-band accuracy in the model down
to DC, while minimizing its sensitivity to loading conditions,
including the limit cases of short and open terminations.

The derivations and the reference application examples

considered in this work are conducting enclosures intended for
energy-selective shielding. This application requires loading
with nonlinear elements a possibly large number of ports
placed as a grid throughout shield apertures. For this reason,
a reduced model sensitivity to changes in loading condi-
tions is essential for successful transient analyses aimed at
nonlinear shielding effectiveness assessments. Beyond this
specific application, the proposed regularization, extrapolation
and compression approaches are general and can be applied
to different application scenarios. Future investigations in
this direction will involve application to system-level power
integrity modeling, which is another domain where sensitivity
to loading conditions has been identified and still requires an
adequate systematic solution.

REFERENCES

[1] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory
and Applications. New York: John Wiley and Sons, 2016 (published
online on Dec 7, 2015).

[2] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Transactions on Power
Delivery, vol. 14, no. 3, pp. 1052–1061, july 1999.

[3] Y. Nakatsukasa, O. Sète, and L. N. Trefethen, “The aaa algorithm
for rational approximation,” SIAM Journal on Scientific Computing,
vol. 40, no. 3, pp. A1494–A1522, 2018. [Online]. Available:
https://doi.org/10.1137/16M1106122

[4] S. Lefteriu and A. C. Antoulas, “A new approach to modeling multiport
systems from frequency-domain data,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 29, no. 1, pp.
14–27, jan. 2010.

[5] G. Antonini, “Spice equivalent circuits of frequency-domain responses,”
IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 3, pp.
502–512, 2003.

[6] C.-C. Chou and J. E. Schutt-Ainé, “Equivalent circuit synthesis of
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