
Doctoral Dissertation
Doctoral Program in Electrical, Electronics and Communications Engineering

(34.th cycle)

Theory and modelization of
Quantum Cascade Laser

dynamics: comb formation, field
structures and feedback-based

imaging

Carlo Silvestri
* * * * * *

Supervisors
Prof. Mariangela Gioannini
Prof. Massimo Brambilla

Dr. Lorenzo Columbo

Politecnico di Torino



This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carlo Silvestri

Turin,

www.creativecommons.org


Summary

This work concerns about the study of the Quantum Cascade Lasers’ dynamics
from theoretical and numerical point of view, by exploring different aspects of this
vast field of study.
Firstly, the self-generation of optical frequency combs by exploiting these devices in
the Fabry-Perot (FP) configuration has been studied by introducing the Effective
Semiconductor Maxwell-Bloch Equations (ESMBEs), a model which encompasses
the main features of semiconductors materials and includes in the case of FP cavity
the Spatial-Hole Burning (SHB). The simulation study based on the integration of
the ESMBEs has allowed the reproduction of relevant experimental achievements
and the highlight of the role of some parameters such as the linewidth enhancement
factor. Furthermore, this model has been retrieved for the case of ring Quantum
Cascade Laser, and also in this case a simulation study has been performed.
The case of ring QCL have also been studied by introducing a reduced model based
on a single master equation. This model, which is valid in the hypotheses of fast car-
riers and near threshold operation, presents a shorter simulation time, and showed
an agreement with the ESMBEs results also for values of the current relevantly
above the laser threshold.
The ring QCL with an optical injected field has also been considered and numeri-
cally studied, achieving the reproduction of experimentally found regimes such as
temporal solitons and Turing rolls.
The last part of the work is dedicated to the study of a Terahertz (THZ)- QCL in
presence of optical feedback, in a self-mixing interferometry setup which is com-
bined with a probing-type microscopy technique, in order to produce a system for
the nano-imaging of resonant materials, called Self-Detection scattering type near
field optical microscopy (SD s-SNOM). A theoretical study based on the Lang-
Kobayashi Equations and a simulation analysis of this setup have been performed
in order to explore the possibility to retrieve the dielectric properties of materi-
als with phonon resonances in the THZ region with a resolution far beyond the
diffraction limit.
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Chapter 1

Introduction

The aim of this chapter is to introduce general aspects of background knowledge
that will be largely used in the following part of the work. Firstly, in section 1.1 we
review the main characteristics of Quantum Cascade Laser (QCL), a semiconductor
laser to whom this work is dedicated. We will consider its cavity, the electronics
transitions and the materials that are exploited to realize this device.
Furthermore, in section 1.2 the topic of Optical Frequency Combs (OFC) will be
treated. The dynamics of these emission regimes and its self-generation by QCLs
we will treat in detail in Chapters 2-3.
The last section is dedicated to a brief review of the Self-Detection scattering type
near-field optical microscopy (SD s-SNOM), a nanoscopy technique exploiting QCLs
in the region of Terahertz for imaging and material analysis, which is characterized
by the absence of a detector: the laser itself is used as detector and therefore the
theoretical study related to this part concerns the dynamics of QCLs in presence
of optical feedback.

1.1 Quantum Cascade Lasers
Semiconductor lasers are solid state lasers which exploit as active medium a

semiconductor material. Few semiconductors (for example PbSSe and PbSnSe)
can give lasing in the mid-Infrared (mid-IR) spectral region (λ > 2µm), and this
lack is related to the relevance of the Auger effect in this spectral range. However,
these devices based on Pb alloys present some consistent disadvantages. In fact
their typical low output power (<0.1mW), the operation temperature <100K and
their relevant cost (tens of thousands dollars) make them a problematic solution
for the emission in the mid-IR.
Conventional laser diodes are based on electronic transitions between conduction
band and valence band of the semiconductor, therefore they exploit interband tran-
sitions. This implies one fundamental limit: the energy of the emitted photons must

1
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correspond to the energy gap of the material or energy separation between the con-
fined states of the Quantum Well in conduction band and valence band.
QCLs differ from conventional lasers because their operation is not due to inter-
band, but to intraband electronic transitions, i.e. transitions between confined
states of the quantum wells in the conduction band only, named subbands. In Fig.

Figure 1.1: Energy as a function of the the wavenumber k for a typical set of
confined states in the conduction band, characterizing a QCL. En are the values of
the energy corresponding to the bottom of the n-th subband, for n=1,2,3; ℏν is the
energy of the photon generated in the electronic transition between the state 3 and
the state 2.

1.1 a set of subbands typical for a QCL is shown. In this scheme the energy as
a function of the wavenumber k is represented and this scheme consists of three
subbands, named with the integer numbers n=1,2,3 and whose lowest value of the
energy is En. All these confined states occur in the conduction band, therefore the
transitions between these states do not involve holes but only electrons. For this
reason QCL is defined as a unipolar device. In Fig. 1.1 we schematize an electronic
transition between the subbands 3 and 2, with the emission of a photon with energy
ℏν (red arrow) corresponding to ∆E32=E3-E2. Conversely, the transition between
the states 2 and 1 (blue curve) does not involve the emission of a photon but it

2
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is due to a scattering process between electron and phonon. These processes are
necessary in order to empty the subband 2 and achieve the population inversion
between the states 3 and 2, necessary for the lasing. They will be analized more in
the detail in the following.
In order to obtain the scheme with subbands it is necessary to have an active
medium composed by several stages, each of them made of an heterostructure. An

Figure 1.2: Conduction band energy diagram of a portion of section of a QCL,
composed by an injector and an active region. Reproduced from [18].

example of a conduction band energy diagram of a part of a QCL is shown in Fig.
1.2. In this scheme, which is reproduced from [18] and corresponds to the first
QCL realized in 1994, two main regions are underlined: an active region where we
have the formation of the subbands, represented also in the figure with the numbers
1,2 and 3, and the adjacent region which is named injector. In the active region
electronic transition occurs (from 3 to 2) and also the electron in 2 is rapidly trans-
ferred to the state 1 with the emission of a phonon, accessing then the following
injection region via resonant tunneling process with some efficiency [18]. In order to
create the quantum confinement and have therefore the subbands, each layer of the
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quantum wells has a thickness of few nanometers. This is a cascading scheme which
is replied for tens of stages, typically between 25 and 50. These heterostructures
are built by exploiting specific techniques. The most important and used one is the
Molecular Beam Epitaxy (MBE), which allows of the deposition of a sequence of
extra-thin layers of considered materials.
In this way the transition energies are fully controlled by the quantum confinement,
so that it is possible to engineer a structure which will allow emission at a given
frequency, i.e. the frequency can be chosen via layers’ thickness control. For this
reason QCLs can emit in frequency ranges that normally are not achievable with
other types of semiconductor lasers, as the mid-IR and the THz ranges.
Furthermore, they can be exploited in several types of different applications, such
as free space communication [67], [66], [41], [15], material and molecular analysis
and spectroscopy [19], [14], interferometry [22], metrology [58] and nonlinear optics
[75], in both mid-IR and THz regions.
In the following part of this chapter we will review in more detail some peculiar
characteristics of QCLs that we mentioned in this introductory part about this class
of semiconductor lasers.

1.1.1 Laser cavity and electronic transitions in QCL
Let us consider again the scheme with three subbands shown in Fig. 1.1. We

remind that only electrons are involved in the transitions between these confined
states, since the subbands are created in the conduction band. This implies that
recombination phenomena involving holes, as Auger effect, are not present in the
operation of a QCL. Furthermore, the presence of defects in the active medium
of the laser, which are responsible of recombination processes between holes and
electrons, does not influence the efficiency of the laser. For this reason QCLs
have a cavity length generally greater than conventional laser diodes (typically few
millimeters).
A representation of a QCL cavity is shown in Fig.1.3, where all the components

are named. The active region is made of the sequence of quantum wells, organized
in injector-emitter stages. The optical confinement is achieved through an etched
ridge (lateral confinement) and dielectric layers (vertical confinement).
Let us focus now on the phenomena involving electrons occurring in each unit of
the active region of the QCL, referring to the confinement states relation dispersion
shown in Fig. 1.1. The electronic transitions from the subband 3 to 2 and from 2
to 1 can be accompanied by the emission of a longitudinal optical (LO) phonon,
with different relaxation time: typically few picoseconds in the first case and few
tenths of picosecond in the second [18]. This enables a fast emptying of the state
2, and therefore the achievement of the population inversion. Typically the energy
difference between the states 2 and 1 ∆E21 is chosen to correspond to the typical
value of the energy of LO phonons in the considered material (few tens of meV).
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Figure 1.3: Schematic representation of a QCL cavity.

1.1.2 Materials
The choice of the material for building the heterostructure of a QCL is extremely

relevant in order to select the energies of the transitions and therefore the energy of
the emitted photon and the efficiency of the scattering processes. For this reason in
the engineering process of a QCL active region some factors are considered. First
of all the Quantum Well depth is a relevant factor in the material choice. In fact
large conduction band offset is necessary for good confinement of electrons in upper
laser level (state 3 in Fig. 1.1), in order to avoid for example electron escape due to
thermal process or tunneling in presence of high applied fields, which can effect the
efficiency of the device. The second parameter which is relevant in the choice of the
material is the effective mass of the electrons. In fact from Quantum Mechanics
theory it is possible to prove that the energy the intersubband transitions depends
on the effective mass, such as the intersubband dipole matrix element, which is
greater as the effective mass is lower.
The QCL heterostructure systems are based on III-V group semiconductors, mainly
on GaAs-AlGaAs or GaAs-AlAs quantum wells with substrate made of GaAs,
InGaAs-AlInAs or InGaAs-AlAsSb quantum wells with InP substrates, InAs-AlSb
with InP or GaSb substrates. This last combination is very convenient since it
presents a very large energy offset and low effective mass of electron, but it has the
disadvantage that the exact position of lateral minima in the conduction band is
unknown, factor that can reduce the efficiency of the laser device.
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1.1.3 Single-mode QCL and linewidth enhancement factor
The possibility to have the emission frequency in the mid-IR and in the THz,

and therefore a vast range of tunability, makes this class of devices very appealing
and large studied in both these spectral ranges.
The CW operation of QCL in mid-IR at room temperature was first achieved in [5],
with emission power is in mW range. This has enabled the possibility to improve
a large class of applications, specifically in the area of sensing, spectroscopy and
optical communication. The improvement in the design of QCLs has brought to
enhance the performances, towards the Watt power level, and wall plug-efficiency
of 21% in CW operation [77].
Furthermore, QCLs present interesting quantum properties, whose investigation
concerns several characteristics of these devices. An example of fundamental and
intrinsic quantum fingerprint of the device is related to its linewidth.
In 1982, 20 years after the invention of diode lasers, a definitive formalization of
the theory about their linewidth has been proposed, with a modification of the
Schawlow-Townes (ST) equation by introducing the linewidth enhancement factor
(LEF), also called α factor [26]. The α factor correctly reproduces the broadening of
the linewidth interesting semiconductor lasers, which occurs because of fluctuations
of the density of electrons, which imply in turn fluctuations of the refractive index,
and it is correlated to the curvature of the conduction and valence band.
In 2007 a theoretical work based on a set of rate equations for a three-level system
has proposed a specialized version of the ST equation for a QCL [83]. In the
equation for QCL based on this model, the emission intrinsic linewidth is expressed
by:

δν = γβeff

4π(1 − ϵ)

[︄
1

I0/Ithr − 1 + ϵ

]︄ (︂
1 + α2

)︂
(1.1)

where γ is the inverse of the photon lifetime, βeff is the effective coupling coef-
ficient of the spontaneous emission, ϵ is a factor dependent from the lifetimes of
the levels 3 (upper level of the lasing transition) and 2 (lower level of the lasing
transition) and from the total relaxation time of the upper level, I0 is the bias
current of the laser, Ithr is the threshold value of the current and α is the LEF.
This formula predicts that the linewidth of QCLs is narrower than the value that
we would obtain adopting the ST formula for conventional diode lasers. The first
experimental investigation aimed to verify this prediction is reported in [4]. In Fig.
1.4 the experimental data from the measurements performed in [4] are compared
with the theoretical result by using Eq. 1.1: both, experimental and theoretical
values follow an hyperbolic trend, but the experimental values are always slightly
smaller than the theoretical ones. This result demonstrates the low phase noise
characterizing the single-mode emission of QCLs, which makes them ideal for sev-
eral applications, such as the study of rotovibrational transitions of molecules in
the mid-IR region.
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Figure 1.4: Comparison between the experimental measures of intrinsinic linewidth
at different values of the bias current for a QCL, and the theoretical prediction from
Eq. 1.1. Reproduced from [4].

Let us remind that in QCLs the electronic transitions are intersubband. If the
subbands involved in the electronic transition are perfectly parabolic, the gain and
therefore the refractive index present a symmetric profile, which corresponds to a
situation similar to the atomic transitions, and therefore to a value of α close to
zero. Indeed, the gain profile of QCL media is not perfectly symmetric, and there-
fore the value of α is not exactly zero, because of several factor, including the non
perfect parabolicity of the subbands [49]. Measured values in the range 0.1-0.5 in
the THz region [24], [74], and values at room temperature between 0.2 and 3 [49],
[68] are reported.
We can conclude that the fact that the single-mode emission is characterized by a
low phase noise, makes QCLs suitable for the emission of locked regimes charac-
terized by low multimode phase noise, i.e. OFC. Therefore, the α factor plays an
important role in the frequency combs dynamics, in both Fabry-Perot [47], [63] and
ring [50], [13] devices.
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1.2 Optical Frequency Combs
OFC are defined as coherent radiation characterized by a spectrum consisting of

a set of lines (modes) equally spaced which present a well-defined phase relationship
between each other [19], as shown in Fig. 1.5. The set of frequency characterizing

Figure 1.5: Schematic representation of an OFC whose lines are spaced of ∆ω.
Reproduced from [19].

an OFC can be written as:
fn = nfrep + foff (1.2)

where n is an integer number, frep is the separation between two adjacent modes
and foff is an offset frequency.
The OFCs are different from an array of equally spaced optical lines, each of them
emitted by different lasers: in fact in this last case there is absence of correlation
between the noise of the individual lines.
The achievement of performing pulsed operation through passive mode-locking in
QCL at room temperature resulted particularly hard, since the electron lifetime
is relevantly less than the cavity roundtrip, in this class of devices. At criogenic
temperature, in both mid-IR and THz QCL this type of pulsed regimes have been
achieved by exploiting mode-locking.
In 2012 it has been demonstrated that QCL can act as source of OFCs [72] and
the achievement of the self-generation of this regimes is due to strong nonlinearities
which characterize the active region of a QCL. In particular, the short electron
lifetime (about 0.29 ps in [19]) in the upper subband (state 3), implies the occur-
rence of a broadband four-wave mixing process [20], wider compared to interband
semiconductor lasers. Furthermore, in [17] measurements of four-wave mixing for a
QCL heterostructure have been performed and the final result of this study showed
that the considered material has a large and resonant third-order susceptibility χ(3)

intrinsic of the medium. The performed measurements also show a certain agree-
ment with the theoretical prediction obtained by exploiting a 2-level model.
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The experiment, whose result is shown in Fig. 1.6, exploits two sources, a DFB

Figure 1.6: FWM signal as a function of detuning between the two sources used
in the experiment (points), compared with the predictions of a two-level model
(dashed lines). Reproduced from [20].

QCL and a tunable source based on difference frequency generations, whose emitted
light is conveyed onto a QCL amplifier, in order to measure its four-wave mixing
signal.
The main applications of OFCs generated by QCLs are in the field of spectroscopy,
e.g. for environmental sensing, medical measurements, imaging for astronomy,
oxymetry and security purposes. Particularly interesting is the so called Dual
Comb Spectroscopy, which is important because it allows for the analysis of ma-
terials by exploiting Fourier transform spectroscopy with high resolution and fixed
setup [19].
Dual comb spectroscopy exploits two coherent frequency combs, and it allows the
measurement of the spectral response of a material specimen by performing a tooth-
by-tooth analysis. The basic scheme of a setup for this technique, shown in Fig.
1.7, is based on two combs with different value of frep in a configuration type local
oscillator-source. This typology of spectroscopy is particularly useful in the mid-IR
region, where several molecules have their characteristic rotovibrational absorption
lines and can be therefore detected and analyzed.
For all these reason the study of OFCs emitted by QCLs has assumed a growing

relevance in the last decades from both, experimental and theoretical point of views
[49]. In this work the focus is on the numerical modelling of the OFC emission by
using these devices. To this topic chapter 2 and 3 are dedicated.
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Figure 1.7: Scheme of a setup for dual comb spectroscopy. Reproduced from [19].

1.3 Self-Detection Scattering Near-Field Optical
Microscopy

The second part of this work is devoted to the study of QCL in presence of
optical feedback. This part is developed in Chapter 4 and it concerns a nanoscopy
technique based on the combination between Self-Mixing Interferometry (SMI)
and Scattering Near-Field Optical Microscopy (s-SNOM). This technique has been
named SD s-SNOM and in this introductory section we give a general overview
about it, in order to highlight the original results presented in Chapter 4. There-
fore, first we review the fundamental aspect of SMI, underlining its advantages and
main applications; then a general description of s-SNOM is presented; finally we
explain the main features of the SD s-SNOM.

1.3.1 Self-Mixing Interferometry
It is very well known that the optical feedback is detrimental for the laser diode

source of an optical transmitter. The light back scattered from the optical fiber or
other parts of the optical communication system may lead the laser in an unstable
regime characterized first by the broadening of the laser linewidth and then by the
coherence collapse. In this context the optical feedback is a detrimental unwanted
effect and optical isolators are often employed to suppress the optical feedback.
However in other kind of applications the light, back scattered from the target, and
the way it perturbs the laser can be exploited to retrieve information about the
target.
The possibility to exploit the light back-scattered from a target into the cavity of a
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laser as a tool for sensing is the principle of the SMI technique. In fact the nonlinear
superposition between the back-scattered field, which carries the information about
the scattering target, and the field inside the cavity modifies the laser threshold,
emission frequency and output optical power. By measuring these quantities mod-
ified from the feedback it is possible to retrieve information related to the target
optical susceptivity, position, velocity, etc (cinematic and optical properties).
Let us consider a schematic representation of the Self-Mixing shown in Fig. 1.8.
The laser has two mirrors defining the resonator with reflectivities R1 and R2, and

Figure 1.8: Scheme of Self-Mixing configuration. ER is the delayed external field.

in addition the external target at distance L acts as a pure reflector with reflectivity
R3, determining the existence of an external cavity delimited by mirrors R2 and
R3. The field is reflected from the target (pure reflection, in the following a more
complex interaction will be considered) and the reflected field ER partially re-enters
into the laser cavity through the laser mirror and interferes with the intracavity
field. This interference phenomenon produces a modification of the main charac-
teristics of the lasers, as for instance the emission frequency, the output power, the
voltage across the laser contacts. From the changes of these quantities it is possible
to retrieve information about the target.
The theoretical description of the Self-Mixing is based on the Lang-Kobayashi (LK)
model, which will be described in the following subsection.
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1.3.2 Lang-Kobayashi Model
In order to properly describe the self-mixing effect in semiconductor lasers, in

1980 Lang and Kobayashi proposed a theoretical model based on modified rate
equations for a single mode laser, which encompasses the effect of weak optical
feedback [36].
Being a rate equation model, the dynamical variables are the electric field and the
carrier density of the semiconductor laser (population inversion, in other classes of
lasers). Let us consider the first variable of the model, the electric field, described
by a complex function, which is assumed to be the product of a time-dependent
slowly-varying envelope E(t) and an oscillating term eiω0t , where ω0 is the frequency
of the emitted radiation in absence of optical feedback.
The rate equation for the electric field envelope is given by [36]:

d

dt
E(t)eiω0t =

{︃
iωN(n) + 1

2(G(n) − Γ0)
}︃

E(t)eiω0t + ˜︁κE(t − τ)eiω0(t−τ) (1.3)

where ωN(n) is the longitudinal mode frequency, expressed by ωN = Nπc
ηl

. N is an
integer number, c is the velocity of the light, l is the length of the laser cavity,
and η is the effective refractive index of the laser medium, which has a dependence
on the carriers density n. G(n) is the carriers density-dependent optical gain, Γ0
is the term related to the cavity losses. The last term in the RHS represents the
reinjected field, which is weighed by the coupling coefficient ˜︁κ which depends on
R2 and delayed by a time τ which corresponds to the round-trip time of the light
through the external cavity and is given by:

τ = 2L

c
(1.4)

where L is the laser-target distance, i.e. the length of the external cavity.
Let us briefly review the meaning of the terms in Eq. 1.3. The first term in the
right hand side of the equation for the field describes the phase-amplitude coupling.
In fact it can be straightforwardly noticed that changes in the amplitude determine
changes in the carrier density, which in turn cause changes in the refractive index of
the medium and therefore in ωN . The second term takes account of the stimulated
emission process and the cavity losses. In conventional laser diodes rate equations
these two terms are already present. The particularity of the LK equation for
the field is in the third term, which encompasses the effect of the feedback, by the
inclusion of a delayed electric field term, multiplied by a feedback coefficient ˜︁κ. This
feedback coefficient is a relevant quantity in the study of self-mixing, and as we will
see later also for the s-SNOM configuration (where it is a complex parameter).
We now derive the explicit expression of ˜︁κ, taking into account the external cavity
configuration. Since Eie

iω0t is the incident field on the right laser mirror, with
reflectivity R2, and Etre

iω0t is the total reflected field from the same mirror in
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presence of optical feedback, we can write:

Etre
iω0t =

[︃√︂
R2 + (1 − R2)

√︂
R3e

−iω0τ
]︃

Eie
iω0t (1.5)

The reflectivity of the right mirror in presence of feedback is:

reff = Etr

Ei

=
√︂

R2(1 + ae−iω0τ ) (1.6)

where a = (1 − R2)
√︂

R3
R2

.
We can now retrieve the cavity loss in presence of feedback, using the conventional
expression for laser diodes:

Γ = Γw− c

ηl
ln
[︃
reff

√︂
R1

]︃
= Γw− c

ηl
ln
[︃√︂

R1R2(1 + ae−iω0τ )
]︃

= Γ0−
c

ηl
ln(1+ae−iω0τ )

(1.7)
where Γw is the waveguide loss and Γ0 is the cavity loss without feedback. If we
compare the total loss term with equation 1.3 we can write:

1
2ΓEeiω0t = 1

2Γ0Eeiω0t − ˜︁κE(t − τ)eiω0(t−τ) (1.8)

and for a ≪ 1 we have:

˜︁κ =
c(1 − R2)

√︂
R3
R2

2ηl
= a

τc

(1.9)

where τc is the laser cavity roundtrip.
The equation 1.3 for the field is accompanied by the rate equation for carrier density:

dn

dt
= −γn − G(n) |E|2 + J

ed
(1.10)

where γ is the inverse of carrier lifetime, J is the injection current density, e is the
electronic charge, d is the active region thickness and n0 is the transparency carrier
density. If we assume linear gain, we can write G(n) as [31]:

G(n) = Gn(n − no) (1.11)

Also in this case we review the terms of Eq. 1.10: the first term of the right hand
side accounts for the carriers loss, the second term describes the stimulated emis-
sion and the third term describes the pumping due to a current density J injected.
Equations 1.3 and 1.10 are coupled.
It is possible to rewrite the equation 1.3 considering the typical gain of a semi-
conductor laser and introducing the linewidth enacemhent factor (LEF) sometimes
indicated as the alpha-parameter, defined as

α = −2ωth

ηth

(︄ ∂η
∂n
∂G
∂n

)︄
(1.12)

13



Introduction

where ηth and ωth are respectively the effective refractive index and the laser fre-
quency at the threshold carrier density nth, and including explicitly the carrier
density dependence of ωN . In [31] the calculation is developed with details. The
final result is:

dE(t)
dt

= 1
2(1 + iα)Gn(n(t) − nth)E(t) + ˜︁κE(t − τ)e−iω0τ (1.13)

where nth is the threshold carrier density.

Steady state solutions of the Lang-Kobayashi equations

Let us retrieve at this point the steady state solutions of the LK model. We
will exploit the same method to retrieve the steady state solutions in presence
of a complex scattering coefficient, characterizing the s-SNOM configuration. We
rewrite the field E(t) in terms of its modulus E0(t) and its phase θ(t):

E(t) = E0(t)eiθ(t) (1.14)

Therefore, Eq. 1.3 can be splitted in two equations for modulus and phase of the
field:

dE0(t)
dt

= 1
2Gn(n(t) − nth)E0(t)

+ ˜︁κE0(t − τ)cos (ω0τ + θ(t) − θ(t − τ)) (1.15)
dϕ(t)

dt
= α

2 Gn(n(t) − nth) − ˜︁κE0(t − τ)
E0(t)

sin (ω0τ + θ(t) − θ(t − τ)) (1.16)

The solutions are retrieved by imposing the folowing conditions: E0(t)=E0(t −
τ)=Es, n(t)=ns and θ(t)=(ωs-ω0)t into equations 1.15, 1.16 and 1.10, so that the
derivatives of n(t) and E0(t) are set to zero, and the derivative of θ(t) is set to
ωs-ω0, where ωs is the laser frequency at steady state.
We start from the Eq. 1.15 to retrieve the steady state carrier density:

0 = 1
2Gn(ns − nth)Es + ˜︁κEscos (ω0τ + (ωs − ω0)t − (ωs − ω0)(t − τ)) =

= 1
2Gn(ns − nth)Es + ˜︁κEscos (ωsτ) (1.17)

and we obtain:
ns = nth − 2˜︁κ

Gn

cos(ωsτ) (1.18)
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At this point we want to express ωs. We substitute Eq. 1.18 in the Eq. 1.16 after
imposing the steady state conditions, and using ˜︁β=arctan(α):

ωs − ω0 = α

2 Gn

[︃
− 2˜︁κ

Gn

cos(ωsτ))
]︃

− ˜︁κsin(ωsτ) =

= −α˜︁κcos(ωsτ) − ˜︁κsin(ωsτ) =
= ˜︁κ [︂−tan( ˜︁β)cos(ωsτ) − sin(ωsτ)

]︂
=

= −
˜︁κ

cos( ˜︁β)

[︂
sin( ˜︁β)cos(ωsτ) + cos( ˜︁β)sin(ωsτ)

]︂
=

= −
˜︁κ

cos( ˜︁β)
sin(ωsτ + ˜︁β) (1.19)

Then, we obtain:

ωs = ω0 − ˜︁κ√
1 + α2sin (ωsτ + arctan(α)) (1.20)

The equation 1.20 espresses the mode frequency of the laser in presence of the
external cavity. As ωs appears in the left-hand side and in the right-hand side of
the equation 1.20, from a mathematical point of view, the steady-state emission
frequency in presence of feedback is defined by an implicit function.
Multiplying both members of the equation 1.20 by τ and defining

C = ˜︁κτ
√

1 + α2 (1.21)

we obtain:
ωsτ = ω0τ − Csin (ωsτ + arctan(α)) (1.22)

Equation 1.22 is called the Phase Excess Equation. The parameter C is dimen-
sionless and it is largely used to classify the different feedback regimes. For further
details, see the next subsection.
Finally, we want to retrieve the steady state value of the photon density, and in
order to do this, we substitute the expression of ns given by Eq. 1.18 into Eq. 1.10,
with dn

dt
= 0:

Ps = |Es|2 = 1
Gn(ns − n0)

(︃
J

ed
− ns

τs

)︃
(1.23)

Equations 1.18,1.20 and 1.23 are the stationary solutions, also called continous wave
solutions, of the LK model.

1.3.3 Feedback regimes
The feedback regimes in SMI are commonly classified according to the values

for the dimensionless parameter C, defined by Eq. 1.21. In particular, intervals of
values of C are defined according to the shape of the interferometric signal, which
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has different characteristics for each regime. Considering the phase excess equation
1.22, we can notice that this is a trascendental equation and it can be proved that
for C>1 it has multiple solutions for a fixed value of C [31].
Furthermore also the shape of the interferometric signal depends on the feedback.
It can be proved that the power emitted by the semiconductor laser in presence of
feedback can be expressed, in stationary condition from the LK model, as [22]:

P (Φ) = P0 [1 + mF (Φ)] (1.24)
where Φ is the interferometric phase given by Φ=2kL=τkc, with k=2π/λ, m is a
modulation index, F(Φ) is a periodic modulation function of the interferometric
phase and P0 is the emitted power without reinjection of light. The modulation of
the emitted power is the interferometric signal. The value of m and the shape of
F(Φ) depends on the feedback parameter C.
At this point let us consider the classification of the different feedback regimes [22],
[31]:

• C ≪ 1 - very weak feedback regime. From Eq. 1.22 we have ωs ≈ ω0.
Therefore this regime is characterized by a single emission frequency which
corresponds to the frequency in absence of feedback. The modulation function
F(Φ) is sinusoidal, therefore the interferometric fringes are sinusoidal.

• 0.1 < C < 1 - weak feedback regime. The interferometric fringes are distorted
compared with the previous case (Fig. 1.9. a)). Also in this regime there is
a single emission frequency.

• 1 < C < 4.6 - moderate feedback regime. This regime is characterized by
multiple emission frequencies and interferometric signal has a sawtooth-like
shape. F(Φ) is a multivalued function (Fig. 1.9. b)).

• C > 4.6 - strong feedback regime. Also in this case we have multiple fre-
quencies. In fact F(Φ) can be five-valued (Fig. 1.9. c)). In some cases the
laser enters mode-hopping regime and it is not possible to perform self-mixing
measurements [22].

1.3.4 Scattering Near-Field Optical Microscopy
In this subsection we will review the main aspects related to the scattering-type

s-SNOM. This is a nondestructive optical imaging technique which circumvents the
diffraction limit with the aid of a sharp probing tip placed in the proximity of the
material sample surface that we want to analyze. The tip, which has a near-field
interaction with the specimen, is illuminated by a focused laser beam and the scat-
tered light is collected and recorded. The processing of the detected signal enables
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Figure 1.9: Calculated F(Φ) for different values of C. a) C=0.7; b) C=3; c) C=10.
Reproduced from [22].

to retrieve information about the optical properties of the sample. The resolution
is independent of the light wavelength, and is determined only by the radius of
curvature of the probing tip. Therefore an optical map of the sample is achievable.
Let us consider a typical setup for the s-SNOM, shown in Fig. 1.10. Even if in
the shown scheme, the light source is a CO2 laser, we remind that in this work we
study an optical imaging technique based on near-field microscopy for analysis of
materials in the region of Terahertz, exploiting a Quantum Cascade Laser as light
source. Therefore the purpose of this paragraph is to describe the components of a
generic s-SNOM setup, without proposing the actual scheme that we will be studied
in the following (SD s-SNOM) which, in fact presents also fundamental differences
in the detection part.
An atomic force microscope (AFM) is placed in proximity of the sample surface,
and this represents the core upon which the s-SNOM setup is built. We have a
piezoelectric scanner, which typically reaches nanometer precision in the x- and

17



Introduction

Figure 1.10: Experimental setup for s-SNOM. Reproduced from [48].

y-directions, and angstrom precision in z-direction. Another fundamental element
of this core is the probing tip, which is connected to an oscillating cantilever, with
typical oscillation amplitude on the order of 101 − 102 nanometers. We define "tap-
ping" mode operation of the AFM, the situation in which the tip apex touches the
sample surface.
The top side of the cantilever reflects a laser (named "deflection laser") beam, sub-
sequently focused on a four-segment photodiode. This system is used to monitor
the vibration amplitude, actually regulated by an electronic loop system.
The CO2 laser illuminates and polarizes the probing tip, which scatters radiation
in all directions. Phase and amplitude of the scattered field are influenced by the
sample-tip near-field interaction, so that an optical mapping of the specimen is
achievable. The detection scheme shown in Fig. 1.10 is based on a Michelson inter-
ferometer. In this work, we will consider a different detection stage, which exploits
SMI scheme.
The demodulation of the detector output at an integer multiple of the tip vibra-
tion frequency is necessary for retrieving useful information about the sample. Two
main contributions to the scattered light are present: the useful signal, carrying
the information about near-field interaction between tip and sample, and the back-
ground signal, independent from the interaction and consisting of radiation directly
reflected by the tip and the optical elements present in the setup [48]. Since the
background has a negligible dependence from the laser-tip distance, while the the
evanescent fields which mediate the near-field interaction strongly vary with the tip
displacement, the change in the scattered field will be mostly caused by the change
in the near-field interaction strength, rather than the background scattering. In
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order to extract the information about the near field interaction, it is necessary to
filter out the harmonics which contain this information. Therefore it is explained
the necessity to operate in the tapping mode, with vibrating frequency Ω.

Probe-sample interaction

The modelling of the interaction between AFM tip and sample in s-SNOM is a
fundamental aspect in the theoretical study of this configurations. This has been
achieved by using two different models, the Point Dipole (PD) and the Finite (FD)
Dipole model [48]. In both of them an effective polarizability αeff of the target
consisting of interacting tip and sample, is considered and calculated. In this para-
graph we review the fundamental aspects of the FD model, which will be exploited
in the following part about SD s-SNOM and accounts for a more detailed descrip-
tion of the near field interaction. For more details, see [48].
The first hypothesis of the FD model is the approximation of the probing tip as a
prolate spheroid. The choice of spheroidal shape is justified because of the simi-
larity between the apex of a typical probing AFM tip and the apex of a spheroid.
Furthermore, the tip apex is the most important part for the near-field interaction
with the sample, since it resides in the closest proximity of the sample. The differ-
ent shape far away from the apex does not influence the nature of the probe-sample
interaction which gives rise to contrasts in s-SNOM.
Let us consider the expression for the electric field Es generated by the spheroid
along the its axis as a function of the distance z from the spheroid boundary[48]:

Es(z) =
2F (L+z)

D2+L(2z+a) + lnL−F +z
L+F +z

2F (L−ϵa)
La(ϵ−1) − lnL−F

L+F

E0 (1.25)

where L is the length of the semi-major spheroid axis, F is half the distance between
the foci, ϵ is the dielectric function of the probe material, E0 is an homogenous
external field illuminating the spheroid and a is the radius of the spheroid curvature
at its apex.

At this point if we compare the exact solution from Eq. 1.25 to the field of
a point dipole and an extended dipole, consisting of two monopole contributions,
it is found out that the extended dipole provides a better approximation of the
exact solution [48]. Therefore, we reduce the tip approximated as a spheroid in
a homogeneous field E0, to a finite dipole p0, composed by the charge Q0 placed
in proximity of the sample and a charge -Q0, where only Q0 is involved in the
near-field interaction. This interaction produces a further charge contribution Qi

in correspondence of the focus of the spheroidal tip, while −Qi resides in the mid-
dle of the spheroid [48]. In summary two point charges, Q0 and Qi, partecipate
in near-field interaction and they induce a response on the sample which is given
by respectively the charges -Q′

0 and -Q′
i. In figure 1.11 a graphical picture of the
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Figure 1.11: Scheme of Finite Dipole Model[48].

Finite Dipole Model is shown.
At this point it is possible to use this model to retrieve an effective polarizabil-
ity αeff of the tip perturbed by the near-filed interaction with the sample. The
obtained expression for αeff is:

αeff = peff

E0
(1.26)

The calculation of αeff as a function of tip-sample distance [48], according to the
hypotheses of the FDM, gives:

αeff = a2Lt

Lt(ϵ − 1)
[︃
2Lt(

√︂
1 − a

Lt
) + aln

(1−
√

1− a
Lt

)2

a
Lt

]︃
2Lt

√︂
1 − a

Lt
(Lt − aϵ) − aLt(ϵ − 1)ln

(1−
√

1− a
Lt

)2

a
Lt

·

⎡⎣2 +
β(g a+z

L
)ln 4Lt

4z+2a

ln
(︂

4Lt

a

)︂
− β

(︂
g − 3a+4z

4Lt

)︂
ln 2Lt

2z+a

⎤⎦ (1.27)

where Lt is the length of the major axis of the spheroid, a is the apex radius of the
probing tip, z is the tip-sample distance, ϵ is the dielectric function of the tip, g is
a complex factor related to the fraction of the total charge induced in the spheroid
and β is a quantity depending on the complex dielectric function of the sample.
Therefore, we can notice that αeff is a complex-valued function. It represents the
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polarizability of the tip in presence of near-field interaction with the sample.
At this point we define the complex scattering coefficient σ=Seiϕ as the ratio of
the incident field E0 and the scattered field E. This quantity will be particularly
important in the treatment that we will develop in Chapter 4 about the theoret-
ical study of SD s-SNOM. Since σ is proportional to αeff , they are equivalent if
measurements of relative contrast are performed.

1.3.5 Self Detection s-SNOM
In the two previous sections we revised the main aspects of SMI and s-SNOM.

In this section we introduce an optical imaging scheme exploiting the combination
of these techniques, the SD s-SNOM. In Chapter 4 of this work, the SD s-SNOM
configuration will be largely analyzed and studied from theoretical and simulation
point of view, in the weak feedback regime, with the realization of a comparison
between the numerical results and some experimental measurements.

The experimental configuration of SD s-SNOM is shown in figure 1.12, and it

Figure 1.12: Experimental configuration of SD s-SNOM. Reproduced from [21].
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enables analysis of optical properties of resonant materials in the region of Tera-
hertz. In fact, the exploited light source is a THz Quantum Cascade Laser, which
is also used as detector, according to SMI scheme. In the setup two paraboloid and
two plane mirrors determines the path of the light, which is then focused onto the
apex of an AFM tip in tapping mode, oscillating at the frequency Ω. The probing
tip is placed in the vicinity of the sample, according to the s-SNOM scheme. The
scattered light is then collected by the paraboloid mirror closest to the sample,
travels the same incident optical path and is finally reinjected into the laser cav-
ity. An attenuator (named A in the figure) is positioned into this configuration
in order to select the intensity of the feedback. A lock-in amplifier is connected
to the detector which, in this case, is the QCL itself. In s-SNOM configurations
(and therefore also in SD s-SNOM) a lock-in amplifier is always present in order
to filter the background dominating the signal, which would not allow to achieve
contrast, preventing the performance of the imaging technique. Also a movable
piezo-actuated mirror(PZM) appears in the setup, which consents to vary the light
path length. It will be shown how this aspect is fundamental in the retrieval of
the information about optical properties of the sample. The detected signal is the
voltage across the terminals of the QCL.
The circumvention of the diffraction limit occurs because the near-field interaction
between sample and probe is mediated by evanescent fields, which are not subject
to the diffraction. The interaction modifies amplitude and phase of the light scat-
tered by the probe, which is partially or totally reinjected into the laser cavity. In a
conventional s-SNOM configuration the scattered light is collected into an external
detector.
The intracavity and the back-scattered field, which carries the information about
the analyzed material sample, interfere and modify the emission properties of the
laser, i.e. the emission frequency, output power, voltage across the laser terminals.
Analyzing the change in these properties, typically the voltage across the laser ter-
minals, it is then possible to retrieve information about the target.

1.4 Conclusions
In this chapter of the thesis we reviewed some of the fundamental aspects of

QCLs and the applications that will be studied in this work. In particular a focus
was put on the possibility to engineer the Energy of the electronic transitions by re-
alizing proper heterostructures with semiconductor materials characterized by thin
layers realized with Molecular beam epitaxy. QCLs are unipolar devices, because
they exploit only electrons and all the transitions occur between confined states in
the conduction band, named subbands. By setting the energies of these subbands
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in band scheme, it is possible to achieve coherent emission in the ranges of mid-
IR and THz. We analyzed the materials and the features of the QCL cavity and
the definition of OFC was introduced, which will be the main topic of the next
two chapters of this work. OFCs offer the possibility to perform a spectroscopy of
some materials in the mid-IR and THz regions, through the so called dual comb
spectroscopy. They also have relevant applications in the field of free space com-
munication.
Finally a brief introduction on SMI and on s-SNOM has been presented, in order
to proper study the SD s-SNOM in the Chapter 4. This is a nanoscopy technique
for the material analysis and imaging valid in the region of THz, which exploits a
detectorless sensing with resolution independent from the wavelength.
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Chapter 2

Multi-mode dynamics of
Fabry-Perot Quantum Cascade
Lasers

In this Chapter of the manuscript we deal with the QCL in the Fabry-Perot
(FP) configuration, in order to study the spatiotemporal dynamics, evidencing the
mode-locking phenomenon, and therefore investigate these devices as OFC sources.
The Sec. 2.1 of this Chapter is dedicated to an overview about previous stud-
ies, both theoretical and experimental, evidencing the state of the art and the
motivations for the research that will be presented in the following. In partic-
ular, the main experimental achievements related to the self-generation of OFC
in QCLs and the most relevant theoretical models introduced for the simulation
of these devices in multimode operation, are highlighted and presented. In Sec.
2.2 we explain the mathematical derivation of our original theoretical model, the
Effective Semiconductor Maxwell-Bloch Equations (ESMBEs), which describe the
multimode dynamics of a FP-QCL, and also we provide the simulation results ob-
tained by numerically integration of this model, by studying a device emitting in
the mid-IR. In particular, we reproduce important experimental evidences, such as
the presence of linear chirp and the alternance between locked and unlocked states,
and we highlight the role some fundamental parameters that regulate the dynamics
of QCLs.

2.1 Introduction and motivation
It has been demonstrated that QCLs are capable to act as sources of self-

generated OFCs in THz and mid-IR emission spectral regions. The growing interest
for these devices is motivated by the existence of relevant applications, including
high precision molecular spectroscopy, broadband free space optical communication

25



Multi-mode dynamics of Fabry-Perot Quantum Cascade Lasers

and hyperspectral imaging. Therefore a large amount of studies about the multi-
mode dynamics of QCLs from both, experimental and theoretical point of view, is
present in the literature.
In this section we will summarize the main results previously obtained for the QCLs
in the FP configuration, in order to give motivation for the the study presented in
the next sections, dedicated to our original results.
The FP configuration is characterized by an optical cavity made from two parallel
plane mirrors. In Fig. 2.1 a realistic scheme of the FP configuration is shown,
characterized by a cavity of length L, delimited by the two facets of the structure,
and the active medium highlighted in red color.
In this type of resonator the typical modelistic treatment is based on the assump-

Figure 2.1: Scheme of a FP configuration for a QCL. The cavity has length L, and
the active medium is underlined in red color. Top and bottom contacts are yellow
in color. Ibias is the bias current, Vbias is the bias voltage and Eout is the output
electric field.

tion that the electric field consists of the superposition of two fields propagating in
opposed direction, a forward field and a backward field. When two counterprop-
agating waves with the same wavelength superimpose, they interfere and form a
standing-wave pattern. As a consequence carriers are more effectively depleted in
the nodes of the emerging standing wave, thus forming a periodic pattern for lower
gaing with period half the wavelength. This phenomenon is called Spatial Hole
Burning (SHB) and it characterizes FP cavities, but also ring cavities in presence
of artificial defects in the active medium. Furthermore, it has been experimentally
demonstrated that the population grating can also be non-stationary, exhibiting
a time dependence when a beating of the the modes of the QCL occurs[52]. A
graphic representation of the static and time-dependent grating is shown respec-
tively in Fig. 2.2(b)-(c).
SHB is one of the mechanisms that brings to low current threshold for the switching

from CW to multimode emission which, in presence of locking mechanism related
to the nonlinearity of the system, can give origin to mode correlations and then to
OFC [23, 78, 39]. The ultrafast dynamics of QCLs make these devices appropriate
for the comb operation: in fact the short lifetime characterizing the upper subband
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Figure 2.2: SHB in a standing-wave laser: a mode m oscillating in the laser cav-
ity(a), induces a static grating ∆Ns (b). The beating with a mode m+1, induces a
dynamic grating ∆NB that oscillates as indicated by the arrows (c). Reproduced
from [52].

produces a larger band for the FWM [19].
Since the first demonstration of QCL as a source of OFCs achieved in [29], the
development of efficient methods for the characterization of these regimes from an
experimental point of view has been addressed. Mainly they have been charac-
terised through the intermode beatnote (BN) spectroscopy and their fingerprint
is the presence of a narrow BN linewidth (order of magnitude of the KHz). The
peaks in the BN spectrum correspond to multiple values of the FSR, which for the
typical length of a QCL cavity, has an order of magnitude of tens of GHz. Typical
experimental investigation about these regimes consists of a bias current sweeping,
with analysis of Optical Spectra (OS) and BN spectra for different values of the
current. In fig. 2.3 an example of RF spectra and OS for four values of the current
is shown. We can notice that at 500mA the OS is composed by multiple lines and
the BN at 7.50 GHz is narrow, typical of comb operation. For higher values of the
current the OS spreads out when the pump increases, and also BN broadening is
reported, corresponding to loss of coherence.
Several contributions in literature concern such altencance[19, 37, 81], when the
bias current is swept from threshold onwards.
In order to fully describe OFC regimes, typical indicators characterizing mode-
locked regimes corresponding to OFC generation are the number of locked modes
in the −20dB (or −10dB) spectral intensity range and the range of bias current
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Figure 2.3: BN spectrum (left) and OS (right) at different values of the bias current
for a comb QCL. Reproduced from [19].

where OFC emission occurs. For what concerns this, let us consider some typical
values. THz and mid-IR QCLs present differences in terms of bandwith: while
THZ QCLs emit few tens of modes in the −40dB spectral range, whose width is
about 1THz, Mid-IR QCLs generate self-locked optical modes in a bandwidth of
about 3THz [61, 65].
Furthermore, in absence of any dispersion compensation [73, 44] or microwave mod-
ulation [40], stable OFC regimes have been found in current ranges of about one
hundred milliamperes starting from about twice the lasing threshold [61, 65].
A significant improvement in the characterization of OFC regimes has been reached
with the Shifted Wave Interference Fourier Transform Spectroscopy (SWIFTS), a
technique that allows to access the temporal dynamics of the field, by the retrieval
of amplitude and phase of the optical field from experimental data [8, 65, 47]. This
method allowed to understand that the Frequency Modulated (FM) laser emission
is accompanied by a relevant Amplitude Modulation (AM) [65, 27]. Fig. 2.4 shows
an experimental measurement, explotiting the SWIFTS technique, where intensity
and istantaneous frequency are plotted versus time for a FP QCL in OFC regime.
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Figure 2.4: Intensity and instantaneous frequency time traces for a FP QCL, re-
covered by using the SWIFTS. Reproduced from [65]

.

It can be noticed that the intensity trace is characterized by optical pulses prop-
agating on a constant background field, while the instantaneous frequency shows
a non negligible modulation. In particular this result is an experimental demon-
stration of the existence in these dynamical regimes of linear frequency chirp, and
frequency jumps occur at the instants where the amplitude is modulated by the
pulse [27, 47].
In the literature a large class of works related to the theoretical modelling of the
multimode dynamics of FP QCLs is reported, in order to physically explain the
self generation of OFCs in these devices. The most challenging issue in this topic is
the reproduction of some characteristic experimental evidences like the coexistence
of optical pulses and linear frequency chirp, and also the alternance between OFC
and chaotic regimes for increasing current.

Most of the proposed models are based on the treatment of the QCL as a classic
atomic-like two o three levels system through Maxwell-Bloch Equations(MBE) [23,
72, 80, 71, 79, 33, 78]. Unlike the model that is introduced in this work in the
next section (ESMBEs), these models do not encompass the presence of Linewidth
Enhancement Factor (LEF), which describes the coupling between phase and ampli-
tude of the field typical of semiconductor lasers. Furthermore, these models present
another difference with the ESMBEs: they do not encompass some fundamental
properties of the semiconductors, as the asymmetric gain profile. Whereas these
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theoretical descriptions include the SHB, which is then the only physical mecha-
nism responsible of the multi-mode instability of the device.
For instance in [33] a theoretical model obtained by solving with perturbative ap-
proach Maxwell-Bloch Equations in the frequency domain is retrieved and used
to explain mainly the frequency modulation. This model predicts a pseudoran-
dom frequency behaviour as the one shown in Fig. 2.5, coexisting with a constant
intensity.

Figure 2.5: Instantaneous frequency time traces predicted with FD model presented
in [33]. Reproduced from [33].

The same group developed a Time Domain (TD) model which also reproduces
a pseudorandom-like FM modulation.
The following experimental evidences of the existence of linear chirp behaviour of
the instantaneous frequency [65], have brought to the development of new models
that try to reproduce more correctly the semiconductor characteristics. In fact the
LEF and an inhomogeneous gain broadening have been "ad hoc" introduced in [27,
47] and the comparison with experimental results have reported a better match,
as it is shown in Fig. 2.6. The integration of master equations derived in [47],
reproduces in fact the experimental intensity behaviour and the linear chirp in the
instantaneous frequency.

In [7] the QCL is described by a single Schrödinger equation with a phase po-
tential, derived through the development of a mean-field theory, and the analytical
solution of this equation brings to a correct reproduction of the experimental results
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Figure 2.6: Experimental (left) and theoretical (right) results for a FP QCL, re-
trieved by using the model presented in [47]. Reproduced from [47].

for intensity and linear chirp.
Finally, we mention also an approach with standard rate equations for semicon-
ductors lasers and the "ad hoc" addition of a Lorentzian filter in the field equation
to mimic the finite gain line width thus avoiding unphysical multimode instability
linked to unbounded mode proliferation [38].

2.2 Effective Semiconductor Maxwell-Bloch Equa-
tions

In this section the ESMBEs for the FP configuration are retrieved. This model
exploits a susceptibility function which embodies the main characteristics of semi-
conductors, typical of a QCL (originally developed in [13] for an unidirectional
resonator) combined with a multiple scale approach adopted for Quantum Dot
(QD) lasers in [3] in order to account for carriers grating due to standing wave
pattern and responsible for SHB, with the goal to properly describe a bidirectional
FP resonator (see also Chap. 14 in [38]).
The retrieved equations are then integrated and the simulation results are pre-
sented in the second part of the section, showing an overview about the multimode
emission of these devices, allowing us to discuss about the role of some specific
parameters of the model in order to obtain self-generation of OFCs.

2.2.1 Derivation of the model
We want to study the spatio-temporal evolution of the electric field in a FP

cavity a few millimeters long. Therefore, we begin our treatment, writing the
d’Alembert equation:

∂2E

∂z2 − 1
v2

∂2E

∂t2 = 1
ϵ0c2

∂2P

∂t2 , (2.1)
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where E is the electric field, P is the polarization, v is the radiation group velocity,
c is the velocity of the light in vacuum and ϵ0 is the vacuum dielectric constant.
We impose the Slowly-Varying Envelope Approximation (SVEA) which amounts
to applying the following ansatz on the spatio-temporal behaviour of electric field
and polarization:

E(z, t) = 1
2[E(z, t)+ exp(−ik0z + iω0t) + E(z, t)− exp(+ik0z + iω0t) + c.c.], (2.2)

P (z, t) = 1
2[P0(z, t) exp(+iω0t) + c.c.], (2.3)

where E+(z, t), E−(z, t) are respectively the slowly varying envelopes for the for-
ward and backward fields inside the FP cavity and P0(z, t) is the polarization en-
velope, assumed to vary slowly only in time for reasons that will be clarified in the
following steps of the derivation, ω0 and k0 are respectively the reference frequency
(cold cavity mode closest to the gain peak) and wavenumber related to it.
In order to substitute Eqs. 2.2 and 2.3 in Eq. 2.1, we calculate the derivatives of
field and polarization:

∂E

∂z
= 1

2

[︄
−ik0E

+ exp(−ik0z + iω0t) + ∂E+

∂z
exp(−ik0z + iω0t)

]︄

+ 1
2

[︄
ik0E

− exp(+ik0z + iω0t) + ∂E−

∂z
exp(+ik0z + iω0t)

]︄
+ c.c. (2.4)
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+ 1
2
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−k2
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∂E−

∂z
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∂z2

]︄
exp(+ik0z + iω0t) + c.c. (2.5)
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∂P
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We insert the calculated derivatives and Eqs. 2.2 and 2.3 in Eq. 2.1 and we apply
the slowly varying envelope approximation (SVEA),obtaining:

[︄
∂E+

∂z
+ 1

v

∂E+

∂t

]︄
exp (−ik0z) +

[︄
−∂E−

∂z
+ 1

v

∂E−

∂t

]︄
exp (+ik0z) = gP0, (2.10)

where g is a complex coefficient given by:

g = −iω0NpΓc

2ϵ0nc
, (2.11)

and Np is the number of stages in the cascading scheme of the QCL active region,
Γc is the optical confinement factor (that takes into account the overlap between
the optical mode and the active region) and n is the effective background refractive
index of the medium.
Let us consider now the equation for describing the carrier dynamics in the QCL.
The field dynamics is coupled to the active medium and in our model we assume that
the electron, in the cascaded transport, returns to the ground state from the upper
energy level via stimulated emission of photons and radiative and non-radiative
recombination process. From the ground state the electron is then transferred to
the next cascade stage via a very fast phonon-electron scattering process. For this
reason we can assume that the ground state is always empty and the upper state is
populated by the current injection. Therefore the only dynamical variable appear-
ing in the model is the carrier density of the upper laser level N(z, t). The evolution
equation is retrieved from the Bloch two-level approach [38] by introducing the ro-
tating wave approximation. We consider a bias current I, the carrier lifetime due
to radiative and nonradiative decay process τe, and take into account the forward
and backward field envelopes E+ and E−, as required for FP resonator. We obtain:

∂N

∂t
= I

eV
− N

τe

− i

4ℏ
[︂(︂

E+exp(−ik0z) + E−exp(+ik0z)
)︂

P ∗
0

−
(︂
E+∗exp(+ik0z) + E−∗exp(−ik0z)

)︂
P0
]︂

, (2.12)

where V is the medium volume and e is the electron charge.
The derivation of the equation for the polarization follows the approach described
detailed in Sec.2 of [13]. The first step of the derivation is the introdction of
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a phenomenological optical susceptibility χ(ω, N) that encompasses fundamental
characteristics of semiconductor materials. In fact it allows to describe spectrally
asymmetric curves for gain and dispersion, generally dependent on the carrier den-
sity; it has the form given by the following equation (note that there is a different
sign with respect to [13], due to the assumed expression for the complex electric
field and polarization, i.e. Eqs. 2.2-2.3):

χ(ω, N) = f0N (1 + iα) (i − α)
(1 + iα) + iωτd

. (2.13)

where α is the LEF and 1
τd

is the effective polarization decay rate (due to different
scalings Γ

τd
in Eq.(13) of [13] corresponds to the effective polarization decay rate in

Eq. 2.13).
The parameter f0 is related to the differential gain, and it is possible to retrieve
a typical value of it from experimental data by exploiting the P-I curve of a given
QCL device.
Some further assumptions are introduced in Eq. 2.13: first of all we suppose that
the reference frequency ω0 coincides with the gain peak; therefore in Eq. 2.13 the
variable ω=ω∗-ω0 is the deviation respect to the gain peak (note that the FSR is
large enough so that a moderate frequency shift of the gain peak is of little relevance
to the laser dynamics). The variation of the gain maximum with N is fixed by the
ratio f0/τd. Eq. 2.13 is associated in the time domain to the following polarization
equation where the peculiar feature of the FP resonator is made evident by the
dependency from the counterpropagating field envelopes:

∂P0

∂t
= 1

τd

(1 + iα)
[︂
−P0 + if0ϵ0ϵb (1 + iα) N

(︂
E+ exp (−ik0z) + E− exp (+ik0z)

)︂]︂
, (2.14)

For further convenience we introduce δhom = 1
πτd

, which is a measure of the FWHM
of the gain spectrum in the limit α << 1 where the susceptibility χ(ω, N) becomes
that of homogeneous broadened two-level system gain [13].
Now we want to separate forward and backward fields from Eq. 2.10, in order to
retrieve a specific equation for each field. Therefore let us consider Eq. 2.10 and
we set k0z = ϕ, obtaining:[︄

∂E+

∂z
+ 1

v

∂E+

∂t

]︄
exp (−ϕ) +

[︄
−∂E−

∂z
+ 1

v

∂E−

∂t

]︄
exp (+iϕ) = gP0, (2.15)

If we multiply Eq. 2.15 by exp(iϕ) and we integrate between ˘π and π in ϕ, we
have:

∂E+

∂z
+ 1

v

∂E+

∂t
= g

2π

∫︂ π

−π
P0 exp(iϕ)dϕ (2.16)
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Furthermore, if we multiply Eq. 2.15 by exp(−iϕ) and we integrate between ˘π
and π in ϕ, we obtaing the corresponding equation for the bacward field:

− ∂E−

∂z
+ 1

v

∂E−

∂t
= g

2π

∫︂ π

−π
P0 exp(−iϕ)dϕ (2.17)

We have now two separated equations for forward and backward fields.
At this step of the derivation the retrieved equations include all spatial orders (mea-
sured in multiples of λ) for the field-carrier interactions, but in order to underline
physical insights and obtain numerical viability, we can simplify our problem by
using a multiple scale approach. Specifically, we expand in Fourier series the spatial
variation at the wavelength scale of P and N :

P0 = exp(−ik0z)
∞∑︂

n=0
P +

n exp (−2nik0z) + exp(+ik0z)
∞∑︂

n=0
P −

n exp (+2nik0z), (2.18)

N = N0 +
∞∑︂

n=1
N+

n exp (−2nik0z) +
∞∑︂

n=1
N−

n exp (+2nik0z). (2.19)

Truncating these expansions respectively at n=0 and n=1 for P0 and N , we obtain:
P0 = P +

0 exp(−ik0z) + P −
0 exp(+ik0z), (2.20)

N = N0 + N+
1 exp (−2ik0z) + N−

1 exp (2nik0z) . (2.21)
Since N is the carrier density, it must be a quantity expressed by a real number,

and therefore we have that N−
1 is the complex conjugate of N+

1 . Therefore, in the
following it can be reported only the equation for N+

1 . Inserting Eqs. 2.20 and 2.21
into Eqs. 2.10), (2.12 and (2.14) we get the final set of ESMBEs for QCL in FP
configuration in the form:

∂E+

∂z
+ 1

v

∂E+

∂t
= −αL

2 E+ + gP +
0 , (2.22)

−∂E−

∂z
+ 1

v

∂E−

∂t
= −αL

2 E− + gP −
0 , (2.23)

∂P +
0

∂t
= (1 + iα)

τd

[︂
−P +

0 + if0ϵ0ϵb (1 + iα)
(︂
N0E

+ + N+
1 E−

)︂]︂
,(2.24)

∂P −
0

∂t
= (1 + iα)

τd

[︂
−P −

0 + if0ϵ0ϵb (1 + iα)
(︂
N0E

− + N−
1 E+

)︂]︂
,(2.25)

∂N0

∂t
= I

eV
− N0

τe

+ i

4ℏ
[︂
E+∗P +

0 + E−∗P −
0 − E+P +∗

0 − E−P −∗
0

]︂
,(2.26)

∂N+
1

∂t
= −N+

1
τe

+ i

4ℏ
[︂
E−∗P +

0 − E+P −∗
0

]︂
. (2.27)

Finally, the model equations must be completed by the boundary conditions which
read:

E−(L, t) =
√

RE+(L, t), (2.28)
E+(0, t) =

√
RE−(0, t), (2.29)
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where R is the reflectivity of each mirror of the symmetric FP cavity, here consid-
ered.

2.2.2 OFC indicators and chirp indicator
In the previous section we derived the ESMBEs for the FP configuration and our

aim is to study the multimode emission of QCLs by solving this system of equations
for a suitable set of parameters, in order to characterize the self-generation of
OFCs in these devices. Therefore, by solving numerically the system, we obtain a
description of the spatio-temporal evolution of the field inside the cavity. We want
to classify the emitted regime according to the definition of OFCs. In particular,
we want to assess some well defined indicators to indentify OFC emission.
A first characterization of the occurrence of an OFCs regime can be achieved, as
typically done in experiments, by a narrow BN linewidth at Radio Frequency (RF).
However a more rigorous assessment can be obtained by considering the definition of
OFC. In fact an ideal OFC should have no intensity noise fluctuation of the power of
each line (ie: low relative intensity noise per line) and zero differential phase noise.
Therefore the indicators that we introduce are coherent with these characteristic:
we estimate some phase and amplitude noise quantifiers that have been introduced
for the first time in [3]for numerical characterization of OFCs in QD lasers. To
calculate them, the spectrum of the optical field at z=L (exit facet of the simulated
device) is filtered so as to retain only the modes within a 10dB power ratio to the
spectral maximum. We then consider the temporal evolution of each filtered optical
line of the spectrum: the modal amplitudes Pq(t), q = 1, ..., N10 and the temporal
phase difference between one mode and the adjacent one ∆Φq(t), q = 1, ..., N10,
where N10 is the number of optical lines in the −10dB spectral bandwidth [3].
Given the amplitude and phase dynamics of each optical line, we calculate the
quantities:

MσP
= 1

N10

N10∑︂
q=1

σPq , M∆Φ = 1
N10

N10∑︂
q=1

σ∆Φq , (2.30)

where:
µPq =< Pq(t) > , µ∆Φq =< ∆Φq(t) >, (2.31)

σPq =
√︃

<
(︂
Pq(t) − µPq

)︂2
> , σ∆Φq =

√︃
<
(︂
∆Φq(t) − µ∆Φq

)︂2
>, (2.32)

and the symbol < > indicates the temporal average.
The indicators defined by Eq. 2.30 measure the average fluctuations of the power
and phase of the selected optical lines. In our simulations we observe residual fluc-
tuations, so that we will define in the following an OFC regime when the indicators
are MσP

< 10−2mW and M∆Φ < 2 · 10−2rad.
Another characteristic of the comb regimes in the FP QCLs, as it is evidenced by ex-
perimental results [65], is the linear chirp behaviour of the instantaneous frequency.
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It is then useful to obtain a complete characterization of our solution, to define a
quantifier for the linearity of the chirp. Therefore we define here an indicator of
chirp linearity, which is conceptually based on the comparison of the instantaneous
frequency obtained from the simulation with a perfect frequency sawtooth signal
[2].
Firstly we remember that the ratio of the moduli of two adjacent Fourier coeffi-
cients (cn,st and cn+1,st) of the Fourier series of an ideal sawtooth can be written
as |cn+1,st|

|cn,st| = n
n+1 ; secondly we calculate the Fourier transform of the instantaneous

frequency signal, we define cn the peak of each n-th component of the spectrum
and the ratio Rn = |cn+1|

|cn| . We calculate then the relative error ϵn between n
n+1 and

Rn for each component of the spectrum :

ϵn =
⃓⃓⃓⃓
⃓Rn − n/(n + 1)

n/(n + 1)

⃓⃓⃓⃓
⃓ (2.33)

Finally we retrieve the average of ϵn over Nc components and we obtain (ϵc):

ϵc = 1
Nc

Nc∑︂
1

ϵn (2.34)

ϵc is the indicator for the linear chirp behaviour of the instantaneous frequency
and it is the relative error aimed at quantifying the discrepancy between the QCL
instantaneous frequency signal and an ideal sawtooth. We assume that a regime
can be reasonably defined as ’linearly chirped’ when ϵc < 10−1.

2.2.3 Numerical results
In this subsection we present the numerical results obtained by integrating the

ESMBEs (2.22-2.27) with the boundary conditions (2.28)-(2.29) for a Mid-IR QCL
emitting at λ=10µm with typical parameters reported in Table 1 and chosen ac-
cording to the main references from literature [19, 65]. The equations have been
solved by exploiting a code which implements a TDTW algorithm, with an ad-
vanced finite differences scheme in time and space [3].
The first target of our numerical study is the reproduction of OFC regimes which

present characteristics similar to those experimentally observed, namely: a com-
bination of FM and AM OFCs occurring close to the lasing threshold and in a
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significant bias current range, followed by a current range of unlocking with irreg-
ular dynamics and, possibly, occurring again in a second window for larger bias
currents, a feature that is commonly observed in experiments, but that, to the best
of our knowledge, was never found theoretically.
Therefore, the first results that we present are obtained setting the values of α = 0.4
and δhom = 0.48THz (corresponding to τd =0.66ps), which are reasonable and real-
istic values for these quantities. In the following, the role and the impact of these
two parameters on the self-generation of OFCs will be studied, by presenting and
analyzing the most relevant results of a massive campaign of simulations that evi-
denced a broad zoology of dynamical regimes.
The plot of the light-current curve corresponding to the selected values, is reported
in Fig. 2.7. It can be noticed that, since our model does not encompass temper-
ature dynamics or current blockades, the emission is not quenched for high values
of the pumping parameter.

We swept the bias current I and applied the indicators defined in Eq. 2.32

Figure 2.7: Power as a function of the ratio I/Ithr for α = 0.4, δhom = 0.48THz. In
this case Ithr = 260mA. Power is the time average over a simulation time window
of about 500ns, after a stable regime is attained. Other parameters as in Table 1.
Reproduced from [63].

and the chirp quantifier defined in Eq. 2.34 in order to identify and character-
ize OFC regimes. In Fig. 2.8 the results of a bias current sweeping are shown.
From Fig. 2.8.a, we can notice that our QCL starts off with a CW emission at
threshold (Ithr = 260mA), and then we have a destabilization of the CW towards
a multi-mode dynamics, that we can recognize by noticing the appearance of a BN
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Figure 2.8: Results of simulations for a current scan from QCL threshold Ith to
3.5Ith for α = 0.4, δhom = 0.48THz. Other parameters as in Table 1. a) First
BN in the RF spectrum (color scale normalized to the maximum for each current
value; log scale); b) number of modes in a -10dB spectral bandwidth; (c) amplitude
and (d) phase noise quantifiers for the N10 modes, as introduced in [3]; (e) chirp
quantifier for the first Nc = 5 Fourier coefficients of the instantaneous frequency
signal. Two regions of OFCs operation highlighted with a red rectangular box can
be identified. Reproduced from [63].

for values of I/Ithr between 1.25 and 1.64. In this current interval we find OFC
regimes characterized by a gradual increase of N10. We can recognize these regimes
as OFCs, since intensity and phase noise are low according to the definitions of the
OFCs indicators (MσP

< 10−2mW and M∆Φ < 2 · 10−2rad). Furthermore the chirp
indicator has a high value (ϵc > 10−1), so that we can not recognize linear chirp
behaviour in this locking window. We also report a BN shift of 0.03GHz around
I/Ithr = 1.34, which is in agreement, in terms of order of magnitude, with recent
experimental results [45].
When the pump parameter reaches the value I/Ithr = 1.73 the OFC regime is lost.
In fact in this case we observe in the RF spectrum several lines around the BN,
which imply a relevant broadening of the BN linewidth. We recognize this broaden-
ing as a fingerprint of an unlocked regime. In particular this regime is characterized
by an amplitude modulation with a period equal to the inverse of the separation
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between the BN and the adjacent side bands. The corresponding phase and inten-
sity noise indicators increase of nearly two orders of magnitude. At I/Ithr = 1.83
a new OFC window appears, extending up to I/Ithr = 3.08. According to this,
we can state that by exploiting our model ESMBEs we are able to reproduce the
locked/unlocked state alternance, which was found in some experiments [37].
After this second locking window chaotic emission has been reported in our sim-
ulations. Comparing in Fig. 2.8.e the linear chirp indicator of the first and the
second locking window, we see that for all currents I/Ithr < 2 the value of ϵc is
higher than 10−1. In this region N10 is less than 9. The second locking region for
I/Ithr > 2 is characterized by linear chirp with N10 > 10 and at the same time
the number of locked modes increases and the linear chirp indicator decreases. We
can conclude that this correlation between the reduction of ϵc and an increasing
number of locked modes suggests that the linear chirp is a complex cooperative
phenomenon involving a highly multi-mode dynamics (note that in calculating our
ϵc we choose Nc=5).

Let us consider now some interesting cases of dynamical regimes that we found
in this bias current scan. The first example of dynamics is shown in Fig. 2.9,
for I/Ithr = 2.31, where Ithr is the threshold current of the laser. This dynamics,
characterized by concomitant and relevant amplitude and frequency modulation,
shows confined field structures propagating at the group velocity in the resonator
and sitting on an almost constant background in the intensity trace (Fig. 2.9.a, blue
curve). Furthermore, as it is shown in Fig. 2.9.a (red curve), the instantaneous
frequency of the laser shows a linear chirp in the time range of nearly constant
intensity and fast and discontinuous jumps when the intensity structure occurs. We
found a strong similarity with the experimental evidences in Fig. 2.b of [65] and
with the analytical predictions very recently reported in [7]. Figure 2.9 indicates, in
excellent agreement with experimental evidence, that this OFC regime with a broad
and flat optical spectrum is characterized by an almost linear frequency chirp.
Therefore we can assert that the regime shown here corresponds to an OFC with
coexistence of AM and FM behaviour occurs.
By analyzing the Optical Spectrum, we observe 10 lines in the −10dB spectral
bandwidth of 0.2 THZ (Fig. 2.9.b); each line has a very narrow linewidth as shown
by the zoom around one line in Fig. 2.9.c, as expected.
A paradigmatic case of irregular dynamics is observed for example at I/Ithr = 3.46.
The output power and its instantaneous frequency versus time are shown in Fig.
2.10.a, respectively blue curve and red curve. We can notice that the behaviour
characterized by intensity spikes sitting on constant background is lost, and the
curve of the power as a function of the time has an irregular chaotic trend. The
instantaneous frequency does not present a linear chirp. Furthermore, even though
the whole optical spectrum corresponding to this case, shown in Fig. 2.10.b does
not look too different from the locked case of Fig. 2.9.b, we can appreciate the
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Figure 2.9: OFCs emission for I/Ithr = 2.31. Here α = 0.4, δhom = 0.48THz,
other parameters as in Table 1. Temporal evolution of laser power (blue curve)
and instantaneous frequency (red curve). A propagating pulse at the round trip
frequency sits on an almost constant background associated with a linear frequency
chirp. (b) Optical spectrum of the emitted radiation showing 10 modes in the
−10dB spectral bandwidth. c) Zoom around one peak of the optical spectrum.
Reproduced from [63].

difference by zooming around the single line of the spectrum, noticing that each
line is significantly enlarged and accompanied by several lines close to the main
peak (Fig. 2.10.c).

2.2.4 OFCs properties: the role of LEF and gain/dispersion
bandwidth

This subsection is dedicated to highlight the role of the LEF and the gain/refractive
index dispersion in affecting both the bias current range where OFC can be observed
and the figures of merit of the optical comb.
We run systematic sets of long (> 500ns) simulations by sweeping the bias cur-
rent between the threshold Ithr and 3Ithr with a step of 0.19Ithr, and considering
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Figure 2.10: Chaotic behaviour for I/Ithr = 3.46. Other parameters are as in
Fig. 2.9. (a) Temporal evolution of laser power (blue curve) and instantaneous
frequency (red curve). Irregular oscillations are visible in the output power. (b)
Optical spectrum of the emitted light. c) Zoom around one line of the optical
spectrum. Reproduced from [63].

α ∈ (0.4, 1) and δhom ∈ (0.16THz, 1.27THz). The other parameters are as in Table
1. Let us remind that the quantity δhom represents the homogeneous contribution
to the FWHM of the threshold gain bandwith.
The results of these simulations are properly summarized in Fig. 2.11, where we
report for each pair (α, δhom) a black circle when no locking is observed, and a red
circle in case of OFC emission; in the latter case inside the circle we also report
the main characteristics of the comb regimes we found: the FWHM of the gain
spectrum at threshold, the maximum number of locked modes found in the −10dB
spectral bandwidth, the extension of the bias current interval ∆I where the OFC
regime is found and the estimated values of ϵc.

We first observe that spontaneous OFC formation is found diffusely throughout
the considered values of α and of δhom. Also, as a general trend, in the locked
regime the number of locked modes N10 tends to increase with the FWHM of the
gain curve as one may expect.
We also report that, for a fixed value of δhom, larger values of α increase the modal
competition via nonlinear dispersion and reduce the range of ∆I where OFC is met
in agreement with the results in [13]. In fact an increment of the modal competition
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Figure 2.11: Analysis of locked regimes upon variation of parameters δhom and α.
Black dots indicate that no locked regime could be found upon scanning the pump
current in the interval (Ithr, 3Ithr). Red dots indicate parameter pairs where such
regime could be found. In the dots the dynamical FHWM gain linewidth (see text)
in THz is reported along with the current range where locking was found ∆I, the
corresponding value of N10 and ϵc. The symbol ’∗’ indicates the presence of more
than one locking window. Reproduced from [63].

makes more difficult the achievement of the locking, which therefore occurs for a
smaller interval of current. As an example, for e.g. δhom = 0.32THz where OFCs are
reported for all values of α, we found that ∆I drastically decreases as α increases.
For fixed value of δhom, the increase of LEF is equivalent to an increase of the
asymmetry or inhomogeneity of the semiconductor material gain spectrum which
is deviating from the ideally symmetric homogeneous gain of two-level atoms. On
the contrary, low value of LEF implies a more symmetric gain broadening, whereas
the increase of δhom can be read as a reduction of the de-phasing time as typi-
cally observed increasing temperature. Finally, we report that when few number
of modes are locked in the -10dB bandwidth (N10<7), the resulting instantaneous
frequency does not show a clear linear chirp behaviour since ϵc > 10−1 in these
cases.
At fixed α, as a general trend an increment of δhom reduces the current range (or
occurrence) for OFC regimes. These evidences seem consistent with the fact that
the number of dispersed cavity modes for which the gain overcomes the losses in-
creases with δhom, but the quantity N10 is actually limited by the efficiency of the
FWM in locking the lasing modes that typically is an inverse function of distance
from the resonance[19]. In this regard an anomalous behaviour is found at the map

43



Multi-mode dynamics of Fabry-Perot Quantum Cascade Lasers

edge where, for α = 1 and δhom = 0.16THz, we could not find any locked regime
contrary to what happens for the two neighbouring circles of the map. We may
argue that this low value of the gain FWHM implies a destabilization of the single
mode solution for high bias currents where the multi-mode regime is prone to be
chaotic for the relatively high value α = 1. To corroborate this interpretation we
checked that for α = 1 and δhom < 0.16THz only irregular multi-mode regimes are
reliazed beyond the CW instability threshold.
Let us briefly analyze the results about the size ∆I of bias current generating the
combs. If we focus on the case α = 0.4 where we report OFC formation for all the
considered δhom, for the lowest value of δhom we found a comb regime spanning just
a few mA in the whole simulation interval (Ithr, 3Ithr); nevertheless, an extended
comb regime of ∆I = 1000mA can be found for higher values of the pump cur-
rent (I/Ithr > 3). For larger values of δhom, ∆I keeps growing, it is maximum at
δhom = 0.48THz and then decreases.

In order to clarify the role of α in triggering the CW multi-mode , we observe
that it was already shown how increasing this parameter lowers the threshold for the
multi-mode lasing (see Fig.3a in [13]). In fact, since amplitude fluctuations lead to
frequency fluctuations via α, in presence of sufficiently large gain and bias current,
we expect that a CW emission will be destabilized more easily in presence of larger
α. This mechanism is the only possible multi-mode source in an unidirectional ring
resonator, but in a FP configuration it would compete with SHB, a second well
known mechanism for CW instability [23, 78].

We numerically verified the previous considerations by simulating the QCL dy-
namics for α = 0 (ideal two-level system). We set δhom = 0.48THz, since it cor-
responds to the largest ∆I and maximum N10 when α /= 0. We also eliminate
the SHB, to simulate a ring resonator, verifying that CW emission occurs at any
current above threshold and even very far from threshold. We estimated the insta-
bility threshold (see Chap. 20-22 in [38]) and could verify that beyond that value
(Iinst > 13Ithr) a RNGH multi-mode instability sets in when we assume that SHB
is negligible in the FP laser. In the case of low transmissivity of the FP mirrors and
without SHB we have also verified the set in of the RNGH instability at the current
of 13 times the threshold current. This result is consistent with the expectation
that in unidirectional, two-level case the well known RNGH instability is the only
means to destabilize the single mode emission, triggered by the resonance of one
cavity mode with the Rabi oscillation. By increasing α (e.g. setting α = 1.5) and
without SHB, we can confirm, in line with [13], that the multi-mode instability
affecting the single mode CW emission appears very close to threshold.
When instead, keeping α = 0, and the SHB is switched on, we observe again CW
destabilization just above the lasing threshold as it was recently demonstrated for
the QD laser case [3]. Moreover we verified that for the set of parameters of Fig.
2.9 we observe only irregular regimes. We therefore conclude that either the LEF
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or the SHB can (alone or together) contribute to the multi-mode emission which
however does not necessarily lead to an OFC regime. The self-locked regime is
found only for proper bias currents, for proper combinations of LEF and homoge-
neous braodening linewidth and, as shown in the following, for fast enough carrier
dynamics.

2.2.5 Pulses, chirping and OFC: the role of carrier dynam-
ics

A relevant role in the formation of regular dynamics from multi-mode emission
is played by the carrier decay time. In slow (τe ⩾ 100ps − 1ns) conventional semi-
conductor lasers (for example in quantum well laser diodes) the spontaneous OFC
formation is scarcely reported. In agremement with that, our numerical simulations
showed that increasing τe from 1ps to 1.3ps leads to a pulse broadening (Fig.2.12).
For larger τe, mode locking is lost for the same set of parameters of Fig.2.8 and
α =0.

Figure 2.12: Zoom of a single power pulse for τe = 1ps (blue line) and τe = 1.3ps
(red line) for δhom = 0.48THz, α = 0.4. Other parameters as in Table 1. The width
of blue pulse is estimated 25ps, and 35ps for the red one. Reproduced from [63].

On the other direction, we investigated the behaviour for a fast carrier life time
τe = 0.2ps (smaller than the value considered in previous sections). We also set
α = 0.4 and δhom = 3.18THz, which gives a FWHM of the gain bandwidth at
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threshold of 3.7THz, much larger then those considered in the map of Fig. 2.11.
This gain bandwidth is comparable with the one measured in [20]. We interestingly
found that a reduction of the carrier lifetime is very beneficial in giving OFC regimes
in quite wide bias current range and even for very large gain bandwidth FWHM.
This seems to be consistent with the evidence reported in [20] according to which a
very small carrier lifetime will result in very broad and strong FWM at the origin
of the locking phenomenon.

Whereas the map of Fig.2.11 shows that increasing the gain FWHM the OFC
regime might be lost, we stress here that the OFC regime is also strongly dependent
on the carrier lifetime. Considering the reduced value of τeWe observe that that
the increase of the gain bandwidth is accompanied by a significant increase of
the number of comb lines N10. The OFC and linear chirp indicators versus bias
current are in Fig.2.13, where we see one very large comb region (red rectangle)
characterized also by the presence of linear chirped regime, since ϵc < 10−1 for
all the current values in this region. The maximum number of locked modes is
N10 = 61 found at I/Ithr = 2.16; the corresponding AM and FM dynamics at this
bias current, shown in Fig.2.14, shows shorter pulses and markedly linear chirp as
compared to Fig.2.9.

Figure 2.13: a) Power spectrum map for the case τe = 0.2ps with carrier grating.
b) Number of modes in the -10dB band as a function of the current. c) MσP

and d)
M∆Φ as functions of the ratio between bias current and threshold current. e) Chirp
quantifier for the first Nc = 5 Fourier coefficients of the instantaneous frequency
signal. Reproduced from [63].
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Figure 2.14: Locked regime for I/Ithr = 2.16, with α = 0.4, δhom = 3.18THz and
τe = 0.2ps. Other parameters as in Table 1. Temporal evolution of laser power
(blue curve) and instantaneous frequency (red curve). Reproduced from [63].

Finally Fig. 2.15 reports the map for τe = 0.2ps in the parameter space α ∈
(0.4, 1) and δhom ∈ (3.18THz, 5.74THz); for each parameter configuration the bias
current has been scanned between Ithr and 3Ithr, with current step 0.08Ithr of
100mA. The other values are those in Table 1. For α = 0.4 we find locked cases for
all the considered values of δhom. The wider bias current range for OFC corresponds
to δhom = 3.18THz and the highest number of locked modes is achieved with a
FWHM gain linedwith of 6.47THz. Locked states are found also for a higher (and
probably more realistic) value of α = 0.7, whereas locking is completely lost for
α = 1. The trend is similar to the one in Fig.2.11: the increase of the LEF causes a
reduction of N10 as well as a reduction of the bias current range of OFC operation.

2.3 Conclusions
A numerical study focused on the multi-mode dynamics of QCLs have been per-

formed, based on the ESMBEs. We outlined the main experimental achievements,
such us the linear chirp behaviour in the comb regimes, the presence of intensity
structures and the alternance between locked and unlocked states. In our study also
the role of some parameters appearing in the ESMBEs, such as the alpha-factor, the
homogeneous gain bandwidth and carrier lifetime, was investigated and specified.
We found out that increasing the value of alpha-factor there is an enhancement of
the phase-amplitude coupling, as well as of the modal competition, so that for the
same values of the other parameter the achievement of the comb regimes results
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Figure 2.15: Case τe = 0.2ps: analysis of locked regimes upon variation of pa-
rameters δhom and α. Black dots indicate that no locked regime could be found
upon scanning the pump current in the interval ((Ithr, 3Ithr). Red dots indicate
parameter pairs where such regime could be found. In the dots the FWHM gain
bandwidth (see text) in THz is reported along with the current range where locking
was found, the corresponding value of N10 and ϵc. Reproduced from [63].

more difficult and the locking current interval reduces. Furthermore, an increase
of the gain/dispersion bandwith produces a higher number of modes in the optical
spectrum. The carrier lifetime also relevantly influences the features of the combs.
In fact by reducing the carrier lifetimes, a relevant increase of the number of modes,
an increase of the locking current interval and also a chirp behaviour closer to an
ideal sawtooth signal, are reported.
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Chapter 3

Multi-Mode Dynamics of Ring
Quantum Cascade Laser

This Chapter is dedicated to the study of multi-mode dynamics of QCLs in
ring configuration, in order to analyze their dynamics and characterize OFC self
generation.
In Sec. 3.1 a general overview about the state of the art related to the most recent
research in this topic is presented, in order to give motivation to the following
original part of the chapter. In Sec. 3.2 the model of ESMBEs for a ring QCL
is introduced and some significant simulation results are presented, with a part
related to a comparison with the dynamics in the FP case. Specifically, we found
that by exploiting the same parameters used to simulate a FP QCL, except than
for α factor and length of the cavity, we can confirm again the alternation between
locked and unlocked states, and it is also frequent to find comb regimes of harmonic
type, with optical spectra characterized by mode separation of a multiple of the
FSR [53], [32].
In Sec. 3.3 a reduced model consisting of a single master equation is derived.
This model is suited to describe the ring QCL in the limit of fast carrier dynamics
and near threshold operation. The instability of the single mode solution in this
model is studied and the predicted domains of multi mode emission are compared
to the full model case. In particular, simulation results evidences that the model
is capable to reproduce all the dynamical regimes found with the full model and
also an agreement (even much above threshold) has been found between full and
reduced model, in terms of type of emission: in almost the totality of the analyzed
cases, for the same value of the parameters, both the models report continuous
wave regime or regular and chaotic multi-mode regime, when the pump current is
varied.
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3.1 Introduction and motivation
The ring cavity is characterized by a different configuration respect to FP. In

Fig. 3.1 a scheme of ring configuration is presented. The shape of the waveguide

Figure 3.1: Scheme of a ring configuration for a QCL.

is circular with radius R, and in this scheme there is no superposition of forward
and backward field, as in the FP cavity, but a single propagating electric field can
be considered. More specifically, there is no coupling between the clockwise and
counterclockwise waves propagating in the cavity, when defects or generic reflec-
tion points are not present in the laser cavity, so that no element of the system can
break its natural circular symmetry; devices of this type have been realized, with
unidirectional lasing [50].
Another relevant feature of the ring cavity, which establishes a significant difference
with the FP scheme, is the absence of Spatial Hole Burning (SHB). In Chapter 2
we analyzed the effect of SHB in the generation of OFC in the case of a FP QCL,
which has also been analyzed in depth from experimental and theoretical point of
view, as reported in a vast literature [65], [63]. Therefore it is interesting to study
the generation of OFCs in a configuration where SHB is negligible or not present,
in order to underline possible differences in the characteristics of the combs.
In particular, a vast literature reported studies about the generation of combs
in passive (i.e. lacking a bias current) ring microresonator, where the single-mode
destabilization occurs because of the concomitance of resonator dispersion and Kerr
nonlinearity of the exploited crystal (the materials commonly used are Si, MgF2,
SiO2, and Si3N4) [34]. In two-levels ring lasers it is known that when the pump-
ing parameter reaches values that are several multiples of the threshold (between
9 and 14) a multimode instability occurs [38],[60]. In QCLs, which are charac-
terized by an ultrafast dynamics of the carriers, we have instability of the single
mode wave at low pumping levels. It has been shown that this instability shares a
common origin with other instabilities found in different types of physical systems
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and areas of the physics, as hydrodynamics, superconductors and Bose-Einstein
condensates. Specifically, it is related to a CW phase turbulence predicted by the
Complex Ginzburg Landau equation [50]. In ring QCLs, this instability which
occurs at low pumping levels is due to the presence of a linewidth enhancement
factor, which provides a phase-amplitude coupling of the electric field propagating
in the ring. Therefore, an interplay between waveguide dispersion and nonlinearity
occurs, producing a destabilization of the continuous wave emission and therefore
a locking between the modes due to the 4-wave mixing occurring in the laser het-
erostructure.
The phase turbulence which produces OFC in ring QCLs has become object of
study from an experimental and a theoretical point of view only recently [50], [51].
Previously QCL devices with ring-shaped geometry have been investigated, but
without any attempt to generate and analyze the self-generation of OFCs [46].
In [46], which is one of the pioneeristic works about this configuration, a characteri-
zation of a single mode-emitting ring-QCL illustrated in Fig. 3.2 is performed, with
details about its fabrication and analysis of its temperature-dependent wavelength
tuning. Later, multi-mode dynamics of QCLs have been studied in an external ring
cavity [82], [59], an example setup of which can be seen in Fig. 3.3. In particular,
the achievement of the production of ultrashort light pulses and OFCs are gener-
ated by exploiting active mode-locking in external cavities, where the current is
modulated at round trip frequency [59]. These dynamical regimes are stable and
an example is shown in Fig. 3.4, together with the modulated current. In this case,
in fact, we have a sequence of pulses obtained by modulating the current in the
proximity of the round-trip frequency. The setup exploited for the experiment is
the one shown in Fig. 3.3.
The passage from an external ring cavity to a monolithic ring-QCL has allowed the
study of self-generated OFCs in these devices. In [50] a fabricated ring QCL in a
ridge waveguide geometry is exploited. This device operates in the mid-infrared
range at room temperature under constant electrical injection. As in the FP, the
emission presents a multimode regime slightly above the threshold, and the optical
spectrum presents less modes respect to FP case, with separation equal to the FSR.
In Fig. 3.5 a characteristic experimental optical spectrum is shown. We can notice
that the number of modes in the -10dB band is 5 and, furthermore, it is interesting
the shape of the spectrum: while in the FP both experiments and theory evidence
an essentially flat spectrum, in the case of the ring QCL, the envelope of the spec-
trum follows a sech2 trend [50], [42] (see the black line in Fig. 3.5 fitting the optical
spectrum (red line) and see also [43]). Interestingly, this sech2 envelope is known
to be characterizing the temporal soliton, since the optical spectrum correspond-
ing to this type of regime is characterized by a sequence of lines enveloped by a
sech2 function. The formation of temporal solitons described by the LLE is the
spatiotemporal equivalent of the frequency combs and governs their features.
Another feature specific of this device, emerging from the experiments, is that, for

51



Multi-Mode Dynamics of Ring Quantum Cascade Laser

Figure 3.2: Three-dimensional illustration of a surface-emitting ring QCL. The
inset shows a scanning electron microscopy image of a waveguide section holding
the etched second-order DFB gratings to provide surface emission. Reproduced
from [46].

increasing values of the pump, one observes the occurrence of multimode emission
ranges, followed by a new window where the singlemode (CW) emission returns
stable [30]. This trait of the behaviour of the laser has not been found for FP
cavities.
The invention and the improvement of the SWIFTS technique [8] has enabled the
possibility to reconstruct the temporal dynamics with high precision [43]. In Fig.
3.6 an example of reconstructed power trace for a laser emiting in the mid-IR is
shown, characterized by the presence of regular repetition of structures which have
the shape of power bumps. Each structure is composed by a main peak and a
secondary one and there is no evidence of a constant background power between
two adjacent structures.
Recently also multi-mode regimes generated by ring lasers emitting in the THz
region have been deeply studied and analyzed from both theoretical and exper-
imental point of view,evidencing an alternance between Harmonic combs, dense
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Figure 3.3: Optical set-up of free-space external ring cavity QCL. BS, beam split-
ter; CCW, counter clockwise direction; CW, clockwise direction; DG, diffraction
grating; L, aspheric lenses; M, mirrors; MCT, detector; QCL, quantum cascade
laser. Reproduced from [59].

combs, single-mode regimes, and chaotic regimes all found by sweeping the bias
current [30]. The dense comb regime is characterized by a spectrum consisting of
a number of modes one order of magnitude higher than in the mid-IR case.
The theoretical explanation of the experimental achievements have been performed
by using a set of Maxwell-Bloch equations [30]. Further models based on this for-
malism have been proposed in order to explore the multi-mode dynamics of QCL
with ring cavity. In particular, a model based on a self-consistent approach en-
compassing the main characteristic of semiconductors, has been used to obtain
simulation results that would help to understand the features of combs emitted by
ring QCLs [13]. This model, which we will exploit in the next section of this Chap-
ter in order to obtain the presented simulation results, is obtained by adapting the
ESMBEs retrieved in Chapter 2 and in in [63] to the ring configuration. In [13]
dense and harmonic combs have both been obtain by integrating this model, as well
as alternation between locked and unlocked states. In this work we focus on the
detailed investigation of the HFC regimes, and we classify them by using the indi-
cators introduced in Sec. 2.2.2. Moreover, a study of the instantaneous frequency
of the locked regimes is introduced in this work, underlining the differences respect
to the combs generated in a FP configuration.
Furthermore, the QCL ring configuration in presence of an injected optical field
have attracted growing interest in recent years, with several papers on this topic
[12], [57], [56]. Such systems have been considered in order to obtain temporal

53



Multi-Mode Dynamics of Ring Quantum Cascade Laser

Figure 3.4: Experiment: periodic emission pulses and driving modulated near the
round-trip frequency for the external cavity QCL setup of Fig. 3.3. Reproduced
from [59].

solitons, therefore combs, in analogy to the study performed in passive microres-
onators with injected field [34]. These devices are able to support the propagation
of particular types of global and localized temporal structures: Turing roll pat-
terns (see Fig. 3.7(a)), temporal solitons (see Fig. 3.7.c)), and localized structures
characterized by several adjacent peaks separated by a constant background [12],
[57]. The relation between the output intensity of the laser and the intensity of the
injected field can be represented by an s-shaped curve for a suitable choice of the
operational parameters. In this case the system will show an hysteretic behaviour,
as shown in Fig. 3.7(b). In [12] a formal unification of frequency combs in active
and passive systems has also been performed, by proposing a model based on a
generalized form of the Lugiato-Lefever Equation (LLE). The same equation can
provide the description of the generation of OFCs in passive microresonators and
in ring QCLs in presence of drive, showing also in this second case the existence of
temporal solitons.
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Figure 3.5: Optical spectrum of a ring QCL frequency comb. Also shown is the
narrow (< 1 kHz) electrical beat note of the laser (central frequency 27.8 GHz).
Reproduced from [50].

3.2 Effective Semiconductor Maxwell-Bloch Equa-
tions for Ring Quantum Cascade Laser

This section is dedicated to the retrieval of the ESMBEs for a QCL in the
ring configuration. This model have been previously proposed in [13], where its
derivation has been performed ab initio following a procedure analogous to the
retrival of the ESMBEs for the FP case explained in Chapter 2. Let us consider a
total length of the cavity L of few millimiters. It is possible to retrieve this system
of equations starting from the ESMBEs for the FP configuration, Eqs. 2.22-2.27,
and implementing the hypotheses specific of the ring configuration. In particular, in
a ring resonator we assume that only the forward field is propagating (ie: clockwise
mode). This is true under the assumption of no defects or any other asymmetries
that excites the counter clockwise mode. This implies:

E− = 0 (3.1)
P0

− = 0 (3.2)
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Figure 3.6: Reconstructed temporal intensity of a mid-IR ring QCL output power,
by exploiting the SWIFTS technique. Reproduced from [43].

Figure 3.7: Dynamics of a driven ring QCL: (a) Turing rolls oscillating between two
intensities, which constitutes a pair of blue dots in (b). (b) S-shaped curve of output
intensity X vs. input intensity Y. (c) A Cavity Soliton whose peak corresponds to
a red dot of (b). Reproduced from [12].

Therefore, since we do not have standing wave into the cavity, also the carrier
grating (i.e. the SHB) is not present and we can eliminate the dynamical variables
that describe this carrier grating, imposing into Eqs. 2.22-2.27:

N1
+ = 0 (3.3)

N1
− = 0 (3.4)
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We remove the superscript +, since it is not necessary to distinguish between for-
ward and backward field, as in the FP case. We obtain then:

∂E

∂z
+ 1

v

∂E

∂t
= −αL

2 E + gP0, (3.5)

∂P0

∂t
= (1 + iα)

τd

[−P0 + if0ϵ0ϵb (1 + iα) N0E] , (3.6)

∂N0

∂t
= I

eV
− N0

τe

+ i

4ℏ [E∗P0 − EP0
∗] . (3.7)

(3.8)

Finally, the model equations must be completed by the boundary condition which
reads:

E(0, t) =
√

RE(L, t), (3.9)

where R is the reflectivity of the ring [9].
Eqs. 3.5-3.7 with boundary condition Eq. 3.9 constitute the ESMBEs for ring
configuration. This model has been derived by exploiting the semiconductor sus-
ceptibility defined in Eq. 2.13, encompassing therefore relevant characteristics of
the semiconductor media, as the inclusion of α factor, the asymmetric gain pro-
file, the dependence of the susceptibility from the carrier density. In the following
subsection we will report the numerical integration of this model and the most
significant numerical results.

3.2.1 Numerical results
In this subsection we present the results obained by performing several simula-

tion streams, through the integration of Eqs. 3.5-3.7 with boundary condition (3.9)
for the QCL in ring configuration, and assuming the same parameters used in the
study of the FP QCL, which will allow for a comparison between these two lasers
[64]. The code exploited for integration of the Differential equations is based on a
finite differences scheme, discretizing both in time and space.
In the following table we report the values of these parameters.

In Table 2 the same values of Table 1 are reported, except than the length of
the cavity L, which is 4000µm instead of 2000µm, in order to have the same FSR of
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the FP case (FSR=22.4 GHz). By keeping fixed the values of parameters in Table
2, we considered different values of α and Γ (δhom) and for each couple (α, δhom) a
current scan was performed between the threshold current Ithr and 4Ithr with steps
of 0.3Ithr. For all the simulation Ithr=175mA.
The first results we show are for α=1.5 and different values of δhom, because in
these cases we found a multi-mode dynamics with regular (locked) regimes.
Let us consider the case corresponding to δhom=1.6THz. In this case we report the
presence of locked and chaotic dynamics, with some specific difference respect to the
FP results. In Fig. 3.8 a regular (locked) regime is shown: it presents 4 structures

Figure 3.8: Case α=1.5, δhom=1.6THz, I/Ithr=2.3: locked regime with 4 structures
per roundtrip. a) Power-time trace. b) Instantaneous frequency as a function of
the time. c) Optical Spectrum and d) Power Spectrum. The BN frequency is the
FSR 22.4GHz

per RT in the power and instantaneous frequency traces (Fig. 3.8.a) and b)). We
can notice that the power structures have a shape similar to the ones found in the
FP case, while the instantaneous frequency is not characterized by linear chirp as
for the FP. Another relevant difference with the FP is the fact that we observe 4
structures per RT time (about 48ps), while all the simulations in the FP case were
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characterized by 1 structure per RT time. Furthermore, it can be noticed that
the separation between two adjacent modes in the optical spectrum is a multiple
of the FSR (n=4) and no secondary peaks are detected (Fig. 3.8 c)). Moreover,
the RF spectrum (Fig. 3.8.d)) is characterized by peaks occurring for value of
the frequency which are multiple of 4BN, where BN is the beat note frequency
equal to 22.4GHz, without secondary peaks. This scenario is in agreement with
the definition of Harmonic Frequency Comb and their experimental demonstration
[53], [32].

If we increment the value of δhom, setting it to δhom=2.24THz keeping fixed

Figure 3.9: Case α=1.5, δhom=2.24THz, I/Ithr=2: locked regime with 5 structures
per roundtrip. a) Power-time trace. b) Instantaneous frequency as a function of
the time. c) Optical Spectrum and d) Power Spectrum.

all the other parameters, we find new OFC regimes, which present ananlogous
characteristics to the regime shown in Fig. 3.9. The general scenario presented in
this figure reproduces the picture of Fig. 3.8, with the exception that the Power
trace (Fig. 3.8.a)) presents 5 structures per roundtrip, the modes in the OS are
separated by 5 FSR (Fig. 3.8.c)) and the main peaks in the RF spectrum are
occurring at 5BN(Fig. 3.8.d)). We have therefore an harmonic frequency comb of
5th order. Also for this value of δhom we do not find any evidence of linear frequency
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chirp (Fig. 3.8.b)).

Figure 3.10: Case α=1.5, δhom=2.88THz, I/Ithr=1.7: locked regime with 7 struc-
tures per roundtrip. a) Power-time trace. b) Instantaneous frequency as a function
of the time. c) Optical Spectrum and d) Power Spectrum.

By further increasing δhom to the value 2.88THz we obtain a locked case with 7
structures per roundtrip, shown in Fig. 3.10. We can therefore notice that, as a gen-
eral trend, the maximum number of structures per roundtrip in the power/frequency
trace (or equivalently the number of FSR between two adjacent modes in the OS)
tends to increase by increasing δhom. Moreover, the instantaneous frequency trace
follows the same trend in correspondence of different values of δhom, without evi-
dence of linear chirp. In Fig. 3.11 a typical current scan is shown, corresponding to
the case δhom = 2.88THz. In this plot the comb region is underlined in red, deter-
mined by considered low values of the quentifiers of amplitude and phase noise as
done in previous chapter for the FP configuration. Some differences can be noticed
respect to the analogous case in the FP configuration. Firsly, the OFC regimes
are characterized by a number of locked modes around 5, therefore quite less than
the 15 locked modes that we observed in the FP. Furthermore the chirp indicator
is quite larger than the threshold identified in order to recognize linear chirped
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Figure 3.11: Results of simulations for a current scan from ring QCL threshold
Ith to 3Ith for α = 1.5, δhom = 2.88THz. Other parameters as in Table 2. a)
Number of modes in a -10dB spectral bandwidth; (b) amplitude and (c) phase
noise quantifiers for the N10 modes, as introduced in 2; (d) chirp quantifier for the
first Nc = 5 Fourier coefficients of the instantaneous frequency signal, as introduced
in 2. The region of OFC operation highlighted with a red rectangular box can be
identified.

regimes, so that no chirped regime can be observed in a full current scan. This
behaviour is confirmed also for different values of δhom = 2.88THz.
By performing a more focused investigation of these HFC regimes, we did not find a
complete sequence (with "complete sequence" we mean the number of FSR between
two consecutive peaks in the OS following the sequence of consecutive integers for
increasing value of δhom = 2.88THz). Furthermore, by fixing all the parameters
and by varying only the bias current in proximity a found HFC regime, we did not
find another regime of this type.
In conclusion, considering the performed sets of simulations, we found alternance
between locked and unlocked states, as shown in Fig.3.11, which is an example of
current scan, as we found in the FP case. The most relevant difference between the
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results for FP and ring, is the absence of chirped frequency in the ring case, that
therefore makes this a characteristic fingerprint of the FP configuration.

3.3 Reduced Model for Ring Quantum Cascade
Laser

We want to retrieve a reduced model for the ring configuration, by assuming
the hypotheses of near threshold operation and fast carriers. The aim of this
section is to analyze the stability of the predicted CW states and to verify the
consistence of the model respect to the implemented hypotheses. This method, in
fact, appears more suitable for a Linear Stability Analysis (LSA) and therefore it is
more convenient in order to understand the parameters which destabilize the CW
emission. We remark that the LSA predicts the destabilization of the CW, but
does not give information about the type of multimode regimes that are achieved
when this destabilization occurs.

3.3.1 Retrieval of the model
This section is dedicated to describe the mathematical treatment aimed to derive

the reduced model. Let us first consider the equation for the electric field, Eq. 3.5.
We multiply both sides of this equation by the group velocity v, obtaining:

v
∂E

∂z
+ ∂E

∂t
= −v

αL

2 E + vgP0 (3.10)

Then we define photon lifetime as:

τp = (vαL/2)−1 (3.11)

Multiplying both sides of Eq. 3.10 by the polarization dephasing time τd and
introducing also the definition given by Eq. 3.11 we obtain:

vτd
∂E

∂z
+ τd

∂E

∂t
= −τd

τp

E + τdvgP0 (3.12)

At this point we introduce the following dimensionless space and time variables:

η = z

vτd

, (3.13)

t′ = t

τd

(3.14)

and the parameter σ, which is the ration between the dephasing time and the
photon lifetime:

σ = τd

τp

(3.15)
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We have, then:
∂E

∂η
+ ∂E

∂t′ = σ
[︂
−E + τpvgP +

0

]︂
(3.16)

Now let us consider and manipulate the equations for polarization and carriers.
First we consider Eq. 3.6, for the polarization envelope P0. Let us multiply both
the sides of this equation by τd. We obtain:

∂P0

∂t′ = (1 + iα)
Γ [−P0 + if0ϵ0ϵb (1 + iα) N0E] (3.17)

Then we consider Eq. 3.7, for the carrier envelope N0, and also in this case we
multiply both sides of this equation by τd:

∂N0

∂t′ = Iτd

eV
− τdN0

τe

+ iτd

4ℏ [E∗P0 − EP0
∗] . (3.18)

Let us define:

b = τd

τe

, (3.19)

n0 = N0V (3.20)

Eq. 3.18 becomes:

∂n0

∂t′ = b
[︃
Iτe

e
− n0 + iV τe

4ℏ (E∗P0 − EP0
∗)
]︃

(3.21)

We consider now Eq. 3.17 and we introduce:

f ′
0 = f0

V
(3.22)

and we obtain:
∂P0

∂t′ = (1 + iα)
Γ [−P0 + if ′

0ϵ0ϵb (1 + iα) n0E] (3.23)

At this point we introduce the new dimensionless dynamical variables:

F =
√︄

V τef ′
0ϵ0ϵb

4ℏ E, (3.24)

p = i

√︄
V τef ′

0ϵ0ϵb

4ℏ P0, (3.25)

d0 = f ′
0ϵ0ϵbn0, (3.26)

(3.27)

and the the pump parameter:
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µ = f ′
0ϵ0ϵb

Iτe

e
(3.28)

We can write then the equations for p and d0:

∂p

∂t′ = (1 + iα)
Γ

[︂
−p+ − (1 + iα) d0F

]︂
, (3.29)

∂d0

∂t′ = b [µ − d0 + F ∗p + Fp∗] (3.30)

(3.31)

We introduce now quantity:

A = vτpω0NP ΓC

2ϵ0nc
(3.32)

and rewrite the equation for the field:

∂F

∂η
+ ∂F

∂t′ = σ [−F − Ap] (3.33)

Finally, if we recall:

P = Ap (3.34)
D0 = Ad0 (3.35)

(3.36)

we can rewrite the ESMBEs as:

∂F

∂η
+ ∂F

∂t′ = σ [−F − p] (3.37)

∂P

∂t′ = (1 + iα)
Γ [−P − (1 + iα) D0F ] , (3.38)

∂D0

∂t′ = b [µ − D0 + F ∗P + FP ∗] (3.39)

(3.40)

We suppose valid the low transmissivity approximation, so that τp also accounts
for the transmission losses.
At this point we introduce the smallness parameter

ϵ =
√

σ (3.41)
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and we assume fast carriers and near threshold operation. Consistently with these
assumptions, we can write:

F = ε F (1) + O(ε2) (3.42)
P = ε P (1) + O(ε2) (3.43)

D0 = 1 + ε2D
(2)
0 + O(ε3) (3.44)

µ = 1 + ε2µ(2) + O(ε3) (3.45)

The expansion of µ in Eq. 3.45 corresponds to the implementation of the hypothesis
of near threshold operation. Furthermore, in order to have derivatives of order O(1),
we assume that the following Taylor expansions hold:

∂

∂t′ = ∂

∂t′(0) + ε2 ∂

∂t′(2) + O(ε3) (3.46)

∂

∂η
= ∂

∂η(0) + ε2 ∂

∂η(2) + O(ε3) (3.47)

By introducing the expansion Eq. 3.46, we can rewrite the equation Eq. 3.37
for the electric field:

ε
∂F (1)

∂η(0) + ε3 ∂F (1)

∂η(2) + ε
∂F (1)

∂t′(0) + ε3 ∂F (1)

∂t′(2) = ε2
[︂
−ε F (1) − ε P (1)

]︂
(3.48)

At first order in ϵ we have:

∂F (1)

∂η(0) = −∂F (1)

∂t′(0) (3.49)

Now let us consider the equation for P , Eq. 3.38 and let us introduce the
expansions Eqs. 3.46-3.47 into it. We have at first order in ϵ:

ε
∂P (1)

∂t′(0) = (1 + iα)
Γ

{︂
−ε P (1) − (1 + iα) ε F (1)

}︂
(3.50)

and then: [︄
1 + 1

Γ(1 + iα)
∂

∂t′(0)

]︄
εP (1) = − (1 + iα) ε F (1) (3.51)

If we solve Eq. 3.51 in the Fourier domain we obtain:[︄
1 + iω

Γ(1 + iα)

]︄
P̂

(1) = − (1 + iα) F̂
(1) (3.52)

By introducing the additional hypothesis that ω/Γ << 1:

P (1) = − (1 + iα) F (1) (3.53)
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Using Eq. 3.53 we get from Eq. 3.39:

D0 = µ − 2|F +|2 (3.54)

By solving in the Fourier domain Eq. 3.38:[︄
1 + iω

Γ(1 + iα)

]︄
P̂

+ = − (1 + iα) (D0F
± + D1

±F ∓) (3.55)

and using the Taylor expansion of (1+x)−1 truncated at the second order, then
anti-transforming both sides of the obtained equation, and using Eqs. 3.48 and
3.49 we have:

∂F

∂η
+ ∂F

∂t′

= σ

[︄
(µ − 1 + iαµ) F − 2 (1 + iα) F |F |2 +

(︄
1

Γ2 (1 + iα)

)︄
∂2F

∂η2

]︄ (3.56)

with boundary conditions:

F (0, t′) =
√

RF (L′, t′), (3.57)

This is the reduced model for the ring cavity, consisting in one spatio-temporal
differential equation for the field F.

3.3.2 Steady State solutions
In this subsection we want to calculate the steady state solutions of the Eq.

3.56. Let us assume for the field the continuous wave expression:

F = a0e
−iqη+iωt′ (3.58)

where a0 is the amplitude of the field, ω the angular frequency expressed in adimen-
sional unit, according to the definition of t′, and q is the wavenumber. Substituting
Eq. 3.58 in the Eq. 3.56 we obtain:

−iqa0 + iωa0

= σ

[︄
(µ − 1 + iαµ) a0 − 2 (1 + iα) a0|a0|2 +

(︄
1

Γ2 (1 + iα)

)︄(︂
−q2a0

)︂]︄(3.59)

and by simplifying a0:

−iq + iω

= σ

[︄
(µ − 1 + iαµ) − 2 (1 + iα) |a0|2 +

(︄
1

Γ2 (1 + iα)

)︄(︂
−q2

)︂]︄ (3.60)
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Taking the real part of Eq. 3.60 we obtain:

|a0|2 = 1
2

[︄
µ − 1 − q2

(︄
1

Γ2 (1 + α2)

)︄]︄
(3.61)

which gives the laser intensity versus the pump and the continuous wave wavevector.
Taking the imaginary part of the equation 3.60 we have:

ω = q + σα

(︄
1 + 2q2

Γ2 (1 + α2)

)︄
(3.62)

This is the dispersion relation, i.e. the relation between the wavenumber q and the
pulsation ω. Eqs. 3.61 and 3.62 are the steady state solutions of Eq. 3.56.

3.3.3 Linear stability analysis
At this point we want to perform the linear stability analysis of the equation

3.56, in order to study the destabilization of the continuous wave solution.
Let us introduce a perturbation in the continuous wave field expression:

F = (a0 + δa(η, t′)) e−iqη+iωt′ (3.63)

Substituting Eq. 3.63 in Eq. 3.56, we obtain:

−iq (a0 + δa) + ∂δa

∂η
+ iω (a0 + δa) + ∂δa

∂t′

= σ[− (a0 + δa) + (1 + iα) µ (a0 + δa) − 2 (1 + iα) |(a0 + δa)|2 (a0 + δa)

+
(︄

1 − iα

Γ2 (1 + α2)

)︄(︄(︂
−q2

)︂
(a0 + δa) − 2iq

∂δa

∂η
+ ∂2δa

∂η2

)︄
]

(3.64)

If we use the steady state solutions Eqs. 3.61 and 3.62 and we neglect the terms
with order O((δa)n) with n≥2:

−iqδa + ∂δa

∂η
+ iωδa + ∂δa

∂t′

= σ[−δa + (1 + iα) µδa − 2 (1 + iα)
(︂
|a0|2 δa + a2

0δa∗
)︂

+
(︄

1 − iα

Γ2 (1 + α2)

)︄(︄(︂
−q2

)︂
δa − 2iq

∂δa

∂η
+ ∂2δa

∂η2

)︄
]

(3.65)
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Let us also consider the complex-conjugate of Eq. 3.65:

+iqδa∗ + ∂δa∗

∂η
− iωδa∗ + ∂δa∗

∂t′

= σ[−δa∗ + (1 − iα) µδa − 2 (1 − iα)
(︂
|a0|2 δa∗ + a0

∗2δa
)︂

+
(︄

1 + iα

Γ2 (1 + α2)

)︄(︄(︂
−q2

)︂
δa∗ + 2iq

∂δa∗

∂η
+ ∂2δa∗

∂η2

)︄
]

(3.66)

If we assume the following Fourier expansions:

δa =
(︄ +∞∑︂

n=−∞
δa0ne−iknη

)︄
eλt (3.67)

δa∗ =
(︄ +∞∑︂

n=−∞
δa0n

∗e+iknη

)︄
eλt =

(︄ +∞∑︂
n=−∞

δa0−n
∗e−iknη

)︄
eλt (3.68)

and we substitute them into Eqs. 3.65-3.66, and using the ortonormality of Fourier
basis we get:

−iqδa0n − iknδa0n + iωδa0n + λ δa0n

= σ[−δa0n + (1 + iα) µ δa0n − 2 (1 + iα)
(︂
2 |a0|2 δa0n + a0

2δa0−n
∗
)︂

+
(︄

1 − iα

Γ2 (1 + α2)

)︄(︂(︂
−q2

)︂
δa0n − 2iq (−ikn) δa0n − kn

2δa0n

)︂
]

(3.69)

and its complex-conjugate:

+iqδa0n
∗ + iknδa0

∗
n − iωδa0

∗
n + λ δa0

∗
n

= σ[−δa0
∗
n + (1 − iα) µ δa0

∗
n − 2 (1 − iα)

(︂
2 |a0|2 δa0

∗
n + a∗

0
2δa0−n

)︂
+
(︄

1 + iα

Γ2 (1 + α2)

)︄(︂(︂
−q2

)︂
δa0

∗
n + 2iq (+ikn) δa0

∗
n − kn

2δa0
∗
n

)︂
]

(3.70)

If we consider a0 as a real number, we rewrite Eqs. 3.65-3.69 as:

δa0n (Wn + iYn + iω + λ) + δa0−n
∗
(︂
σ (1 + iα) a0

2
)︂

= 0 (3.71)

δa0n

(︂
σ (1 − iα) a0

∗2
)︂

+ δa0−n
∗ (W−n − iY−n − iω + λ) = 0 (3.72)

Where:
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Wn = σ

[︄
1 − µ + 4 |a0|2 +

(︄
1

Γ2 (1 + α2)

)︄(︂
q2 + 2qkn + kn

2
)︂]︄

(3.73)

W−n = σ

[︄
1 − µ + 4 |a0|2 +

(︄
1

Γ2 (1 + α2)

)︄(︂
q2 − 2qkn + kn

2
)︂]︄

(3.74)

Yn = σ

[︄
−αµ + 2α |a0|2 −

(︄
α

Γ2 (1 + α2)

)︄(︂
q2 + 2qkn + kn

2
)︂]︄

(3.75)

Y−n = σ

[︄
−αµ + 2α |a0|2 −

(︄
α

Γ2 (1 + α2)

)︄(︂
q2 − 2qkn + kn

2
)︂]︄

(3.76)

If we call M the characteristic matrix of the linear system composed by Eqs. 3.71-
3.72 and we calculate det(M)=0, we obtain:

(Wn + iYn + iω + λ) (W−n − iY−n − iω + λ) − σ2
(︂
1 + α2

)︂
|a0|4 = 0 (3.77)

Eq. 3.77 is the secular equation.

3.3.4 Simulation results
In this subsection we present the results of the simulations performed by in-

tegrating Eq. 3.56.The method exploited to solve Eq. 3.56 is the Exponential
time-stepping method, which is described in [16].
In Fig. 3.12 we show a plot of the field amplitude as a function of the time for
different values of the pump parameter µ at fixed α, Γ and L. In particular for this
simulation the values of the parameters are showed in the Table 3. We present a

current scan where the pump parameter µ is varied stepwise in time between 1.2
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and 2.8, keeping it constant for 300ns, i.e. long enough for the system to develop
a steady state. In Fig. 3.12 we can notice that for µ between 1.2 and 1.6 we have

Figure 3.12: Sweeping of the pump parameter µ: amplitude of the field F as a
function of the time.

a continuous wave regime. For µ ≥ 1.8 we have multi-wavelength emission and we
find an alternance between regular (µ=1.8, 2, 2.2, 2.6, 2.8) and irregular (µ=2.4)
regimes. Therefore we confirm that our model is able to reproduce alternance be-
tween locked and unlocked regimes.

3.3.5 Validation of the Linear Stability Analysis
We can solve numerically the model and we can also perform the linear stability

analysis (LSA), since we retrieved the secular equation for the reduced model, Eq.
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3.77. Therefore we have checked the consistency of the LSA with the simulations
performed on our model, Eq. 3.56.
We present in Fig. 3.13 a visual synthesis fo the LSA predictions: while varying
parameters α and µ we plot in colorscale the real part of the eigenvalue λ for Γ=0.03
and Γ=0.3. The color maps show the value of real(λ) in the parameter plane. If
real(λ) is positive the solution is unstable, while if real(λ) is negative it is stable.
The consistency with the simulations is shown in Fig. 3.14 where we superimpose to
the previous colorscale eigenvalue maps the results of the simulations, represented
by black and red dots. We did not find any case of disagreement between the
scenario given by the LSA and the numerically performed simulations: wherever
the LSA predicted a CW or a multimode regime the simulations showed at regime
the same regime.

3.3.6 Reduced model in the ring configuration: comparison
with the complete model

An essential check of the validity of the reduced model is based on its compar-
ison with the results obtain by simulating the full model based on the ESMBEs,
i.e. Eqs. 3.5-3.7. Therefore, in order to realize this comparison, we tested the two
models in the ring configuration, by considering the same set of parameters com-
patible with the limits within which the reduced model has been derived (Table
3), and we compared the results obtained by the two models, in terms of LSA and
type of multimode regime as obtained by the simulations. In Fig. 3.16 we present
the results obtained for Γ=0.03 for three values of α. For the lowest two values
of α we have total agreement in terms of LSA results and also in terms of type
of regime obtained when the laser shows multimode emission, and this occurs up
to I/Ithr =2.54. For α = 2 we have only one discrepancy between complete and
reduced model in terms of stability of the CW emission, precisely at I/Ithr =1.42.
We justify this considering that this value of the normalized pump parameter when
α = 2 is at the boarder of the stability region (see Fig. 3.13.a), where it is expected
to have more relevant differences between the results obtained with the two models.
In Fig. 3.16 we show an analogous comparison obtained by setting Γ=0.3 for two

values of α, 0.7 and 1.7. In this case there is total agreement between the results
obtained with the two models, both in terms of CW stability and in terms of type
of obtained multi-mode regime.
Furthermore, the found multimode regimes present strong similarity with the ones
obained with the full model: the irregular regimes are chaotic in both cases and
the output power oscillates between the value 0 and a maximum value; the regular
regimes are in both cases characterized by a propagation of a regular repetition of
structures.
We also remark that the reduced model present a relevant strength in the repro-
duction of the instability thresholds also for high values of the pump, beyond the
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Figure 3.13: a) Stability map for Γ=0.03. On the horizontal axis we represent α,
while on the vertical axis we have the µ/µth where in our case µth=1. In the color
map the real part of the eigenvalue λ is shown. b) Stability map for Γ=0.3.
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Figure 3.14: Stability map compared with the results of numerical solving of the
model Eq. 3.56 for Γ=0.03 (a) and Γ=0.3 (b). In Fig. a) black dots and in Fig. b)
red dots represent agreement between simulation and LSA.

intrinsic limits of its derivation.
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Figure 3.15: Comparison between simulated results obtained by integrating
ESMBEs(complete model, Eqs. 3.5-3.7) and reduced model (Eq. 3.3) for Γ=0.03.

Figure 3.16: Comparison between simulated results obtained by integrating
ESMBEs(complete model, Eqs. 3.5-3.7) and reduced model (Eq. 3.3) for Γ=0.3.

3.4 Ring with optical injection
The study of OFCs in passive systems as microresonators based on Kerr media,

have been particularly relevant because of their application for phonic integration
and miniaturization of device on chip-scale. Recently, the study of OFC in these
systems was unified with the treatment of combs in active systems, with the achieve-
ment of a general version of the LLE [12]. The generalized LLE can be used also to
describe lasers, in our case ring QCLs, in presence of optical injection. The intro-
duction of a driving field into the ring QCL setup involves two additional control
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parameters, i.e. the intensity and the frequency of the optical injected field, which
enable the possibility to generate and manipulate temporal solitons, one type of
OFC that have importance in the field of spectroscopy and metrology [57]. Let us
consider the case of a ring QCL in presence of injection of an optical field. This
configuration is shown in Fig. 3.17. The experiments performed in [50] and [57]

Figure 3.17: Scheme of a QCL with a ring resonator, in presence of electric field
Ei. Eout is output field, Ibias is the bias current, Vbias is the bias voltage. The ring
resonator is coupled with a straight waveguide, to a driving laser providing the
injected field Ei.

exploit ridge-waveguide geometry of the QCL which is coupled to a straight waveg-
uide, used to convey the driving field into the resonator.
Let us consider how this system behaves by varying the intensity of the injected
field. According to the considered region of the parameter space, if we consider the
plane with output power on the vertical axis and power of the injected field on the
orizontal axis, the curve which describes the actual behaviour of the system can be
a monodromic function. Therefore, for each value of the injected power, one value
of the output power exists.
Conversely, for different portions of the parameters space, bistability can occur, i.e.
the curve describing the laser in the injected power-output power plan, is a function
with multiple values in some intervals, with an hysteretic behaviour.
An example of bistability in this system is shown in Fig. 3.18, obtained by adopting
the parameters in Table 4. This curve is characterized by an unstable region for
values of the injection power less than 29 mW, which corresponds to the injection
locking point named IL. By increasing the injected power, we have a CW stabil-
ity region and between the point SN1 and SN2 the curve is not monodromic. A
further point which marks the border between an instability and a stability region
is the modulation instability point MI, placed on the upper branch of the curve.
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The portion of the curve with negative slope in unstable, and this always occurs in
optical systems.
More aspects of the bistability in injected ring-QCL will be analyzed carefully in

Figure 3.18: Bistability in QCL-ring with optical injection: on the vertical axis
the output power expressed in mW; on the horizontal axis the optical power of
the injected field expressed in mW. IL: injection locking point. MI: modulation
instability point. Curve obtained by using the parameters in Table 4.

the following, during the discussion of the simulation results.
We perform a simulative study of this system by exploiting the same set of equations
for electric eield E, polarization P0 and carrier density N0, which we previously in-
troduced for the free-running ring QCL, i.e. Eqs. 3.5-3.7, but we insert properly
the injected electric field Ei in the boundary conditions as in [12], obtaining:

E(0, t) =
√

TEi +
√

RE(L, t)e−iδ0 (3.78)

where T is the trasmittance of the ring waveguide (T = 1 − R) and δ0 is the
normalized detuning between the frequency of the optical injected field ωi and the
closest ring cavity resonance ωc, so that it is expressed as δ0=nL/c(ωc − ωi), where
n is the group refractive index of the laser active waveguide, L is the length of the
cavity, and c the speed of light. Furthermore, R is the reflectivity of the ring, L the
length of the cavity, t a generic time value and Ei the injected optical field.
As in the previous approaches, we simplify the model equations by introducing
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proper transformations of the variables, as in [12]. First we introduce the following
auxiliary variables:

E ′(z, t) = η1E(z, t), (3.79)
P ′(z, t) = iη2P (z, t), (3.80)
D(z, t) = η3N0(z, t) (3.81)

where:

η2
1 = η3τe

2ℏ , (3.82)

η2 = η1, (3.83)
η3 = ϵ0ϵbf0 (3.84)

By inserting Eqs. 3.79-3.84 into Eq. 3.5 and removing the primes in E ′ and P ′ we
obtain:

∂E

∂z
+ 1

v

∂E

∂t
= −αL

2 E + g′P, (3.85)

where g′=−ig.
If we insert Eqs. 3.79-3.84 into Eq. 3.6 we get:

iη1
∂P0

∂t
= (1 + iα)

τd

[−iη1P0 + if0ϵ0ϵb (1 + iα) iη1N0E] , (3.86)

∂P ′

∂t
= (1 + iα)

τd

[−P ′ − f0ϵ0ϵb (1 + iα) N0E
′] . (3.87)

and, finally, by removing also in this case the primes in E ′ and P ′:

∂P

∂t
= (1 + iα)

τd

[−P − (1 + iα) DE] . (3.88)

Let us now rewrite the equations for the carriers:

η3
∂N0

∂t
= Iη3

eV
− η3N0

τe

+ iη3

4ℏ [E∗P0 − EP0
∗] (3.89)

If we introduce the scaled variable D, defined as:

D = η3N0 (3.90)

we obtain:
∂D

∂t
= 1

τe

[︃
Iη3τe

eV
− D + iη3τe

4ℏ (E∗P0 − EP0
∗)
]︃

(3.91)
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Using Eq. 3.82 and introducing the normalized pump parameter:

µ = Iη3τe

eV
(3.92)

we obtain:

∂D

∂t
= 1

τe

[︃
µ − D + 1

2 (E∗P + EP ∗)
]︃

. (3.93)

where in the last passage we removed again the primes for field and polarization.
At this point we introduce new auxiliary variable for field and polarization:

E ′′ (z, t) = E (z, t) e(lnR−iδ0), (3.94)
P ′′ (z, t) = P (z, t) e(lnR−iδ0). (3.95)

We rewrite Eq. 3.96 by inserting the definitions Eqs. 3.94-3.95.

v
∂E ′′

∂z
+ vE ′′

L
(−lnR + iδ0) + ∂E ′′

∂t
= −vαL

2 E ′′ + g′vP ′′, (3.96)

v
∂E ′′

∂z
+ ∂E ′′

∂t
= vE ′′

L

(︃
lnR − iδ0 − vαLL

2

)︃
+ g′vP ′′, (3.97)

v
∂E ′′

∂z
+ ∂E ′′

∂t
= vTE ′′

L

(︄
lnR

T
− iδ0

T
− vαLL

2T

)︄
+ g′vP ′′, (3.98)

v
∂E ′′

∂z
+ ∂E ′′

∂t
= vT

L

[︄(︄
lnR

T
− iδ0

T
− αLL

2T

)︄
E ′′ + g′L

T
P ′′
]︄

, (3.99)

v
∂E ′′

∂z
+ ∂E ′′

∂t
= vT

L

[︄(︄
lnR

T
− iδ0

T
− αLL

2T

)︄
E ′′ + AP ′′

]︄
. (3.100)

where A = g′L
T

.
At this point, we assume valid the low transmission approximation, defined by:

g′L ≪ 1 (3.101)
αLL ≪ 1 (3.102)

T ≪ 1 (3.103)
δ0 ≪ 1 (3.104)
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In this limit the auxiliary variables E ′′ and P ′′ coincide with E and P , respec-
tively. We obtain:

v
∂E

∂z
+ ∂E

∂t
= vT

L

[︃
−
(︃

1 + iθ0 + αLL

2T

)︃
E + AP

]︃
(3.105)

where θ0 = δ0
T

.

v
∂E

∂z
+ ∂E

∂t
=
[︃
−
(︃

v
(︃

T

L
+ αL

2

)︃
+ i

vT

L
θ0

)︃
E + vTA

L
P
]︃

(3.106)

v
∂E

∂z
+ ∂E

∂t
= 1

τp

[︃
−
(︃

1 + i
τpvT

L
θ0

)︃
E + A′P

]︃
(3.107)

where τp =
[︂
v
(︂

T
L

+ αL

2

)︂]︂−1
and A′ = vT A

L
.

We can write the final equations of the model:

v
∂E

∂z
+ ∂E

∂t
= 1

τp

[− (1 + iθ′
0) E + A′P ] (3.108)

∂P

∂t
= (1 + iα)

τd

[−P − (1 + iα) DE] (3.109)

∂D

∂t
= 1

τe

[︃
µ − D + 1

2 (E∗P + EP ∗)
]︃

. (3.110)

where θ′
0 = τpvT

L
θ0.

We simulated the device by using the Eqs. 3.108-3.110 with the boundary condition
3.78.
In the next subsection we will study the spatiotemporal dynamics predicted by this
model with the aim to characterize the generation and the characteristic of OFCs
in this setup.

3.4.1 Numerical results
In order to obtain the simulation results that we will show in the next sections

we exploited the values of the parameters presented in Table 4, which correspond
to the case shown in Fig. 3.18.

We searched for dynamical regimes of interest, pattern formation and solitons,
comparing the dynamics of the full model with the results achieved with the gen-
eralized LLE [12], obtaining good results. The most interesting dynamical regimes
are Cavity Solitons (CS) and Turing Rolls. CS are isolated peaks of intensity which
sit on the pedestal of a homogeneous stationary solution, while Turing rolls are se-
quences of identical equally spaced peaks sitting on a constant background.
As already mentioned, this regime is characterized by a bistability in the plane
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Output Power-Injected Power, with a S-shaped curve.
We performed several simulations by keeping constant the value of the current, and
by varying the injected optical field. We report here two characteristic dynamical
behaviour of the simulated laser, that we found in the high branch of the S-shaped
curve, such as Cavity Solitons and Turing Rolls. For both these cases the value of
the Power of the injected field is 58.4 mW and pumping current I, corresponding
to the pump parameter µ =1.045 (see Table 4), has a value of 21mA.
First let us consider the Turing Rolls regime, shown in Fig. 3.19. We have a stable
sequence of several peaks which propagate inside the cavity. The minimum value
of these peaks corresponds to the CW stable background that we have for the same
value of Ei on the lower branch of the steady state curve.
By decreasing the value of the injected field but remaining in the bistability region,
we found another regime, with distinguished sets of peaks as shown in the figure
3.20. Then, starting from this regime we performed some steps in order to obtain
to obtain one stable CS. In Fig. 3.21 the simulated Cavity Soliton is shown. This
dynamical regime is characterized by the propagation of one single peak inside the
laser cavity. In Fig. 3.21. a) the temporal distance between two adjacent peaks
corresponds to the cavity roundtrip RT=49.5ps. The Optical Spectrum is presented
in figure 3.21. b): it is characterized by one main peak corresponding to the cavity
mode closer to the injected field frequency and then there are secondary peaks as
it is shown in the plot.
Let us briefly explain the procedure performed to obtain the CS. First a value of
Ei characterized by the presence of Turing Rolls on the higher branch of the steady
states curve has been found. Then, in correspondence of this value, since the Turing
Rolls electric field profile consists of a sequence of several identical peaks sitting
on a constant background, we select and cut a single peak of this set. Therefore
we have a cavity field profile consisting of one single peak sitting on a constant
background. When this profile is used as an injection power initial condition for
a further simulation performed exploiting the same injection power where Turing
Rolls occur. This peak in this second simulation at regimes becomes the CS shown
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Figure 3.19: Output Power as a function of the time for a Turing rolls regime,
found for injected power Pi=58.4mW, I=21mA and BN frequency 20.2GHz.

in Fig. 3.21. a).

3.5 Conclusions
A numerical study of multimode dynamics of a free running ring QCL has been

performed, by exploiting the EMBEs adapted for this resonator. The absence of
linear chirp behaviour, the alternance between locked and unlocked regimes, and
the typical shape of the power structures found in the combs regimes as in the
experimes, were retrieved and reproduced.
A reduced model was also presented and the comparison between full and reduced
model showed an agreement far above the near threshold operation, where the
second one has been derived.
Finally, we also performed an analysis of a bistable regime characterizing the ring
QCL with optical injection, and we were able to reproduce with our model some
relevant experimentally achieved multimode regimes, such as the cavity soliton and
Turing rolls.
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Figure 3.20: Output Power as a function of the time for a regime characterized
by a sequence of set of peaks, found for Pi=57.8mW, I=21mA and BN frequency
20.2GHz.

Figure 3.21: Cavity Soliton found for Pi=57.8mW, I=21mA and BN frequency
20.2GHz. a) Output Power as a function of the time. b) Optical Spectrum.
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Chapter 4

Scattering type Self-Detection
Near-Field Optical Microscopy

In the section 1.3 we have seen that Self-Mixing offers the possibility to perform
detectorless interferometric measurements. In fact in the SMI the light source (a
semiconductor laser, in our case a QCL) is used as a detector. The nonlinear su-
perposition between the light back-diffused from a target and the light inside the
cavity of the laser, changes the emission characteristics of the source. In particular
the laser threshold, emission frequency, output optical power and voltage across
the laser terminals are modified and by measuring these quantities it is possible to
retrieve information related to the target optical susceptivity. The implementation
of this technique with Terahertz QCL is particularly relevant since in this spectral
region detectors are expensive and not efficient, therefore the possibility to use a
setup without detector is convenient.
The description SMI has been achieved by using the LK model, which we studied
and analyzed deeply in section 1.3.2. It is composed by two rate equations for field
and carrier density, and described the behaviour of the laser in presence of feedback.
Furthermore, we also introduced the classification of the feedback regimes. In this
chapter the very weak and most of all the weak regime will be object of study.
The second part of section 1.3 is dedicated to the introduction of s-SNOM, an
imaging technique which circumvents the diffraction limit. s- SNOM is based on
the presence of a nanometric tip interacting with the analyzed sample, exploiting
the near-field interaction between tip and sample, mediated by evanescent waves.
These methods are classified as SNOM techniques, and their spatial resolution is
limited by the dimension of the curvature radius of the tip (typically 10 nm).
The combination between SNOM and SMI have produced the SD s-SNOM, which
allows in THz region a spatial resolution of 10 nm by exploiting light with 100
µm-order of magnitude wavelength λ, i.e. a spatial revolution about λ/10000, far
beyond the diffraction limit [48]. Therefore this technique enable a high resolution
imaging in the THz region. Another advantage of this method is the absence of
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the detector, deriving from the SMI configuration. The setup of SD s-SNOM has
been shown in Fig. 1.10 and described in section 1.3.4. This will be starting point
of this chapter.
In Section 4.1 a general review about the most recent and relevant results is pre-
sented, in order to contextualize the original results presented in this work, in both
theoretical and simulation-experimental purview. In particular, a deep focus about
the last-generation implementations of this technique is proposed in this section,
ranging from the solid-state materials analysis, to its usage in the detection of the
skin cancer [69].
In Sec. 4.2 we pass from the LK model explained in Sec. 1.3.2 to a LK model
valid for the SD s-SNOM configuration by introducing proper hypotheses of this
configuration.
In Section 4.3 we present the results of a theoretical treatment of the LK model in
the very weak and in the weak feedback regimes. We introduce some approximated
formulas that enable a retrieval of the dielectric properties of a given material, an-
alyzed with a s-SNOM setup. In the very weak regime a sinusoidal approximation
of the interferometric fringes can be applied in order to retrieve the final equations.
In the weak regime the theory is based on first order Taylor expansions, in order to
have suitable mathematical expressions of the interferometric signals, and retrieve
the scattering coefficient and its harmonics. From the scattering coefficient it is
possible, then, to retrieve the dielectric properties of the analyzed material. The
complete derivation of these formulas for very weak and weak regimes, are pre-
sented respectively in Appendix C and Appendix D.
In the last part of this Chapter, which is Section 4.4, we show the numerical results
obtained by implementing the formulas retrieved in Appendix D, and also by using
an original numerical code that simulates the s-SNOM configuration. A further
comparison with experimental results is then performed.

4.1 Introduction and motivation
The Terahertz(THz) region, characterized by wavelentgth between 30µm and

300µm, holds a relevant importance for the study of optical properties of materials.
In fact the electromagnetic waves in this region may be successfully exploited for
the investigation of resonances of solids and biological tissues [25], [6]. The main
limits for the realization of optical techniques aimed to perform material analysis or
imaging in the THz range are the diffraction limit and the lack of efficient, compact
detectors.
The SD s-SNOM is a nanoscopy technique convceived to solve both these problems.
In fact, the spatial resolution far beyond the diffraction limit, allows to perform a
direct analysis of structured materials on nanoscopic scale, like quantum dots and
nanocomposites, electronic components like nanotransistors and memory cells, or
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biological systems like molecules and proteins. Furthermore the Self-Mixing scheme
implies the usage of the laser as detector, which allows to make up for the absence
of efficient detectors in the THz region.
A THz-QCL emits a laser beam, which describes an optical path determined by
piezometric and parabolic mirrors and impinges on the target, composed by a nano-
metric probing tip placed in proximity of the analyzed specimen surface. An at-
tenuator is positioned into this configuration in order to select the intensity of the
feedback. The circumvention of the diffraction limit occurs because the near-field
interaction between sample and probe is mediated by evanescent fields, which are
not subject to the diffraction. The interaction modifies amplitude and phase of the
light scattered by the probe, which is partially or totally reinjected into the laser
cavity. In a conventional s-SNOM configuration the scattered light would collected
into an external detector.
The intracavity and the back-scattered field, which carries the information about
the analyzed material sample, interfere and modify the emission properties of the
laser, i.e. the emission frequency, output power, voltage across the laser terminals.
Analyzing the change in these properties, typically the voltage across the laser ter-
minals,it is then possible to retrieve information about the target.
The experimental configuration of SD s-SNOM, shown in Fig. 1.12, has been pro-
posed in [21], in order to prove a amplitude- and phase-resolved technique for the
analysis and imaging of solids in the THz, with 60-70 nm spatial resolution. By
demodulating the interferometric signal by using a lock-in amplifier, it is possible
to retrieve modulus and phase of its background-free harmonics that emcompasses
the information about the dielectric function of the sample. In [21] the operative
feedback regime is the very weak regime, where fringes are approximately sinu-
soidal and in this hypothesis modulus and phase of the third harmonics have been
retrieved through a 2-parameters fitting procedure.

An example of application of this method to Cesium Bromide (CsBr) and Gold
(Au) is shown in Fig. 4.1, where amplitude and phase of the near field signal are
plotted as a function of the distance between tip and sample. In the Sec. 4.3 of this
work we will review the mathematical treatment related to the very weak regime
which justifies the approximations introduced for the analysis and processing of the
experimental data presented in [21].
A relevant issue related to the study of this technique is the possibility to perform a
processing and analysis of data for a higher level of feedback (i.e. weak, moderate),
where the sinusoidal approximation for the interferometric fringes is not valid and
a more accurate approximation is needed. In this work we exploit a theoretical
treatment of the LK model specialized for the weak regime (see Appendix D), in
order to obtain approximated formulas that allow to retrieve the optical properties
of a given material sample resonant in the THz region. Furthermore, we process
and analyze sets of experimental data by exploiting the developed theory. This
study has been presented in [54].
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Figure 4.1: THz near field amplitude and phase as a function of tip-sample distance
(approach curves). (a-b) Comparison between the experimental amplitude (a) and
phase (b) of CsBr (red) and Au (blue), collected as a function of the tip-sample
distance z. Reproduced from [21].

4.2 Lang-Kobayashi Equations for SD s-SNOM
configuration

Let us consider the standard Lang Kobayashi equations 1.3 and 1.10. In these
equations the coupling coefficient ˜︁κ appearing in the feedback term in the Equation
1.3 is expressed by the equation 1.9 and depends on the reflection coefficient of the
target

√
R3, defined as the ratio between reflected field and incident field. Therefore,

it is a real quantity. Conversely, in SD s-SNOM configuration the target is not just a
mirror, but it is a more complicated objected composed by the probing tip having
a near-field interaction with the analyzed material sample. For this reason, the
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reflection coefficient
√

R3 must be replaced by the complex scattering coefficient
σ, proportional to the effective polarizability of the target αeff , which depends
on the complex dielectric function of the sample. This substitution implies the
introduction of a complex coupling coefficient ˜︁κ in the LK model modified for the
SD s-SNOM configuration, and this coefficient is expressed by:

˜︁κ = σ
c˜︁a(1 − R)

2ηl
√

R
(4.1)

where R is the laser mirror reflectivity (we assume that both facets of the laser
have the same value of reflectivity), η is the refractive index of the laser medium,
l is the length of the laser cavity and ˜︁a is an attenuation factor connected to the
presence of an optical attenuator in the experimental configuration.
This last passage is crucial, because it allows to include into the LK model the
information about the near-field interaction between tip and sample, as explained.
At this point we want to determine the steady-state solutions of the LK model
with a complex scattering coefficient with modulus S and phase ϕ appearing in
the expression of the coupling coefficient ˜︁κ. We follow an approach [31] based on
steady-state solutions because the temporal change of the feedback, linked to the
tip oscillation on the scale of 10-100 KHz, is much slower than the fast field and
carrier dynamics in the QCL (below the ns scale) field and carrier timescales.
The first step of the procedure consists to rewrite the L-K equations introducing
the transparency carrier density n0 into the equation for the field and recalling µ
the pumping term into the rate equation for the carrier density. We obtain:

dE(t)
dt

= 1
2(1 + iα)

[︄
Gn(n(t) − n0) − 1

τp

]︄
E(t) + ˜︁κE(t − τ)e−iω0τ (4.2)

dn

dt
= − n

τe

− Gn(n − n0) |E|2 + µ (4.3)

We now introduce a convenient scaling of Eqs. 4.2-4.3. Let us consider first Eq.
4.3.

dn

dt
= − n

τe

− Gn(n − n0) |E|2 + µ =

= −n − n0

τe

− n0

τe

− Gn(n − n0) |E|2 + µ (4.4)

Defining:
∆n = n − n0 (4.5)

Equation 4.4 can be rewritten as:
d(∆n)

dt
= −∆n

τe

− n0

τe

− Gn(∆n) |E|2 + µ =

= 1
τe

[︂
(τeµ − n0) − ∆n

(︂
1 − Gnτe |E|2

)︂]︂
(4.6)
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Then we define:

Ip = τeµ − n0 (4.7)˜︁E =
√︂

GnτeE (4.8)

and the scaled equation for carrier density becomes:

d(∆n)
dt

= 1
τe

[︃
Ip − ∆n

(︃
1 −

⃓⃓⃓ ˜︁E ⃓⃓⃓2)︃]︃ (4.9)

Let us consider now the Equation 4.2 and let us multiply it by
√

Gnτe:√︂
Gnτe

dE(t)
dt

= 1
2(1 + iα)

[︄
Gn(∆n) − 1

τp

]︄√︂
GnτeE(t) + ˜︁κ√︂GnτeE(t − τ)e−iω0τ

(4.10)
Using equation 4.8 we have:

d ˜︁E(t)
dt

= 1
2(1 + iα) [τpGn∆n − 1] 1

τp

˜︁E + ˜︁κ ˜︁E(t − τ)e−iω0τ (4.11)

Introducing
˜︂N = ∆nτpGn (4.12)˜︁Ip = IpτpGn (4.13)

the equations 4.11 and 4.9 become:

d ˜︁E(t)
dt

= 1
τp

[︃1
2(1 + iα)

(︂˜︂N − 1
)︂ ˜︁E + τp˜︁κ ˜︁E(t − τ)e−iω0τ

]︃
(4.14)

d˜︂N(t)
dt

= 1
τe

[︃ ˜︁Ip − ˜︂N (︃
1 −

⃓⃓⃓ ˜︁E ⃓⃓⃓2)︃]︃ (4.15)

Separating the field ˜︁E in modulus ˜︁E0 and phase ˜︁Φ and defining

V = 21 − R√
R
˜︁aτp

τc

(4.16)

Equation 4.14 can be rewritten as:

d ˜︁E0(t)
dt

= 1
2τp

[︂(︂˜︂N − 1
)︂ ˜︁E0 + VS ˜︁E0(t − τ)cos (ω0τ + Φ(t) − Φ(t − τ) − ϕ)

]︂
(4.17)

d˜︁Φ(t)
dt

= 1
2τp

[︄
α
(︂˜︂N − 1

)︂
− VS

˜︁E0(t − τ)˜︁E0(t)
sin (ω0τ + Φ(t) − Φ(t − τ) − ϕ)

]︄
(4.18)
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In Equations 4.17 and 4.18 modulus S and phase ϕ of the scattering coefficient σ
explicitly appear.
At this point we are ready to retrieve the steady state solutions of Eqs. 4.17, 4.18
and 4.15. Therefore the conditions ˜︁E(t)= ˜︁E(t− τ)= ˜︁Es, ˜︂N(t)=˜︂Ns, ˜︁Φ(t)=(ωF −ω0)t,˜︁Φ(t − τ)=(ωF − ω0)(t − τ), already mentioned in the study of the standard L-K
equations (see Sec. 1.3.2), are imposed.
The equation for the modulus of the field, Eq. 4.17. becomes:

0 = ˜︂Ns − 1 + VScos (ωF τ − ϕ) (4.19)

and defining ∆V =1-˜︂Ns we obtain:

∆V = VScos (ωF τ − ϕ) (4.20)

∆V is a variable proportional to the interferometric signal, i.e. the voltage across
the QCL terminals [70],[1]. Therefore the Eq. 4.20 is commonly known as "signal
equation".
After imposing the steady-state conditions, equation 4.18 becomes:

ωF − ω0 = 1
2τp

[αVScos (ωF τ − ϕ) + VSsin (ωF τ − ϕ)] (4.21)

and phase excess equation for SD s-SNOM scheme can be straightforwardly re-
trieved:

ωF τ = ω0τ − ϵS
√

1 + α2sin (ωF τ − ϕ + atan (α)) (4.22)
where

ϵ = τ

τc

(︄
1 − R√

R

)︄ ˜︁a (4.23)

In Eq. 4.22 the modulus S and phase ϕ of the scattering coefficient σ explicitly
appear; ϵ is an adimensional quantity which will have a relevant role in the following
treatment in the weak feedback regime case.
Eqs. 4.20-4.22 are the starting point for the approach aimed to retrieve of the
dieletric properties of the material sample in the very week and in the weak regime.

4.3 Theoretical results
In this section we want to present the results of a theoretical study of the SD s-

SNOM in the very weak and weak regimes, based on the L-K Model modified with
a complex scattering coefficient. In particular we retrieved some approximated
formulas which allow a retrieval of the scattering coefficient σ and its harmonics in
both these regimes. The determination of sigma is fundamental in order to obtain
information about the optical properties of the analyzed material sample.
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4.3.1 Very weak regime
Let us consider the very weak regime, which is characterized by values of the

feedback parameter C<0.1. Taking as a starting point the steady-state solutions
of the L-K model, Eqs. 4.20 and 4.22, it is possible to derive approximated expres-
sions of modulus and phase of the scattering coefficient σ, valid in this regime. We
assume that the frequency of the laser perturbed by the feedback, which we named
ωF , corresponds approximately to the unperturbed laser frequency ω0. By imple-
menting this hypothesis, and performing the calculations developed in Appendix
C, we obtain the following expressions for the modulus S and the phase ϕ of the
scattering coefficient σ:

S = 1
V
√︂

∆V 2 + ∆Vπ
2

2 (4.24)

ϕ = ω0τ + atan

[︄∆Vπ
2

∆V

]︄
(4.25)

where ∆V and ∆Vπ
2

are two values of the voltage signal obtained respectively for
values of the distance laser target L and L+∆L, with ∆L=λ

8 , and λ is the wave-
length of the light.
Equations 4.24 and 4.25 constitute a way to easily determine the complex scat-
tering coefficient, and therefore in principle the dielectric properties of the sample
known the tip characteristics, by exploiting only two signal measurements in two
experimental configurations, i.e. for two different values of laser-tip distance. The
complete derivation of these formulas is presented in Appendix C. We remark that
neglection of the small variation of this distance due to the tip oscillation.
These two formulas are based on the approximated phase excess equation valid in
very weak regime, Eq. C.2. The last detail that we want to remark is dependence
of S on V : this constant can be determined only by measuring the attenuation fac-
tor ˜︁a(see equation 4.2), which is not a quantity easily retrievable by experiments.
In any case, this will yield a relative measure of optical contrast, so that it is not
necessary to know the exact value of V.
As shown in Appendix C it is possible to show that in the same hypothesis the
same relation between signals and scattering coefficient, expressed by Eqs. 4.24-
4.25 occurs between the signal harmonics and the scattering coefficient harmonics:

sn = 1
V

√︃
(∆Vn)2 + (∆Vπ

2
)n

2 (4.26)

ϕn = ω0τ + atan

[︄(∆Vπ
2
)n

∆Vn

]︄
(4.27)

where ∆Vn are the harmonics of the signal and sn, ϕn are respectively modulus
and phase of the harmonics of the scattering coefficient σ. The full derivation of
Eqs. 4.26-4.27 is performed in Appendix C. These formulas have a fundamental
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application role, because the harmonics of the voltage signal are the quantities
which is possible to retrieve experimentally, since every SNOM setup provides a
lock-in amplifier. Therefore, they can be directly used to process experimental
data, in order to reconstruct the dielectric properties of the analyzed material.

4.3.2 Weak regime
The values of the feedback parameter C in the weak regime are included in the

interval ]0.1, 1[ and in this case it is not possible to assume that the interferometric
fringes are sinusoidal and that ωF and ω0 have approximately the same value.
In fact the presence of the feedback is not neglectable and its contribution must
be considered. Therefore, we developed an approximated theory based on first
order Taylor expansions, which brought us to obtain approximated formulas for
the retrieval of modulus S and phase ϕ of the scattering coefficient in the weak
regime:

S = 1
2V

√︃
(∆V − ∆V π)2 +

(︂
∆V 3π

2
− ∆V π

2

)︂2
(4.28)

ϕ = ω0τ − atan

(︄∆V 3π
2

− ∆V π
2

∆V − ∆V π

)︄
(4.29)

where ∆V, ∆Vπ
2
, ∆Vπ, ∆V 3π

2
are four values of the voltage signal obtained for val-

ues of the distance laser target L+∆L, with ∆L=0, λ
8 , λ

4 , 3λ
8 respectively.

Equations 4.28 and 4.29 allow us to exploit four signals in four different experi-
mental configurations(i.e. four different values of the laser-tip distance)in order to
implement a retrieval of σ by a first order approximation.
It is possible also to prove that the same formula is valid also for the harmonics.
In fact we can obtain the following equations:

sn = 1
2V
√︂

((∆V 3π
2

)n − (∆V π
2
)n)2 + (∆Vn − (∆V π)n)2 (4.30)

ϕn = ω0τ − atan

⎡⎣(∆V 3π
2

)n − (∆V π
2
)n

∆Vn − (∆V π)n

⎤⎦ (4.31)

They are valid in the weak regime and are based on first order approximations of
Taylor expansions. As already mentioned for the very weak case, these equations
where the harmonics of the signal appear at the right hand side can be used to
process experimental data, in orer to retrieve the harmonics of the scattering coef-
ficient.
The full derivation of the Eqs. 4.28-4.29 and Eqs. 4.30-4.31 is presented in Ap-
pendix D.
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4.4 Numerical results
In the previous part of this chapter we introduced the LK model adapted for SD

s-SNOM configuration, which is characterized by a complex scattering coefficient
σ. This coefficient encompasses the information about the optical properties of the
analyzed material sample, therefore its retrieval was a relevant part of our math-
ematical treatment, for very weak and weak feedback regimes. We developed a
theory based on the steady states solutions of the LK equations, in order to obtain
approximated expressions for the signal (i.e the voltage across the laser terminals),
and then for modulus and phase of σ.
The results of the previous theoretical part have been exploited in order to pro-
cess and analyze data obtained from experimental measurements, whose details are
available in [54]. In this section we will present and discuss these results. A scheme
of the experimental setup used for the measurements is shown in Fig. 4.2. It ex-
ploits a set of THz-QCLs operating in continuous wave regime at a certain driving
current which is possible to tune, emitting at frequencies of 2.0 THz and 2.7 THz
with peak powers at the temperature of 15 K of 5 mW and 4.2 mW, respectively.
The setup provides a lock-in amplifier, so that we can extract the harmonics of the

signal. The Self-Mixing fringes are detected by varying the length of the external
cavity, determined from the distance between the output facet of the laser and the
tip.

4.4.1 Reproduction of experimental fringes in the weak regime
and retrieval of the C paramater

The first part of this work consists of the analysis, by using a a THz-QCL with
emission frequency 2.7 THz, of a 75 nm thick gold film evaporated on a Si un-
doped substrate with a 300 nm SiO2 top layer. Firstly interferometric fringes are
extracted for a fixed position at gold marker, by placing the tip in proximity of
the sample, in tapping mode, with oscillation amplitude 280nm. The plot of the
harmonics is shown in Fig. 4.3. We can observe that the shape of the fringes is
asymmetric, showing that the experiment have been performed in a feedback regime
not corresponding to the very weak regime, where we could expect sinusoidal shape
of the curve, but in the weak regime with a C-parameter which has order of mag-
nitude 10−1. In order to better quantify the feedback level of the experiment, we
simulated a SD s-SNOM setup by using a proper numerical code exploiting the
same parameters of the experiment, with the aim of determining the C-parameter
and the α factor of the laser. In our code, which solves the steady state equations
of the model by using the Kliese Algorithm [35], C and α are input parameters.
Therefore, we tried to find the couple (C, α) that gives simulated fringes that best
reproduce the experimental curves shown in Fig. 4.3. In Fig. 4.4 normalized ex-
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Figure 4.2: Sketch of the experimental setup exploited for the measurements ana-
lyzed and discussed in this chapter. A THz-QCL lasing emitting light at frequency
ω, coupled to an s-SNOM providing an AFM tip oscillating at frequency Ω between
70 and 110 kHz. Parameters: P is the output power of the laser, IQCL is the driv-
ing current, T is the transmission of the attenuators, and L is the variation of the
optical path length achieved with an optical delay line. Reproduced from [54].

perimental (a) and simulated (b) harmonics at n=2,...,5 are shown. The curves in
Fig. 4.4.b) have been obtained by setting C=0.5 and α =0.5. The extracted value
of the C parameter confirms that we are in a weak regime and the value of the α =
factor is in agreement with typical values of this parameters for THz QCLs.
Furthermore, we can notice that for harmonics orders n=2,...,5 the interferometric
fringes present the same normalized shape, and this also occurs by looking at the
simulated curves.

4.4.2 Dependence of the interferometric signal from injec-
tion current

By exploiting the same setup and the same sample of the previous subsection,
we performed an investigation about the dependence of the SNOM signal on two
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Figure 4.3: Harmonics of the signal extracted at a fixed position at gold marker,
plotted as a function of the external cavity length variations at different demodu-
lation orders n=2,...,5, obtained by exploiting a lock-in amplifier, at fixed values of
transmissivity and injection current. Reproduced from [54].

key experimental parameters: the bias current of the QCL and the feedback in-
tensity, i.e. the feedback transmissivity of the setup. The aim of this study is the
identification of an operative regime which offers the best compromise of the SNR,
phase sensitivity, and scan speed.
Two sets of measurements have been performed, by using two lasers with different
emission frequency: 2.0 and 2.7 THz. We expect a reduction of the back-scattered
field when the photon energy increases, considering the dependence of the scatter-
ing coefficient on the wavelength.

In Fig. 4.5.a) fringes at 2.7 THz are shown for different values of the current.
The blue dots are the experimental points, while the red curves are the simulated
ones, characterized by α=0.5 and C selected to best approximate each experimen-
tal curve. We chose to show the third harmonics because it results to be a good
compromise between SNR and far-field background suppression. In Fig. 4.5.b) the
same results are shown, but for frequency of the laser 2.0 THz.
The value of C as a function of the current for the two considered frequencies is
shown in Fig. 4.6. At the lowest values of the current, near the laser threshold,
for both the devices, the fringes have sinusoidal lineshape which is well-reproduced
using a value of C<0.1, corresponding to very weak regime. At higher values of
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4.4 – Numerical results

Figure 4.4: a) Normalized fringes of Fig. 4.3. b) Normalized fringes obtain by
simulating a SD s-SNOM setup for C=0.5 and α =0.5. Reproduced from [54].

the bias current, the laser emitting at 2.7 THz presents asymmetric fringes and
the values of the C are greater than 0.5, so that we can consider properly a weak
regime.
The laser operating at 2.0 THz has a different behaviour. The fringes have a slight
distortion by increasing the current, passing from C < 0.05 to C=0.2 for the highest
considered value.

4.4.3 Dependence of the interferometric signal from feed-
back intensity

In this subsection we study the behaviour of the laser in dependence on the
feedback intensity, another key-parameter of our setup. We keep constant the bias
current.
In Fig. 4.7 we show a set of interferometric fringes obtained by varying the trans-

mission T of the attenuator placed in the setup, at the two considered values of the
frequencies, 2.7 THz and 2 THz. T = 100 % corresponds to a situation where the
filter wheel is removed from the optical path.
When we decrease the transmittance we report strong analogy with the behaviour
observed by reducing the bias current (see Fig. 4.5. In fact the curves increase
gradually their symmetry by reducing the feedback intensity until we have sinu-
soidal line shape in the very weak regime, achieved for T = 30% at both the values
of the frequency.In Fig. 4.8 we can obserse a linear trend of the estimated C with
the transmittance of the attenuator, as expected.
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Figure 4.5: (a) and (b) interferometric fringes (third harmonic of the signal) at
[blue dots, (a)] 2.7 THz and [black dots, (b)] 2.0 THz at different values of the bias
current of the QCL together with the simulated curve (red solid lines) for α = 0.5
and C parameter from bottom up equal to C = { 0.05, 0.5, 0.5, 0.63, 0.5} at 2.7
THz and C = {0.01, 0.05, 0.2, 0.5} at 2.0 THz. Reproduced from [54].

4.4.4 Calculation of the scattering coefficient
In this part we want retrieve modulus and phase of the scattering coefficient

harmonics σn by processing experimental measurements of interferometric signal,
in order to explore the phase sentivity of a given material on the feedback. A
sample of a topological insulator material named Bi2Te2.2Se0.8 was used, since this
material presents optical phonon resonances between 1.6 and 2.8 THz. We operate
in this frequency range and we expect phase sensitivity in the measurements. The
flake of Bi2Te2.2Se0.8 is placed on an undoped silicon/silica substrate.
The measurement have been performed by moving on the sample along a line or-
thogonal to the flake/substrate interface, with steps of 30nm, acquiring at each
position on the sample the interferometring fringes as a function of L. The fringe
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Figure 4.6: C-parameter selected to best reproduce the experimental SMI fringes,
as a function of the current at 2.0 and 2.7 THz. Reproduced from [54].

maps as a function of L and X maps, acquired at 2.0 THz by setting the bias current
at 700 mA and using a tip oscillation amplitude of 130 nm, are reported in [54] and
[55].
An analysis of these fringes have been performed in order to retrieve the modulus
and phase of the scattering coefficient harmonics, respectively sn and ϕn, by using
two methods. The first method is based on a fitting algorithm for each interfer-
ometric curve, based on the least squares method, by using a sinusoidal function.
The second method exploits the first-order formulas retrieved in this chapter Eqs.
D.44-D.45: for each value of X we select the third harmonic of signals at four differ-
ent values of L, reciprocally phase shifted by π/2, corresponding to a displacement
∆L = λ/8.
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Figure 4.7: (a) and (b) interferometric fringes as a function of L, measured with
attenuators of different transmission increasing from the lower to upper panels [blue
dots, (a)] at 2.7 THz and [black dots, (b)] 2.0 THz together with the simulated curve
(red solid lines) determined with α = 0.5 and C parameters increasing linearly with
the attenuator transmission. Reproduced from [54].

The amplitude and phase profiles obtained with the sinusoidal fit (dots) and first
order formulas (solid lines) are shown in Fig. 4.9, showing a general agreement
and equivalency between the two methods. The deviation observed for ϕ3 at the
lowest value of transmittance (T = 10%) can be related to the low SNR (<2) of
the data, which affecting more the analysis with the approximated formula that
exploits only four points in L. At the flake side, where the signal increases, we have
total agreement between the two methods at T=10%.
We can conclude that for the analyzed case, the sinusoidal fit is an efficient method
for the determination of modulus and phase of the scattering coefficient harmonic
also in presence of a feedback level which we classify as weak regime, therefore
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Figure 4.8: C-parameter selected to best reproduce the experimental SMI fringes,
as a function of the attenuator transmittance at 2.0 and 2.7 THz. Reproduced from
[54].

beyond the very weak regime, whose physical hypotheses have been exploited in
the derivation of the method.

4.5 Conclusions
The study performed in this Chapter is based on a study of this configura-

tion, which has been presented in Appendix C and D, by exploiting the LK model
adapted for SD s-SNOM (with a complex scattering coefficient), and which has
been applied for a numerical study and experimental data processing, with a par-
ticular focus on the weak regime. We found approximated expressions based on
first order Taylor approximation, for the retrieval of the scattering coefficient valid
in this regime, which allow us to have information about the optical susceptibility
of the analyzed material. The comparison between the first order formulas and
the zero order sinusoidal approximation of the sinusoidal fringes, both applied to
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Figure 4.9: a) Modulus s3 and b) phase of the third harmonic of the scattering
coefficient for the considered Bi2Te2.2Se0.8 flake placed on an undoped silicon/silica
substrate, retrieved from the measured interferometric fringes by using sinusoidal fit
(dots) and first-order Eqs. D.44-D.45 (solid lines), for three values of the attenuator
transmittance: 10% (black), 30% (blue) and 100% (red). Reproduced from [54].

experimental data, did not highlight any relevant improvement in the passage from
zero to first order, and therefore the sinusoidal fit can be an efficient method for the
data analysis also in the weak regime. Furthermore, the numerical study performed
on this configuration, allowed us to reproduce successfully experimental fringes in
the weak regime and analyze their dependence on the bias current and the intensity
of the feedback. We compared the numerical results with the experimental data,
and we reproduce the measured curves. This showed the efficiency of the exploited
numerical method.
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Chapter 5

Conclusions

The purpose of this work was to study from a theoretical and numerical point of
view the dynamics of QCLs in order to develop knowledge and methods useful for
the design of device of this type suitable for applications in the field of photonics
and material analysis. In particular two main topics have been object of study in
this thesis: the self-generation of OFCs and the SD s-SNOM. In the first case we
studied the dynamics of QCLs in absence of optical feedback; in the second case
we analyzed a configuration where laser is subjected to optical feedback, which is
exploited for the retrieval of the optical properties of a given material.
Firstly we considered the QCL with a FP cavity and we worked on the modeling
of this configuration for its multi-mode emission, with the aim to investigate the
spontaneous generation of OFCs. The result of this theoretical study is a full model
named Effective Semiconductor Maxwell-Bloch Equations. This model consists of
a nonlinear system of six equations: two for the electric field, two for the polariza-
tion terms, and two for the carrier density. This model, although it relies on the
Maxwell-Bloch formalism, does not exploit the properties of a two level system,
but is based on a dielectric susceptibility which reproduces the main characteristics
of semiconductors, such as the existence of an alpha-factor, the asymmetric gain
profile and the dependence of the gain/dispersion on the carrier density. Further-
more, the phenomenon of the Spatial-Hole burning, which characterizes the FP
cavity, is introduced, and therefore backward and forward electric fields appear in
the equations.
A numerical and simulation study of these equations has been performed, in order
to investigate the multi-mode regimes of QCL and verify if this model is able to re-
produce the main experimental results. In order to rigorously classify the different
regimes obtained from the simulations, we introduced some indicators for phase and
intensity noise, whose values under a certain threshold allow us to define a regime
as an OFC. Also an indicator for the linear chirp has been introduced, motivated
by the experimental evidence of this behaviour in the locked regimes of the laser.
The simulations highlighted that this model is able to reproduce the alternance
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between comb and no comb regimes which has been reported in the literature as
a typical experimental feature of the QCL multi-mode dynamics. Furthermore,
we also found out that the regimes characterized by high number of locked modes
(approximately more than seven modes) present an instantaneous frequency with
a linear chirp behaviour.
Moreover we investigated the role of some parameters appearing in the ESMBEs,
such as the alpha-factor, the homogeneous gain bandwidth and carrier lifetime.
It came out that a large alpha-factor increases the phase-amplitude correlation
increases, as the modal competition, and therefore the possibility to have comb
regimes decreases. Also, an increase of the gain/dispersion bandwith implies a
higher number of modes in the optical spectrum and therefore, for suitable values
of the bias current and of the other parameters, a higher number of locked modes.
The carrier lifetime is also a relevant factor. In fact by reducing the carrier lifetimes,
we report a relevant increase of the number of modes, an increase of the locking
current interval and also a chirp behaviour closer to an ideal sawtooth signal (lower
value of the chirp indicator).
In the following we worked on the multimode dynamics of QCL with a ring cav-
ity. Also in this case we introduced a model based on ESMBEs and we performed
a simulation study of such a nonlinear system, highlighting the reproduction of
experimental findings such as the alternance between locked and unlocked states
and the absence of linear chirp. Furthermore, we retrieved a reduced model for
ring QCL consisting of a single master equation, valid in near threshold operation
and fast carriers hypotheses. A linear stability analysis of this equation has been
performed and we compared the stability scenario of the reduced model with the
results of the full model (ESMBEs), finding out a general agreement between them
also for values of the bias current considerably above the laser threshold.
We also studied the ring QCL in presence of optical injection. The main aim of this
study was the description of a bistable regime of this configuration. We reproduced
successfully some interesting regimes experimentally found in this scheme, such as
cavity solitons and Turing rolls.
The last part of this work was dedicated to the dynamics of QCLs in presence of
feedback. In particular, we studied the SD s-SNOM, which is a nanoscopy tech-
nique combining the SMI with the s-SNOM, and provides a material analysis with
resolution on nanoscopic scale by exploiting an AFM tip and the near-field interac-
tion mediated by evanescent waves between this probe and the material specimen.
This technique is applied in the Terahertz region, and therefore allows the study of
materials which have resonances (for instance phonon resonances) and interesting
features in this spectral region. Firstly a theoretical study of this configuration
has been performed, by analyzing and manipulating the LK equations adapted for
this configuration. This theoretical study is mainly focused on the weak-feedback
regime, which corresponds to the 10−1 order of magnitude for the values of the C
parameter. We derived first order approximated expressions for the interferometric
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signal and for the scattering coefficient valid in this regime, which allow us to re-
trieve the information about the optical properties of the analyzed material. These
first order approximated formulas have been used for processing experimental data.
We also performed a comparison with the results obtained by using zero order for-
mulas based on sinusoidal approximation of fringes and from this study it came
out that in the specific studied case, there is no relevant improvement passing from
zero to first order, and therefore the sinusoidal fit is still an efficient method for the
data analysis.
We also performed a numerical study on this configuration, successfully reproduc-
ing experimental fringes in the weak regime and retrieving the C parameter for each
set of experimental data. Our algorithm for the simulation of SD s-SNOM was also
applied in order to study the dependence on experimental fringes from two relevant
parameters: the bias current and the intensity of the feedback. Also in this case we
compared our results with the experimental data, and we were able to reproduce
the measured curves, proving then the efficiency of the exploited numerical method.
Further steps can be done in the future to improve this study. Firstly a reduced
model for the free running FP configuration can be introduced and numerically
studied in order to have a broader understanding of the physics of this configura-
tion. Furthermore, also the addition of the optical injection in the FP case can
reveal interesting new properties and explain some experimental achievements.

Future perspectives
Several perspectives can be considered for future studies in the field of the QCL

dynamics, considering the models and the results of this work as a starting point.
In particular, the model of ESMBEs, introduced and used in this thesis for the mod-
eling of the self-generation of OFCs in FP and ring QCLs, can also be exploited
to study the behaviour of this laser in case of electrical injection, i.e. when an RF
modulation of the bias current is performed. Furthermore, the study of a FP QCL
in presence of optical injection by exploiting the full model of the ESMBEs, would
be an interesting research topic that could be developed in future, with the initial
aim to compare the simulation results with the available experimental evidences,
and also to develop a further comparison with the behaviour of the ring QCL in
the same configuration.
Regarding the study of the SD s-SNOM, in this work the very weak and the weak
regime of feedback have been considered. The analysis of regimes with higher level
of feedback, as the moderate regime, would be useful in order to exploit this setup
with a higher SNR. A treatment of the LK model with complex scattering coeffi-
cient for the retrieval of approximated formulas in the moderate regime, therefore,
would constitute a relevant improvement in terms of contrast, in order to perform
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nanoscopic analysis of the dielectric properties of materials resonant in the THz
region.
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Appendix A

Reduced Model for the
Fabry-Perot configuration

In the section 2.2 we derived the ESMBEs (2.22-2.27) with the proper bound-
ary conditions (2.28)-(2.29). This model encompasses the full dynamics of field and
medium and is characterized by a relevant number dynamical variables, implying
that the time needed for completing a simulation is quite long. The order of mag-
nitude of the simulation time is 10 hours for a 300ns simulation.
Another disadvantage of the full model is the difficulty to have an immediate out-
line of the physical meaning of the terms appearing in the equations, because we
have six nonlinear equations in six variables.
For these reasons it is desirable to obtain a reduced model, valid under certain
approximations, where the equations and the associated numerical load can be
simplified. In this section we derive a reduced model for FP configuration com-
posed by two master equations, for the forward and backward fields, valid under
some approximation that will be specified in the following. The used approach is
applied in the literature for lasers and for the description of active and passive op-
tical systems, and exploits methods proposed for the simplification and treatment
of FP resonator. Furthermore, it leads do describe this optical system by using the
Lugiato-Lefever equation, that is a prototypical equation for describing structure
localization in passive nonlinear optical resonators and has been recently extended
to the description of soliton formation in QCL [38], [34], [10], [39].

A.1 Derivation of the reduced model in the Fabry-
Perot configuration

We want to retrieve a reduced model for FP configuration, starting from the
complete model and introducing some hypotheses. In particular, we assume fast
dynamics of the carriers, which corresponds to the case of QCL, and near threshold
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operation. Let us first consider the equation for the Forward field, Eq. 2.22. We
multiply both sides of this equation by the group velocity v, obtaining:

v
∂E+

∂z
+ ∂E+

∂t
= −v

αL

2 E+ + vgP +
0 (A.1)

Then we define photon lifetime as:

τp = (vαL/2)−1 (A.2)

If we multiply both sides of Eq. A.1 by the polarization dephasing time τd and we
introduce also the definition given by Eq. A.2 we have:

vτd
∂E+

∂z
+ τd

∂E+

∂t
= −τd

τp

E+ + τdvgP +
0 (A.3)

At this point we introduce the following dimensionless space and time variables:

η = z

vτd

, (A.4)

t′ = t

τd

(A.5)

and the parameter:
σ = τd

τp

(A.6)

We obtain, then:
∂E+

∂η
+ ∂E+

∂t′ = σ
[︂
−E+ + τpvgP +

0

]︂
(A.7)

Now let us consider and manipulate the equations for polarization and carriers.
First we consider Eq. 2.24, for the polarization envelope P +

0 . Let us multiply both
the sides of this equation by τd. We obtain:

∂P +
0

∂t′ = Γ(1 + iα)
[︂
−P +

0 + if0ϵ0ϵb (1 + iα)
(︂
N0E

+ + N+
1 E−

)︂]︂
, (A.8)

Then we consider Eq. 2.26, for the carrier envelope N0, and also in this case we
multiply both sides of this equation by τd:

∂N0

∂t′ = Iτd

eV
− τdN0

τe

+ iτd

4ℏ
[︂
E+∗P +

0 + E−∗P −
0 − E+P +∗

0 − E−P −∗
0

]︂
, (A.9)

Let us define:

b = τd

τe

, (A.10)

n0 = N0V , (A.11)
n1 = N1V. (A.12)
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Eq. A.9 becomes:

∂n0

∂t′ = b
[︃
Iτe

e
− n0 + iV τe

4ℏ
(︂
E+∗P +

0 + E−∗P −
0 − E+P +∗

0 − E−P −∗
0

)︂]︃
(A.13)

We consider now Eq. A.15 and we introduce:

f ′
0 = f0

V
(A.14)

and we obtain:

∂P +
0

∂t′ = Γ(1 + iα)
[︂
−P +

0 + if ′
0ϵ0ϵb (1 + iα)

(︂
N0E

+ + N+
1 E−

)︂]︂
(A.15)

At this point we introduce the new dimensionless dynamical variables:

F + =
√︄

V τef ′
0ϵ0ϵb

4ℏ E+, (A.16)

F − =
√︄

V τef ′
0ϵ0ϵb

4ℏ E−, (A.17)

p+ = i

√︄
V τef ′

0ϵ0ϵb

4ℏ P +
0 , (A.18)

p− = i

√︄
V τef ′

0ϵ0ϵb

4ℏ P −
0 , (A.19)

d0 = f ′
0ϵ0ϵbn0, (A.20)

d+
1 = f ′

0ϵ0ϵbn
+
1 (A.21)

and the the pump parameter:

µ = f ′
0ϵ0ϵb

Iτe

e
(A.22)

We can write then the equations for p+, d0 and d+
1 :

∂p+

∂t′ = Γ(1 + iα)
[︂
−p+ − (1 + iα)

(︂
d0F

+ + d+
1 F −

)︂]︂
, (A.23)

∂d0

∂t′ = b
[︂
µ − d0 + F +∗p+ + F −∗p− + F +p+∗ + F −p−∗

]︂
(A.24)

∂d+
1

∂t′ = b
[︂
−d+

1 + F −∗p− + F +p−∗
]︂

(A.25)

We introduce now quantity:

A = vτpω0NP ΓC

2ϵ0nc
(A.26)

107



Reduced Model for the Fabry-Perot configuration

and rewrite the equations for forward and backward field:

∂F +

∂η
+ ∂F +

∂t′ = σ
[︂
−F + − Ap+

]︂
(A.27)

−∂F −

∂η
+ ∂F −

∂t′ = σ
[︂
−F − − Ap−

]︂
(A.28)

Finally, if we recall:

P + = Ap+ (A.29)
P − = Ap− (A.30)
D0 = Ad0 (A.31)
D+

1 = Ad+
1 (A.32)

D−
1 = Ad−

1 (A.33)

we can rewrite ESMBEs as:

∂F +

∂η
+ ∂F +

∂t′ = σ
[︂
−F + − p+

]︂
(A.34)

−∂F −

∂η
+ ∂F −

∂t′ = σ
[︂
−F − − p−

]︂
(A.35)

∂P +

∂t′ = Γ(1 + iα)
[︂
−P + − (1 + iα)

(︂
D0F

+ + D+
1 F −

)︂]︂
, (A.36)

∂P −

∂t′ = Γ(1 + iα)
[︂
−P − − (1 + iα)

(︂
D0F

− + D−
1 F +

)︂]︂
, (A.37)

∂D0

∂t′ = b
[︂
µ − D0 + F +∗p+ + F −∗P − + F +P +∗ + F −P −∗

]︂
(A.38)

∂D+
1

∂t′ = b
[︂
−D+

1 + F −∗P − + F +P −∗
]︂

(A.39)

The equation for D−
1 is the complex-conjugate of the equation A.39.

At this point we introduce the smallness parameter

ϵ =
√

σ (A.40)

and we assume fast carriers and near threshold operation. Therefore we can write:

F ± = ε F (1)± + O(ε2) (A.41)
P ± = ε P (1)± + O(ε2) (A.42)
D0 = 1 + ε2D

(2)
0 + O(ε3) (A.43)

D1
± = ε2 D1

(2)± + O(ε3) (A.44)
µ = 1 + ε2µ(2) + O(ε3) (A.45)
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The expansion of µ in Eq. A.45 corresponds to the implementation of the hypothesis
of near threshold operation. Furthermore, in order to have derivatives of order O(1),
we assume that the following Taylor expansions hold:

∂

∂t′ = ∂

∂t′(0) + ε2 ∂

∂t′(2) + O(ε3) (A.46)

∂

∂η
= ∂

∂η(0) + ε2 ∂

∂η(2) + O(ε3) (A.47)

By introducing the expansion Eq. A.46, we can rewrite the equation Eq. A.34
for the forward field:

ε
∂F (1)+

∂η(0) + ε3 ∂F (1)+

∂η(2) + ε
∂F (1)+

∂t′(0) + ε3 ∂F (1)+

∂t′(2) = ε2
[︂
−ε F (1)+ − ε P (1)+

]︂
(A.48)

At first order in ϵ we have:

∂F (1)+

∂η(0) = −∂F (1)+

∂t′(0) (A.49)

Now let us consider the equation for P +, Eq. A.37 and let us introduce the
expansions Eqs. A.46-A.47 into it. We have at first order in ϵ:

ε
∂P (1)+

∂t′(0) = Γ(1 + iα)
{︂
−ε P (1)+ − (1 + iα) ε F (1)+

}︂
(A.50)

and then: [︄
1 + 1

Γ(1 + iα)
∂

∂t′(0)

]︄
εP (1)+ = − (1 + iα) ε F (1)+ (A.51)

If we solve Eq. A.51 in the Fourier domain we obtain:[︄
1 + iω

Γ(1 + iα)

]︄
P̂

(1)+ = − (1 + iα) F̂
(1)+ (A.52)

By introducing the additional hypothesis that ω/Γ << 1:

P (1)+ = − (1 + iα) F (1)+ (A.53)
Using Eq. A.53 we get from Eqs. A.38-A.39:

D1
(2)± = −2F (1)∓∗F (1)± (A.54)
D0 = µ − 2

(︂
|F +|2 + |F −|2

)︂
(A.55)

By solving in the Fourier domain Eq. A.37:
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[︄
1 + iω

Γ(1 + iα)

]︄
P̂

+ = − (1 + iα) (D0F
± + D1

±F ∓) (A.56)

and using the Taylor expansion of (1 + x)−1 truncated at the second order we
have:

P̂
+ = −F

[︂
(1 + iα) εF (1)+

[︂
µ − 2ε2

[︂
|F (1)+|2 + |F (1)−|2

]︂]︂
+ F

(︂
ε2 (1 + iα) ε2F (1)+|F (1)−|2

)︂ [︄
1 − iω

Γ (1 + iα) − ω2

Γ2 (1 + iα)2

]︄
+ O(ε4)

(A.57)

Where F denote here the Fourier transform. Anti-transforming both sides of
Eq. A.57 and inserting into Eq. A.48 and using Eq. A.49, we obtain:

∂F +

∂η
+ ∂F +

∂t′

= σ

[︄
(µ − 1 + iαµ) F + − 2 (1 + iα)

(︂
|F +|2 + 2|F −|2

)︂
+
(︄

1
Γ2 (1 + iα)

)︄
∂2F +

∂η2

]︄
(A.58)

Following the same mathematical treatment also for the backward field we ob-
tain

−∂F −

∂η
+ ∂F −

∂t′

= σ

[︄
(µ − 1 + iαµ) F − − 2 (1 + iα)

(︂
|F −|2 + 2|F +|2

)︂
+
(︄

1
Γ2 (1 + iα)

)︄
∂2F +

∂η2

]︄
(A.59)

Eqs. A.58-A.59 are the reduced model for the FP configuration, with boundary
conditions:

F −(L′, t′) =
√

RF +(L′, t′), (A.60)
F +(0, t′) =

√
RF −(0, t′), (A.61)

where the boundaries of η are in agreement with Eq. A.4.
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Appendix B

Lugiato-Lefever Equation for the
Fabry-Perot configuration

In this subsection we want to unite equations for forward and backward fields
in a single spatiotemporal equation. We will follow the approach of [11] which
consists in the introduction of a cavity folding where an auxiliary field is defined
with a consequent derivation of a single equation. In [11] this method is applied
to the 2-level system. In our treatment we will apply the same procedure to the
description of a FP-QCL.
Let us consider the Eq. A.58 and let us introduce the following modal expansion
of the fields F + and F −, with modal amplitudes fn′:

F + (η, t′) =
+∞∑︂

n=−∞
f ′

n (t) eiαnη (B.1)

F − (η, t′) =
+∞∑︂

n=−∞
f ′

n (t) e−iαnη (B.2)

where αn = nπvτd/L. By exploiting these expansions we can extend F + and
F − to the interval η ∈ [− L

vτd
; L

vτd
], by using these definitions in the interval [− L

vτd
; 0]:

F +(η, t′) = F −(−η, t′) and F −(η, t′) = F +(−η, t′).
Therefore the forward and backward field obey periodic boundary conditions in the
interval [− L

vτd
; 0].

We can obtain the modal amplitudes by using these formulas:

f ′
n (t′) = 1

2L′

∫︂ L′

−L′
dηe−iαnηF +(η, t′) = 1

2L′

∫︂ L′

−L′
dηeiαnηF −(η, t′) (B.3)

where L′ = L
vτd

.
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If we use Eqs. B.1-B.3, Eq. A.58 becomes:

1
σ

[︄
df ′

n

dt′ + iαnf ′
n

]︄
= (µ − 1 + iαµ) f ′

n

− 2 (1 + iα)
∑︂

n′,n′′
f ′

n′f ′∗
n′′

(︂
f ′

n−n′+n′′ + 2f ′
−n+n′+n′′

)︂
+
(︄

−α2
n

Γ2 (1 + iα)

)︄
f ′

n

(B.4)

We now introduce the fn defined by:

fn = f ′ne+iαnt′ (B.5)

Introducing Eq. B.5 in Eq. B.4 we have:

1
σ

dfn

dt′ = (µ − 1 + iαµ) f ′
n

− 2 (1 + iα)
∑︂

n′,n′′
fn′f ∗

n′′

(︂
fn−n′+n′′ + 2f−n+n′+n′′e2i(αn−αn′ t′)

)︂
+
(︄

−α2
n

Γ2 (1 + iα)

)︄
fn

(B.6)

If we average Eq. B.6 over a time interval longer than the cavity roundtrip and
shorter than cavity decay time, we obtain (see [11]):

1
σ

dfn

dt′ = (µ − 1 + iαµ) f ′
n

− 2 (1 + iα)
⎡⎣∑︂

n′,n′′
fn′f ∗

n′′fn−n′+n′′ + 2
∑︂
n′

fn′f ∗
n′

⎤⎦+
(︄

−α2
n

Γ2 (1 + iα)

)︄
fn

(B.7)

Equation B.7 is the LLE equation for a FP QCL.
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Appendix C

Theoretical Study of the Very
Weak Regime

C.1 Retrieval of the scattering coefficient
This Appendix is dedicated to the retrieval of the scattering coefficient in the

very weak regime of feedback, i.e. for C <0.1. For further details about the theory
in the very weak regime, see [21], where this theory has been developed and pub-
lished for the first time for SD s-SNOM.
We will derive exact relations linking Modulus S and phase ϕ of the scattering coef-
ficient σ with two independent measures of self-mixing signal, by using the fact that
the perturbation of the laser frequency due to the presence of feedback is negligible
in this regime. We underline again that the scattering coefficient is a quantity that
contains the information about the optical properties of the analyzed material.
The Equations 4.20 and 4.22, i.e. the steady-state solutions of the LK model
adapted for SD s-SNOM configuartion, are the starting point of the derivation.
As already mentioned, in presence of a very weak feedback, it is possible to assume
that the emission frequency of the laser subject to optical feedback ωF is approx-
imately equal to the frequency of the unperturbed laser ω0. This assumption is
valid only in this regime, and allows to obtain in a straightforward manner an ex-
plicit dependence of S and ϕ on the voltage signal. According to this assumption,
equations 4.20 and 4.22 become:

∆V ≈ VScos (Φ) (C.1)
ωF ≈ ω0 (C.2)

where
Φ = ω0τ − ϕ (C.3)

We remind that the external cavity roundtrip τ is in principle time-dependent,
since it depends on the laser-tip distance L through the Equation 1.4 and tip is
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oscillating. In this theory we assume to neglect the change of L due to the tip
oscillation. In fact, while the laser-tip distance is on the scale of 101 cm in typical
experiments (60 cm in [21]), the oscillation extension of the tip rarely exceeds a
few hundreds of nanometers. So, in terms of phase change as given by C.3, the
quantity L can be taken constant.
Considering Eq. C.1 we see that both S and ϕ appear in the right hand side, so
that one measurement of ∆V is not enough to extract info about both.
Therefore it is necessary to introduce a distance variation ∆L so that Φ has a shift
∆Φ. If we now assume to perform two detections of the voltage signal, the first at
L and the second at L+∆L and taking ∆L so that ϕ=π

2 , we can easily see that the
shifted signal will be given by:

∆Vπ
2

= VScos
(︃

Φ + π

2

)︃
= −VSsin (Φ) (C.4)

A phase shift of π
2 corresponds to a distance variation of λ

8 .
By using fundamental trigonometry it is possible to straightforwardly retrieve the
scattering coefficient modulus S:

S = 1
V
√︂

∆V 2 + ∆Vπ
2

2 (C.5)

The explicit expression of S as a function of the signals is the first formula that we
wanted to obtain by developing this theory. We pass now the retrieval of the phase.
If S is known, also cos(Φ) and sin(Φ) can be retrieved respectively from equations
C.1 and C.4, so that Φ is fully determined. It is also possible to express Φ:

Φ = −atan

[︄∆Vπ
2

∆V

]︄
(C.6)

where we consider the the extension of the arc tangent to the interval [0,2π], called
arc tangent2 (atan2). Inverting the equation C.3, the phase ϕ of the scattering
coefficient is finally found:

ϕ = ω0τ + atan

[︄∆Vπ
2

∆V

]︄
(C.7)

Equations C.5 and C.7 correspond to Eqs. 4.24-4.25, presented in Chapter 4.

C.2 Retrieval of the scattering coefficient har-
monics

Since in every SD s-SNOM experimental setup is always present a lock-in ampli-
fier, the quantities that can be experimentally measured are not directly the signals
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(voltage across the laser terminals), but their harmonics. Therefore, it is relevant
to retrieve the the harmonics of interferometric signals, in order to reconstruct the
information about the optical properties of the sample. More specifically, we want
to find a relation linking the harmonics of the signals to σn, i.e. the harmonics
of the scattering coefficient. In the mathematical treatment developed in this sec-
tion, the near-field scattering is modeled according to the finite-dipole model.The
tip-sample surface distance z(t) oscillates with frequency Ω between 0 and 2zA as

z(t) = zA(1 + cosΩt) (C.8)

z(t) is then an even periodic function of the time, with period 2π
Ω .It is possible to

demonstrate that also the scattering coefficient σ is an even periodic function of
the time with the same period of z(t), so that it can be expressed in form of the
Fourier series:

σ(t) =
∞∑︂

n=−∞
σneinΩt =

=
∞∑︂

n=−∞
sneiϕneinΩt (C.9)

where σn is the generic complex Fourier coefficient of σ with modulus sn and phase
ϕn.
Let us consider the voltage signal ∆V , expressed by the equation 4.20. Since its
dependence on the time occurs through S and τ , which are both even periodic
functions of the time, then ∆V can be written as Fourier series:

∆V (t) =
∞∑︂

n=−∞
∆VneinΩt (C.10)

where ∆Vn are the harmonics of the signal. Let us show first that σn are complex
quantities, while ∆Vn are real quantities. Using the definition of Fourier coefficients
and considering tha σ(t) is even:

σn = 1
T

∫︂ T
2

− T
2

σ(t)e−inΩtdt =

= 1
T

∫︂ T
2

− T
2

σ(t)cos (nΩt) dt + i
1
T

∫︂ T
2

− T
2

σ(t)sin (nΩt) dt =

= 1
T

∫︂ T
2

− T
2

σ(t)cos (nΩt) dt (C.11)

Since the scattering coefficient is complex, then also σn are complex-valued and we
can write them separating modulus and phase. Similarly we can write:

∆Vn = 1
T

∫︂ T
2

− T
2

∆V (t)cos (nΩt) dt (C.12)
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∆V (t) is a real-valued function, therefore also the harmonics ∆Vn are real. At this
point we want to find an equation linking ∆Vn and σn. Let us substitute into the
scaled LK field equation 4.14 the expression of σ(t) in form of the Fourier series
given by the Equation C.9. We can write:

d ˜︁E(t)
dt

= 1
2τp

[︄
1
2(1 + iα)

(︂˜︂N − 1
)︂ ˜︁E + V

∞∑︂
n=−∞

sneiϕneinΩt ˜︁E(t − τ)e−iω0τ

]︄
(C.13)

Writing explicitly modulus and phase of the scaled field we have:

d ˜︁E0(t)
dt

ei˜︁Φ(t) + ˜︁E0(t)i
d˜︁Φ(t)

dt
ei˜︁Φ(t) = 1

2τp

[︃
(1 + iα)

(︂˜︂N − 1
)︂ ˜︁E0(t)ei˜︁Φ(t)

]︃
+

+ V
2τp

∞∑︂
n=−∞

sneiϕneinΩt ˜︁E0(t − τ)e˜︁Φ(t−τ)−iω0τ (C.14)

We can then separate the last complex equation in two real equations:

d ˜︁E0(t)
dt

= 1
2τp

[︂(︂˜︂N − 1
)︂ ˜︁E0(t)

]︂
+

+ V
2τp

∞∑︂
n=−∞

sn
˜︁E0(t − τ)cos

[︂˜︁Φ(t − τ) − ω0τ + ϕn + nΩt − ˜︁Φ(t)
]︂
(C.15)

d˜︁Φ0(t)
dt

= 1
2τp

[︂
α
(︂˜︂N − 1

)︂]︂
+

+ V
2τp

∞∑︂
n=−∞

sn

˜︁E0(t − τ)˜︁E0(t)
sin

[︂˜︁Φ(t − τ) − ω0τ + ϕn + nΩt − ˜︁Φ(t)
]︂

(C.16)

Imposing the steady-state conditions ˜︁E(t)= ˜︁E(t−τ)= ˜︁Es, ˜︁Φ(t)=(ωF -ω0)t and ˜︂N(t)=˜︂Ns

we have:
0 = 1

2(˜︂Ns − 1) + V
2

∞∑︂
n=−∞

sncos (ωF τ − ϕn − Ωnt) (C.17)

Imposing 1-˜︂Ns=∆V we obtain:

∆V = V
∞∑︂

n=−∞
sncos (ωF τ − ϕn − Ωnt) (C.18)

where Ωn=nΩt. Using the approximated equation ωF ≈ ω0 valid in the very weak
feedback regime we have:

∆V = V
∞∑︂

n=−∞
sncos (ω0τ − ϕn − Ωnt) (C.19)
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As ∆V is an even function, it can be straightforwardly shown that sn=s−n and
ϕn=ϕ−n. Therefore we can write:

∆V = V
∞∑︂

n=−∞
sncos (ω0τ − ϕn − Ωnt) =

= V
[︄
s0cos (ω0τ − ϕ0) +

∞∑︂
n=1

sncos (ω0τ − ϕn − Ωnt) + s−ncos (ω0τ − ϕ−n − Ω−nt)
]︄

=

= V
[︄
s0cos (ω0τ − ϕ0) +

∞∑︂
n=1

sncos (ω0τ − ϕn − Ωnt) + sncos (ω0τ − ϕn + Ωnt)
]︄

=

= V
[︄
s0cos (ω0τ − ϕ0) + 2

∞∑︂
n=1

sncos (ω0τ − ϕn) cos (Ωnt)
]︄

(C.20)

Let us consider again the equation C.10 and, remembering that ∆V is an even
function of the the time, we can straightforwardly rewrite it as:

∆V = V
[︄
∆V 0 + 2

∞∑︂
n=1

∆V ncos (Ωnt)
]︄

(C.21)

Comparing equations C.10 and C.21 we find that:

∆Vn = Vsncos (ω0τ − ϕn) (C.22)

for n=0,1,2,... Equation C.22 links the harmonics of the signal ∆V to modulus and
phase of the Fourier coefficients of the scattering coefficient σ. ∆Vn are quantities
directly measurable through the lock-in amplifier present in each s-SNOM configu-
ration, therefore we want to express sn and ϕn as functions of the harmonics of one
or more sets of detected signals, so that the information about optical properties
of the material sample can be easily retrievable by exploiting experimentally mea-
surable quantities.
By following a similar procedure developed in the previous subsection, we introduce
the variation ∆L of the laser-tip distance L causing a phase shift ∆Φ into the Eq.
C.22. For a phase shift ∆Φ=π

2 , we can write:

(∆Vn)π
2

= −Vsnsin (ω0τ − ϕn) (C.23)

where (∆Vn)π
2

is the π
2 -shifted generic signal harmonic. Considering equation C.20

it can be straightforwardly shown that (∆Vn)π
2
=(∆Vπ

2
)n. We can now easily retrieve

explicit expressions of sn and ϕn, manipulating equations C.22 and C.23. We find:

sn = 1
V

√︃
(∆Vn)2 + (∆Vπ

2
)n

2 (C.24)

ϕn = ω0τ + atan

[︄(∆Vπ
2
)n

∆Vn

]︄
(C.25)
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Equations C.24 and C.25 provide a simple methode to obtain the harmonics of
the scattering coefficient by measuring the harmonics of two signals, which are
performed by varying the laser-tip distance by λ

8 to obtain the π
2 shift. These

formulas are valid for a SD s-SNOM configuration, characterized by a complex
scattering coefficient in the modelization through LK equations, in the very weak
regime, and they are based on the assumptions of sinusoidal interferometric fringes
and negligible perturbation of the emission frequency due to the feedback.
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Appendix D

Theoretical Study of the Weak
Regime

In Appendix D we have studied the LK model and its steady state solutions
by exploiting a zero-order approximation of the so called phase excess equation, by
assuming negligible the effect of the feedback in the very weak regime. We want to
consider now the weak regime, characterized by a value of the parameter C of 10−1

order of magnitude. In this case the assumption of negligible feedback is not valid
anymore and the interferometric fringes are not sinusoidal curves. Therefore the
phase excess equation can not be approximated at zero order, but it needs also a
definition of first order terms. In order to retrieve the correct equations in the weak
regime we will exploit a theory based on Taylor expansions, which will conduct us
to retrieve also approximated expression of the scattering coefficient in agreement
with the hypotheses of the weak regime. The derivation presented in this Appendix
has been developed in [62].

D.1 Approximated steady-state solutions of the
Lang-Kobayashi model in the weak regime

Let us consider the Eqs. 4.20 and 4.22, i.e. the steady-state solutions of the
LK model with the complex scattering coefficient σ inserted into the expression of˜︁k. The coupling between these equations (ωF appears into the argument of cosine
present in the equation 4.20) and the fact that Eq. 4.22 is an implicit function of ωF ,
make the retrieval of the the solutions of the system a complicated mathematical
problem. We solve this problem by finding approximated solutions. In fact the
theoretical study presented in this subsection is the derivation of approximated
expressions of ωF and ∆V using the hypothesis of operative weak feedback regime.
In this regime it is reasonably possible to assume ϵ small, where ϵ is defined by the
equation 4.23. Taylor series expansions are our tool in order to obtain an explicit
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expression of ωF , which we want to insert then into the signal equation and have
also an explicit expression of ∆V . Being in the weak regime allows us to consider
a monodromic behaviour for the laser frequency, as we already mentioned in the
previous part of this chapter.
Let us assume this expression for the laser frequency modified by the feedback:

ωF τ ≈ ω0τ + ϵω1τ + ϵ2ω2τ (D.1)

ω1 and ω2 are respectively the first and second order corrections to the solitary
laser freq ω0, due to the feedback in the equation D.1. We next substitute this
expression of ωF τ into the phase excess equation, obtaining:

ω0τ + ϵω1τ + ϵ2ω2τ = ω0τ − ϵS
√

1 + α2sin(ω0τ + ϵω1τ + ϵ2ω2τ + ˜︁β − ϕ) (D.2)

where ˜︁β=atan(α). Then, simplifying:

ϵω1τ + ϵ2ω2τ = −ϵS
√

1 + α2sin(ω0τ + ϵω1τ + ϵ2ω2τ + ˜︁β − ϕ) (D.3)

Let us define:

Φ0 = ω0τ − ϕ (D.4)
Φ′

0 = ω0τ − ϕ + ˜︁β (D.5)

Introducing the definition D.5, using the trigonometric angle sum identity for sine
and Taylor expansion for sine we have:

ϵω1τ + ϵ2ω2τ = −ϵS
√

1 + α2sin(Φ′
0 + ϵω1τ + ϵ2ω2τ) =

= −ϵS
√

1 + α2
[︂
sinΦ′

0cos(ϵω1τ + ϵ2ω2τ) + cosΦ′
0sin(ϵω1τ + ϵ2ω2τ)

]︂
=

≈ −ϵS
√

1 + α2sinΦ′
0(1 − 1

2ϵ2(ω1τ + ϵω2τ)2) +

− ϵS
√

1 + α2cosΦ′
0(ϵω1τ + ϵ2ω2τ) =

= −ϵS
√

1 + α2sinΦ′
0 − S

√
1 + α2ϵ2cos(Φ′

0)ω1τ (D.6)

Therefore, we obtain the first order and second order coefficients :

ω1τ = −S
√

1 + α2sin(Φ′
0) (D.7)

ω2τ = −S
√

1 + α2cos(Φ′
0)ω1τ =

= S2(1 + α2)sin(Φ′
0)cos(Φ′

0) (D.8)

We can finally write the approximated expression of ωF τ in the weak regime:

ωF τ = ω0τ − ϵS
√

1 + α2sin(Φ0 + ˜︁β) + ϵ2S2(1 + α2)sin(Φ0 + ˜︁β)cos(Φ0 + ˜︁β) (D.9)
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At this point we want to write the approximated expression of ∆V . First let us
define:

S ′ = S
√

1 + α2 (D.10)
Substituting the equation D.9 into the equation 4.20, using the trigonometric angle
sum identities and the second-order Taylor expansions for sine and cosine, we have:

∆V = VScos
[︂
Φ0 − ϵS ′sin(Φ′

0) + ϵ2S2(1 + α2)sin(Φ′
0)cos(Φ′

0)
]︂

=

= VS{cosΦ0cos
[︂
ϵ(S ′sin(Φ′

0) − ϵS ′2sin(Φ′
0)cos(Φ′

0)
]︂

+

+ sinΦ0sin
[︂
ϵ(S ′sin(Φ′

0) − ϵS ′2sin(Φ′
0)cos(Φ′

0)
]︂
} =

= VScosΦ0

[︃
1 − 1

2(ϵ(S ′sin(Φ′
0) − ϵS ′2sin(Φ′

0)cos(Φ′
0))2

]︃
+

+ VSsinΦ0
[︂
ϵ
(︂
S ′sin(Φ′

0) − ϵS ′2sin(Φ′
0)cos(Φ′

0)
)︂]︂

=

= VScosΦ0 − 1
2VScosΦ0ϵ

2S ′2sin2Φ′
0 +

+ VSsinΦ0ϵS
′sinΦ′

0 − VSsinΦ0ϵ
2S ′2sinΦ′

0cosΦ′
0 (D.11)

We finally obtain the approximated expression of ∆V :

∆V = VS{cosΦ0 + ϵS ′sinΦ0sinΦ′
0 − ϵ2S ′2sinΦ′

0

[︃1
2cosΦ0sinΦ′

0 + sinΦ0cosΦ′
0

]︃
}

(D.12)
Equation D.12 is the approximated expression of ∆V that we were looking for,
in order to start for the mathematical treatment that will be presented in next
sections, aimed to retrieve approximated expressions for modulus S and phase ϕ of
the scattering coefficient σ in the weak feedback regime.

D.2 Retrieval of the scattering coefficient
In this section we derive and present a first order reconstruction for the scat-

tering coefficient σ in the weak feedback regime. We remind that σ contains the
information about the optical properties of the analyzed sample, so that the re-
trieval of this quantity allows us to determine them. Since the weak regime is
characterized by a higher Signal to Noise Ratio compared with the very weak, the
possibility to obtain these properties in this regime is relevant from the experimen-
tal point of view.
Let us consider the equation D.12. It is a second order approximated expression
of the signal ∆V. Since we want to find a first order expression for modulus and
phase of the scattering coefficient, we neglect the term in ϵ2 in D.12, obtaining:

∆V = VS{cosΦ0 + ϵS
√

1 + α2sinΦ0sin(Φ0 + ˜︁β)} (D.13)
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In the very weak regime we considered a shift of the quantity Φ0, that can be
experimentally introduced by changing the laser-tip distance L, according to the
equation D.5 and the dependence of τ from L. In this case we want to introduce
three specific values of shift for Φ0: π

2 , π and 3π
2 . By inserting these shift into Eq.

D.13 we have:

∆V π
2

= VS{−sinΦ0 + ϵS
√

1 + α2cosΦ0cos(Φ0 + ˜︁β)} (D.14)
∆V π = VS{−cosΦ0 + ϵS

√
1 + α2sinΦ0sin(Φ0 + ˜︁β)} (D.15)

∆V 3π
2

= VS{sinΦ0 + ϵS
√

1 + α2cosΦ0cos(Φ0 + ˜︁β)} (D.16)

Starting from Eqs. D.13, D.14, D.15, D.16 we look for explicit expressions for S
and ϕ. Let us consider the following differences:

∆V − ∆V π = 2VScos(ω0τ − ϕ) (D.17)
∆V 3π

2
− ∆V π

2
= 2VSsin(ω0τ − ϕ) (D.18)

Using the fundamental trigonometric identity we can straightforwardly retrieve an
explicit expression for S:

S = 1
2V

√︃
(∆V − ∆V π)2 +

(︂
∆V 3π

2
− ∆V π

2

)︂2
(D.19)

Furthermore, dividing the equations D.17 and D.18 an expression of ϕ is found:

ϕ = ω0τ − atan

(︄∆V 3π
2

− ∆V π
2

∆V − ∆V π

)︄
(D.20)

Equations D.19 and D.20 are first order reconstruction formulas for the modulus and
phase of the scattering coefficient in the weak regime. Four signals in four different
experimental configurations(i.e. four different values of the laser-tip distance) are
needed to implement a retrieval of σ by using these formulas.

D.3 Retrieval of the scattering coefficient har-
monics

As we mentioned in the section related to the very weak regime, the quantities
that it is experimentally possible to retrieve with a SD s-SNOM setup are the signal
harmonics. Therefore, in order to obtain the optical properties of a given material
sample, we want to find approximated equations, valid in the weak feedback regime,
that link modulus sn and phase ϕn of the Fourier coefficients of σ with the harmonics
of the signal. In the section C.2 we already found expressions for these quantities
based on zero order approximation ωF ≈ ω0. Here we want to find an extension to
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the first order in ϵ.
Let us begin from the Eqs. C.15 and C.16. In this mathematical approach we
assume that the oscillation frequency of the tip is Ω, so that we can write the
scattering coefficient according to the Eq. C.9. We remind that we already inserted
the steady-state conditions into the Eq. C.15 and we obtained the Eq. C.18, where
the signal ∆V is expressed as a series.
At this point let us consider Eq. C.16 and let us use the steady state conditions˜︁E(t)= ˜︁E(t − τ)= ˜︁Es, ˜︁Φ(t)=(ωF -ω0)t and ˜︂N(t)=˜︂Ns. We get:

ωF − ω0 = 1
2τp

[︄
α
(︂˜︂Ns − 1

)︂
− V

∞∑︂
n=−∞

snsin [ωF τ − nΩt − ϕn]
]︄

(D.21)

By using the definition of ∆V and substituting Eq. C.18 into the previous equation
we have:

ωF − ω0 = − V
2τp

{α
∞∑︂

n=−∞
sncos [ωF τ − nΩt − ϕn] +

+
∞∑︂

n=−∞
snsin [ωF τ − nΩt − ϕn]} (D.22)

Multiplying by τ this equation and writing explicitly the expression V, we obtain:

ωF τ = ω0τ − τ

τc

˜︁a(︄1 − R√
R

)︄
{α

∞∑︂
n=−∞

sncos [ωF τ − nΩt − ϕn] +

+
∞∑︂

n=−∞
snsin [ωF τ − nΩt − ϕn]} (D.23)

Remembering the definition of ϵ given by Eq. 4.23 we rewrite as:

ωF τ = ω0τ − ϵ{α
∞∑︂

n=−∞
sncos [ωF τ − nΩt − ϕn] +

+
∞∑︂

n=−∞
snsin [ωF τ − nΩt − ϕn]} (D.24)

Using the definition of ˜︁β the last equation can be straightforwardly written as:

ωF τ = ω0τ − ϵ
√

1 + α2{
∞∑︂

n=−∞
sncos( ˜︁β)cos [ωF τ − nΩt − ϕn] +

+
∞∑︂

n=−∞
snsin( ˜︁β)sin [ωF τ − nΩt − ϕn]} (D.25)

Using standard trigonometry we finally have:

ωF τ = ω0τ − ϵ
√

1 + α2
∞∑︂

n=−∞
snsin

[︂
ωF τ − nΩt − ϕn + ˜︁β]︂ (D.26)
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This is an implicit equation with ωF as unknown. Similarly to the previous section,
we assume this expression for ωF :

ωF τ ≈ ω0τ + ϵ˜︁ω1τ + ϵ2˜︁ω2τ (D.27)

At this point we want to determine the first order and second order coefficients.
Substituting Eq. D.27 into the Eq. D.26 we have:

ϵ˜︁ω1τ + ϵ2˜︁ω2τ = −ϵ
√

1 + α2
∞∑︂

n=−∞
snsin

[︂
Φn + ϵ˜︁ω1τ + ϵ2˜︁ω2τ + ˜︁β]︂ (D.28)

where Φn is defined as:
Φn = ω0τ − nΩt − ϕn (D.29)

Using the sum identity for the sine function and the second order Taylor expansion
for sine and cosine we can write:

ϵ˜︁ω1τ + ϵ2˜︁ω2τ = −ϵ
√

1 + α2
∞∑︂

n=−∞
sn{sin(Φn + ˜︁β)cos(ϵ˜︁ω1τ + ϵ2˜︁ω2τ) +

+ cos(Φn + ˜︁β)sin(ϵ˜︁ω1τ + ϵ2˜︁ω2τ)} ≈

≈ −ϵ
√

1 + α2
∞∑︂

n=−∞
sn{sin(Φn + ˜︁β)(1 − ϵ2

2
˜︁ω2

1τ 2) +

+ cos(Φn + ˜︁β)(ϵ˜︁ω1τ + ϵ2˜︁ω2τ)} ≈

≈ −ϵ
√

1 + α2
∞∑︂

n=−∞
sn{sin(Φn + ˜︁β) + ϵ˜︁ω1τcos(Φn + ˜︁β)} =

= ϵ

[︄
−

√
1 + α2

∞∑︂
n=−∞

snsin(Φn + ˜︁β)
]︄

+

+ ϵ2
[︄
−

√
1 + α2˜︁ω1τ

∞∑︂
n=−∞

sncos(Φn + ˜︁β)
]︄

(D.30)

We find then the expressions for the first order and second order coefficients:

˜︁ω1τ = −
√

1 + α2
∞∑︂

n=−∞
snsin(Φn + ˜︁β) (D.31)

˜︁ω2τ = (1 + α2)
∞∑︂

n=−∞

∞∑︂
m=−∞

snsmsin(Φn + ˜︁β)cos(Φm + ˜︁β) (D.32)

It is evident that the correction at first order appears quite manageable, while the
second one is more involved. For the rest of this derivation, we will assume a first
order approximation and apply Eq. D.31 in the expansion D.27 of ωF to derive
simple analytical results for the hamonics of S and ϕ:

ωF τ = ω0τ −
√

1 + α2
∞∑︂

n=−∞
snsin(Φn + ˜︁β) (D.33)
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We substitute it into the signal equation C.18 obtaining:

∆V = V
∞∑︂

n=−∞
sncos

[︄
ω0τ − nΩt − ϕ − ϵ

√
1 + α2

∞∑︂
m=−∞

smsin(Φm + ˜︁β)
]︄

=

= V
∞∑︂

n=−∞
sncos

[︄
Φn − ϵ

√
1 + α2

∞∑︂
m=−∞

smsin(Φm + ˜︁β)
]︄

=

= V
∞∑︂

n=−∞
sn{cosΦncos(ϵ

√
1 + α2

∞∑︂
m=−∞

smsin(Φm + ˜︁β)) +

+ sinΦnsin(ϵ
√

1 + α2
∞∑︂

m=−∞
smsin(Φm + ˜︁β))} ≈

≈ V
∞∑︂

n=−∞
sn{cosΦn + sinΦnϵ

√
1 + α2

∞∑︂
m=−∞

smsin(Φm + ˜︁β)} (D.34)

Similarly to the last section we can introduce a proper shift of the quantity Φn. For
the particular values of shift π

2 , π and 3π
2 we have:

∆V π
2

= V
∞∑︂

n=−∞
sn{−sinΦn + cosΦnϵ

√
1 + α2

∞∑︂
m=−∞

smcos(Φm + ˜︁β)}(D.35)

∆V π = V
∞∑︂

n=−∞
sn{−cosΦn + sinΦnϵ

√
1 + α2

∞∑︂
m=−∞

smsin(Φm + ˜︁β)}(D.36)

∆V π
2

= V
∞∑︂

n=−∞
sn{sinΦn + cosΦnϵ

√
1 + α2

∞∑︂
m=−∞

smcos(Φm + ˜︁β)} (D.37)

We want to calculate the difference between ∆V and ∆V π, therefore we have:

∆V − ∆V π = 2V
∞∑︂

n=−∞
sncosΦn =

= Vs0cos(ω0τ − ϕ0) + 2V
∞∑︂

n=1
sncos(ω0τ − ϕn)cos(nΩt)(D.38)

We used the analytical property of ∆V , which is an even function. Then we can
explicitly write the generic Fourier coefficient of the difference ∆V − ∆V π:

(∆V − ∆V π)n = 2Vsncos(ω0τ − ϕn) (D.39)

Furthermore let us consider the the difference between ∆V 3π
2

and ∆V π
2
:

∆V 3π
2

− ∆V π
2

= 2V
∞∑︂

n=−∞
snsinΦn =

= Vs0sin(ω0τ − ϕ0) + 2V
∞∑︂

n=1
snsin(ω0τ − ϕn)cos(nΩt)(D.40)
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Then we can write:

(∆V 3π
2

− ∆V π
2
)n = 2Vsnsin(ω0τ − ϕn) (D.41)

At this point we can easily retrieve an explicit expression for sn and ϕn, manipu-
lating the Eqs, D.39 and D.41:

sn = 1
2V
√︂

((∆V 3π
2

− ∆V π
2
)n)2 + ((∆V − ∆V π)n)2 (D.42)

ϕn = ω0τ − atan

[︄(∆V 3π
2

− ∆V π
2
)n

(∆V − ∆V π)n

]︄
(D.43)

Using the property of linearity of the integrals we obtain:

sn = 1
2V
√︂

((∆V 3π
2

)n − (∆V π
2
)n)2 + (∆Vn − (∆V π)n)2 (D.44)

ϕn = ω0τ − atan

⎡⎣(∆V 3π
2

)n − (∆V π
2
)n

∆Vn − (∆V π)n

⎤⎦ (D.45)

These formulas allow to retrieve the Fourier coefficients of σ in the weak regime, by
using experimental measures of the harmonics of four signals, which is possible with
a lock-in amplifier provided by every s-SNON setup. We can apply these formulas
directly to experimental data, as it will be shown in the next part of this chapter.
Furthermore it can be noticed that the Eqs. D.44 and D.45 have the same mathe-
matical structure of the Eqs. D.19 and D.20, that relate the scattering coefficient
to four signal measurement. Therefore in the first order approximation the relation
linking sn and ϕn with the harmonics of four signals is the same relation linking S
and ϕ with the four considered signals.
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