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Control of Dynamic Financial Networks

Giuseppe Calafiore, Giulia Fracastoro, and Anton V. Proskurnikov

Abstract— The current global financial system forms a highly
interconnected network where a default in one of its nodes
can propagate to many other nodes, causing a catastrophic
avalanche effect. In this paper we consider the problem of
reducing the financial contagion by introducing some targeted
interventions that can mitigate the cascaded failure effects. We
consider a multi-step dynamic model of clearing payments and
introduce an external control term that represents corrective
cash injections made by a ruling authority. The proposed
control model can be cast and efficiently solved as a linear
program. We show via numerical examples that the proposed
approach can significantly reduce the default propagation by
applying small targeted cash injections.

I. INTRODUCTION

This paper discusses the problem of mitigating the effects
of financial contagion via targeted and optimized interven-
tions. Recent studies [1]–[4] highlighted the fact that in the
current highly interconnected financial system, where banks
and other institutions are linked via a network of mutual
liabilities, a financial shock in one or few nodes of the
network may hinder the possibility for these nodes to fulfill
their obligations towards other nodes, and therefore provoke
default. In turn, the nodes directly connected to the nodes
that experienced the initial shocks receive reduced or no pay-
ments from these latter nodes, hence their cash balances may
be affected to the point of making impossible the fulfillment
of their liabilities, hence of provoking further defaults, and
so on in a cascaded fashion. The described mechanism may
spread over the network as a contagion, provoking a possibly
disastrous sequence of avalanche failures and defaults.

In the mainstream approach to the study of default spread-
ing in financial networks, see, e.g., [3], [5], the contagion
develops instantaneously, and in the aftermath of the conta-
gion the nodes agree to settle for a set of mutual payments
called clearing payments that brings the network to a new
equilibrium after the shock. However, the assumption that
all payments are simultaneous is quite unrealistic. For this
reason, recently some works [6]–[11] proposed time-dynamic
extensions of this model. In particular, in [12] we consider
a multi-step setting, in which defaults at one stage do not
freeze all financial operations. Instead, in case of defaulted
nodes, the residual claims are carried over to the next period,
and so on until the end of the considered horizon. We show
in [12] that multi-stage clearing payments can be computed
by solving recursively a sequence of LP problems, and
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that the multi-step setting may mitigate the cascaded failure
effects by allowing shocks to be absorbed over time.

In this paper, we start from the setup of the multi-step
model developed in [12] and introduce in the model an
external control term representing corrective cash injections
at nodes to be performed by a ruling authority. The rationale
is that a ruling authority, perhaps public, may intervene with
minimal and targeted cash injections at certain nodes in order
to prevent catastrophic cascaded failure events. We show
that such control problem can be cast and efficiently solved
as a linear program, an we provide numerical evidence of
the fact that small targeted interventions at selected nodes
(i.e., selected by the control algorithm itself) may suffice to
avoid disastrous system-wide failures whose costs may be
much larger than the amount necessary to prevent them. The
notion of external injections of cash to reduce the contagion
has been already investigated in, e.g., [13]–[16], and in the
context of systemic risk measures (see, e.g., [17], [18]).
However, in most of the cases these models consider a single-
step setting where all payments are simultaneous. Instead,
[19] considers a multi-step setting as in the proposed control
problem. However, [19] does not consider the presence of an
external control term as in the proposed model. In addition,
differently from the proposed problem, [19] also assumes
that entities cannot pay other entities more than the cash
they have on hand.

This paper is structured as follows. In Sec. II we intro-
duce the Eisenberg-Noe single-period model of a networked
financial system. Sec. III presents the proposed multi-step
dynamic extension with an external control term. Sec. IV
introduces the problem of controlling the financial network
by optimal cash injections. Sec. V shows two numerical
examples. Conclusions are drawn in Sec. VI.

In the remainder of the paper the minimum of vectors
and inequalities of vectors and matrices should be intended
component-wise.

II. THE EISENBERG-NOE MODEL

We start by describing the classical Eisenberg-Noe model
of a networked financial system. Consider n financial nodes
(banks) who are subject to mutual liabilities p̄ij ≥ 0, where
p̄ij represents the payment due from node i to node j.
The interbank liabilities constitute the liability matrix P̄ ∈
Rn×n, such that [P̄ ]ij = p̄ij for i 6= j = 1, . . . , n, and
[P̄ ]ii = 0 for i = 1, . . . , n. Also, nodes may receive cash
from external entities, which are not part of the network,
and we denote by c ∈ Rn+ the vector whose ith component
ci ≥ 0 represents the total cash in-flow from the external
entities to node i. Following the approach in [5] we further



assume that payments towards external entities are made to
a fictitious node that owes no liability to the other nodes
(the corresponding row of liability matrix P̄ is zero). In
the Eisenberg-Noe model time plays no role; specifically,
all settlements of liabilities are assumed to be executed
simultaneously at the end of a fixed time period. In normal
situations, at the end of the considered period each node i is
able to pay its liabilities in full, which means that each node
i receives an inflow of liquidity φ̄in

i
.
= ci +

∑
k 6=i p̄ki and

pays out its liabilities by a total amount of p̄i
.
=
∑
k 6=i p̄ik.

A critical situation instead occurs when (due to, e.g., a
drop in the external in-flow ci) some bank i cannot fully
pay its debt. In this situation, the actual payments to other
banks have to be less than their nominal due values p̄ij .
We denote by pij ∈ [0, p̄ij ], i 6= j = 1, . . . , n, the actual
inter-bank payments executed at the end of the period, which
we collect in matrix P ∈ Rn,n. Under the actual payments,
the cash inflows and outflows at each node i = 1, . . . , n,
are respectively φin

i
.
= ci +

∑
k 6=i pki, pi

.
=
∑
k 6=i pik. The

vectors of inflows and outflows are thus

φin .
= c+ P>1, p

.
= P1, (1)

where 1 denotes a vector of ones. The nonnegative balance
condition requires that w .

= φin−p ≥ 0. A matrix of mutual
payments P , with 0 ≤ P ≤ P̄ , is said to be admissible
if w ≥ 0. If the nominal liabilities P̄ are admissible then
payments P = P̄ are such that all mutual obligations are met
while maintaining the net worth of each node nonnegative,
and no default arises. If instead P̄ is not admissible, then
some nodes are in default, and all nodes must agree on a
different set of admissible payments P , which are upper
bounded by P̄ , since no node should pay more than due.
Moreover, when a node is in default, it must pay out all of
its cash inflow to the creditor nodes: each node i pays out
p̄i or pays out its whole inflow φin

i . Therefore, a clearing
payment matrix 0 ≤ P ≤ P̄ obeys the relation

P1 = min(P̄1, c+ P>1). (2)

One clearing matrix 0 ≤ P ≤ P̄ satisfying (2) can be
found [20] by solving an optimization problem of the form

min
P

f(P ), s.t.: 0 ≤ P ≤ P̄ , P1 ≤ c+ P>1, (3)

where f(P ) is any decreasing function of the matrix argu-
ment P on [0, P̄ ], that is, a function such that P̄ ≥ P (2) >
P (1) ≥ 0, P (2) 6= P (1), implies f(P (2)) < f(P (1)). Possible
choices for f in (3) are for instance f(P ) = ‖φ̄in − φin‖1
and f(P ) = ‖φ̄in − φin‖22, where φin(P ) = c + P>1. The
optimal solution of (3), however, is in general non unique.

In practice, payments under default are subject to further
regulations. A commonly used “local fairness” rule is that the
outstanding claims should be redistributed based on a pro-
portionality (pro-rata) rule. We define the relative proportion
of payment due nominally by node i to node j as

aij
.
=


p̄ij
p̄i

if p̄i > 0

1 if p̄i = 0 and i = j
0 otherwise.

(4)

Computing these proportions for all i, j we form the relative
liability matrix A = [aij ]. By definition, matrix A is row-
stochastic, that is A1 = 1. The so called pro-rata rule
imposes that payments are due in proportion to the rates
fixed in matrix A, that is pij = aijpi, ∀i, j, where pi is
the out-flow defined in (1). Since p .

= P1, the pro-rata rule
imposes a set of linear equality constraints on the entries of
P , namely P = diag(P1)A = diag(p)A. Under the pro-rata
rule, the full payment matrix P is determined by vector p;
problem (3) simplifies in this case to

min
P

f(p), s.t.: 0 ≤ p ≤ p̄, p ≤ c+A>p, (5)

and it holds that for any decreasing f the solution p∗ to (5) is
unique and it represents a clearing vector, that is, it satisfies
p = min(p̄, c+A>p), see, e.g., [20, Lemma 1].

Even though most of the works on financial contagion
impose the pro-rata rule, in this paper we consider also
the more general case without such constraint. The non-
proportional clearing mechanism can significantly reduce the
impact of a financial shock [19], [20]. In addition, it may also
be extended to promote virtuous behaviors such as rescue
consortia [21].

III. A MULTI-STAGE MODEL WITH CONTROLS

The default and clearing model discussed in the previous
section, which coincides with the mainstream one studied
in the literature [3], is a single-period model, meaning that
the described process assumes that at one point in time (the
end of a fixed period), all liabilities are claimed and due
simultaneously, and that the entire network of banks becomes
aware of the claims and possible defaults and instantaneously
agrees on the clearing payments. All financial operations of
defaulted nodes are frozen, which possibly induces prop-
agation of the default to other neighboring nodes, in an
avalanche fashion, see, e.g., [22]. In [12], we proposed a
dynamic multi-step model in which financial operations are
allowed for a given number of time periods after the initial
theoretical defaults (here named pseudo-defaults). In this way
some nodes may actually recover and eventually manage
to fulfill their obligations by the end of the allotted time
horizon. We next describe the dynamic model from [12],
and introduce into this model additional control inputs that
were not considered in [12].

We consider a discrete time horizon t = 0, 1, . . . , T , with
periods of fixed duration (e.g., one day, or one month, etc.),
where T ≥ 0 represents the final time of the horizon. For
brevity, denote T .

= {0, . . . , T − 1}. Throughout the text, a
sequence of vectors or matrices (f(t), t ∈ T ) is denoted by

[f ]
.
= (f(0), . . . , f(T − 1)).

Extending to the multi-stage case the basic model described
in Section II, we let P̄ (t) ∈ Rn×n, and P (t) ∈ Rn×n,
t ∈ T denote the nominal liabilities matrices and the actual
payment matrices at time t, respectively. We let c(t) =
e(t) + u(t) ≥ 0 denote the sum of the vector e(t) ≥ 0
of cash inflows at nodes from the external sector at time
t, plus the vector u(t) ≥ 0 of additional “control inflows”



injected at nodes at time t by the control authority. We further
define P̄ .

= P̄ (0) as the matrix of initial liabilities, and we
let the pro-rata matrix A be defined as in (4) according to
these initial liabilities. In this work we can deal indifferently
with models with full payment matrices, or with matrices
constrained by the pro-rata condition: in this latter case we
shall simply include the linear equality constraint P (t) =
diag(p(t))A on the payment matrices, where p(t) .

= P (t)1.
The net worth wi(t) of node i at t evolves in accordance to
wi(t+ 1) = wi(t) + φin

i (t)− pi(t), or, in the vector form,

w(t+ 1) = w(t) + c(t) + P>(t)1− P (t)1, t ∈ T . (6)

Similar to the single-period case discussed in Section II, the
limited liability condition requires that w(t) ≥ 0 at all t.
It may therefore happen that a payment pij(t) < p̄ij(t) in
order to guarantee wi(t) ≥ 0. When this happens at some
t < T , instead of declaring default and freezing the financial
system, we allow operations to continue up to the final time
T , updating the due payments according to the equation
p̄ij(t+ 1) = α (p̄ij(t)− pij(t)), where α ≥ 1 is the interest
rate applied on past due payments. This can be written as

P̄ (t+ 1) = α
(
P̄ (t)− P (t)

)
, t ∈ T . (7)

The recursions (6) and (7) are initialized with w(0) = 0,
P̄ (0) = P̄ , where P̄ is the initial liability matrix. The
meaning of equation (7) is that if a due payment at t is not
paid in full, then the residual debt is added to the nominal
liability for the next period, possibly increased by an interest
factor α ≥ 1. This mechanism allows for a node which
is technically in default at a time t to continue operations
and (possibly) repay its dues in subsequent periods. Notice
that matrix P̄ (t) is time-varying and depends on the actual
payment matrices P (0), . . . , P (t−1); the final matrix P̄ (T )
contains the residual debts at the end of the final period.

The payment matrices P (t) are subject to the constraints

0 ≤ P (t) ≤ P̄ (t) ∀t ∈ T , (8)
P (t)1 ≤ w(t) + c(t) + P (t)>1 ∀t ∈ T , (9)

where (8) represents the requirement that actual payments
never exceed the nominal liabilities, and (9) represents the
requirement that w(t + 1), as given in (6), remains non-
negative at all t. Conditions (8), (9) can be made explicit
by eliminating the variables w(t) and P̄ (t), which by using
(6)–(7) can be expressed as

P̄ (t) = αtP̄ (0)−
∑t−1

k=0
αt−kP (k), (10)

w(t) = C(t− 1) +
∑t−1

k=0

(
P>(k)− P (k)

)
1, (11)

C(t)
.
=
∑t

k=0
c(k) =

∑t

k=0
[e(k) + u(k)]. (12)

Conditions (8), (9) can thus be rewritten as

P (t) ≥ 0, ∀t ∈ T (13)∑t

k=0
αt−kP (k) ≤ αtP̄ ∀t ∈ T (14)

C(t) +
∑t

k=0

(
P (k)> − P (k)

)
1 ≥ 0 ∀t ∈ T (15)

In the case when pro-rata is enforced the above conditions
can be rewritten in terms of the outflow vectors only:

p(t) ≥ 0, (16)∑t

k=0
αt−kp(k) ≤ αtp̄ (17)

C(t) +
∑t

k=0

(
A>p(k)− p(k)

)
≥ 0 (18)

∀t ∈ T , p̄
.
= P̄1.

We say that a payment sequence [P ] is feasible for a given
[c], if it satisfies (13)–(15). Analogously, under pro-rata, a
sequence [p] is feasible for given [c], if it satisfies (16)–(18).

We now introduce a system-level cost criterion, based on
the total difference between the nominal and actual payments
at the nodes. We define the loss at period t by

δ(t)
.
=

n∑
i,j=1

(p̄ij(t)− pij(t)) = 1>
(
P̄ (t)− P (t)

)
1.

(19)
Observe that δ(t) ≥ 0 for all t and for any feasible [P ],
and δ(t) = 0 if and only if P (t) = P̄ (t), that is when no
default occurs. Therefore, δ(t) can be taken as a measure of
the effects of defaults at stage t. The overall cost function is
then defined as the total loss over the time horizon

L([P ])
.
=

T−1∑
t=0

δ(t) = a01
>P̄1−

T−1∑
t=0

at1
>P (t)1, (20)

where we derive the second equality from (10) and define
the constants a0 > a1 > . . . > aT−1 as

at
.
=

T−t−1∑
j=0

αj =

{
αT−t−1
α−1 , if α > 1

T − t, if α = 1.
(21)

Now, for fixed input flows [c], the multi-stage clearing
payments [P ∗], are defined as the optimal solution to

min
[P ]

L([P ]) s.t.: (13)− (15). (22)

Analogously, under the pro-rata rule, the clearing payments
are defined via vectors p∗(t), t ∈ T which solve the LP

min
[p]

L([p]) s.t.: (16)− (18), (23)

where p(t) = P (t)1, and L([p])
.
= a01

>p̄−
∑T−1
t=0 at1

>p(t).
The properties of the optimization problems (22) and (23)
(which are in fact LPs) have been studied in [12].

IV. MULTI-STEP CONTROL OF THE DYNAMIC NETWORK

We next consider the problem of controlling the fi-
nancial network by optimal injections of cash [u] =
(u(0), . . . , u(T − 1)) at nodes. The cumulative amount of
cash injected from 0 to t is

B(t)
.
=

t∑
τ=0

1>u(τ), t ∈ T . (24)

The control objective we propose to minimize is defined as

J([P ], [u]) = (1− η)L([P ]) + η1>P̄ (T )1 + γB(T − 1),



where L([P ]) is given in (20), γ ≥ 0 is a given penalty
on the total control cash, and η ∈ [0, 1] is a weight on the
terminal cost (P̄ (T ) = 0 if and only if there is no default at
the terminal time). The control problem is then stated as

min
[P ],[u]

J([P ], [u]) (25)

s.t.: [P ] ≥ 0, [u] ≥ 0∑t
k=0 α

t−kP (k) ≤ αtP̄ , t ∈ T
C(t) +

∑t
k=0

(
P (k)> − P (k)

)
1 ≥ 0, t ∈ T

B(t) ≤ F (t), t ∈ T (26)

where C(t) is given by (12) for fixed [e], and F (t) ≥ 0 is a
given nondecreasing sequence that represents the maximum
budget available up to time t for controlling the network.

Under the pro-rata rule the control problem simplifies to

min
[p],[u]

J([p], [u]) (27)

s.t.: [p] ≥ 0, [u] ≥ 0∑t
k=0 α

t−kp(k) ≤ αtp̄, t ∈ T
C(t) +

∑t
k=0

(
A>p(k)− p(k)

)
≥ 0, t ∈ T

B(t) ≤ F (t), t ∈ T , (28)

where the cost function is

J([p], [u]) = (1− η)L([p]) + η1>p̄(T ) + γB(T − 1).

In the case where η ∈ [0, 1) (the loss accumulated over time
is penalized) and γ > 0 (the total control cash is penalized),
the solutions to the problems (25) and (27) enjoy a number
of important properties. Denote the optimal sequences of
payment matrices and control inputs by P ∗(t) and [u∗]
respectively (in the problem (27) P ∗(t) = diag(p∗(t))A). To
each optimal solution, we associate the sequences p∗(t) =
P ∗(t)1 and [P̄ ∗], [p̄∗], [c∗], [w∗], [B∗], [δ∗].

Lemma 1. Let η ∈ [0, 1), γ > 0. Then, all optimal processes
in problems (25) and (27) enjoy the following properties:

1) The absolute debt priority rule is respected:

p∗i (t) = min
(
p̄∗i (t), w

∗(t) + c∗i (t) +
∑

j 6=i
p∗ji(t)

)
for all i = 1, . . . , n and t ∈ T ;

2) A bank utilizes the injected liquidity immediately by
paying out all its balance: if u∗i (t) > 0, then w∗i (t+1) =
0 and, moreover, wi(s) = 0∀s ≤ t.

3) If B∗(t∗) < F (t∗) at some period t∗ < T − 1, then no
liquidity is injected after period t∗: u∗(t) = 0∀t > t∗.

The proof of Lemma 1 is omitted here due to space limits,
but it is available in the extended version of this paper [23].

Notice that the first property shows that the optimal
clearing policy prohibits unnecessary deferrals of payments:
bank i pay out its liability p̄∗i (t) as soon as this is possible.

Note also that if the whole control budget is available at
t = 0, i.e., F (0) = . . . = F (T − 1), then we either have
t∗ = 0 and B∗(0) < F (0) or the whole budget is used at
time t = 0. In both situations, one obviously has u∗(t) =
0 ∀t ≥ 1. Similarly, if F (k) = . . . = F (T − 1), then there
are no control actions after period k: u∗(t) = 0∀t ≥ k + 1.

A. Dealing with uncertainty in the external payments

In problem (27) we assumed a nominal situation in which
the whole stream [e] = (e(0), . . . , e(T − 1)) of cash inflows
from the external sector to the nodes is precisely known in
advance. In this section we consider instead a more realistic
scenario in which the inflows are known only up to some
interval of uncertainty. More precisely, we assume that

e(t) = ê(t) + d(t), t = 0, . . . , T − 1,

where ê(t) ≥ 0 is the nominal predicted value of the external
cash inflow at t, and d(t) is an unpredictable uncertainty on
this value, assumed to bounded in magnitude so that

|di(t)| ≤ ri(t)
.
= ε(t)êi(t), i = 1, . . . , n; t = 0, . . . , T−1,

where ε(t) ∈ (0, 1) is the given relative error level at t. We
let D denote the uncertainty set on [d], that is D = {[d] :
|di(t)| ≤ ri(t), i = 1, . . . , n; t = 0, . . . , T − 1}.

For simplicity of exposition and notation we treat here
only the case of proportional payments, which simplifies the
problem and allows us to deal only with vector variables
p(t) instead of matrix variables P (t). The whole reasoning
reported below, however, carries over to the matrix case with
only formal and notational modifications.

The decision variables [p], [u] of problem (27) are next
assumed to be prescribed by a reactive policy that allows
adjustments in consequence to deviation of the external
inflows from their nominal values: for all t ∈ T we let

p(t) = p̂(t) + Θ(t)(e(t)− ê(t)) = p̂(t) + Θ(t)d(t) (29)
u(t) = û(t) + Γ(t)(e(t)− ê(t)) = û(t) + Γ(t)d(t).

and [p̂], [û] are now the new decision variables, together
with the collections of reaction matrices [Θ], [Γ]. The control
problem (27) is now cast in a worst-case setting as follows

min
[p̂],[û],[Θ],[Γ]

max[d]∈D J([p], [u]) (30)

s.t.: min[d]∈D[p] ≥ 0, min[d]∈D[u] ≥ 0

max[d]∈D
t∑

k=0

αt−kp(k) ≤ αtp̄, t ∈ T

min
[d]∈D

C(t) +
t∑

k=0

(
A>p(k)− p(k)

)
≥ 0, t ∈ T

max[d]∈D B(t) ≤ F (t), t ∈ T .

The worst-case quantities appearing in problem (30) can be
evaluated explicitly as reported next; in the omitted deriva-
tions we use repeatedly the fact that min|g|≤r h

>g = −|h|>r
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Fig. 1: A schematic network with 6 nodes.

and max|g|≤r h
>g = |h|>r:

p(t)
.
= min
|d(t)|≤r(t)

p(t) = p̂(t)− |Θ(t)|r(t)

u(t)
.
= min
|d(t)|≤r(t)

u(t) = û(t)− |Γ(t)|r(t)

B̄(t)
.
= max

[d]∈D
B(t) =

=
∑t

τ=0

(
1>û(τ) + 1>|Γ(τ)|r(τ)

)
J̄([p̂], [û], [Θ], [Γ])

.
= max

[d]∈D
J([p], [u])

= J([p̂], [û])+

+
∑T−1

t=0
1>|βtΘ(t) + γΓ(t)|r(t)

w(t+ 1)
.
= ŵ(t+ 1)+

−
∑t

k=0
|I + Γ(k) + (A> − I)Θ(k)|r(k),

where for each t ∈ T one has
βt

.
= ηαT−t + (1− η)at

J([p̂], [û])
.
= β01

>p̄−
T−1∑
t=0

βt1
>p̂(t) + γ

T−1∑
t=0

1>û(t),

ŵ(t+ 1)
.
=

t∑
k=0

(
ê(k) + û(k) +A>p̂(k)− p̂(k)

)
.

With the above positions, we can state the following

Proposition 1. The finite-horizon robust control problem
(30) is equivalent to the explicit linear program

min
[p̂],[û],[Θ],[Γ]

J̄([p̂], [û], [Θ], [Γ]) (31)

s.t.:[p] ≥ 0, [u] ≥ 0∑t

k=0
αt−k (p̂(k) + |Θ(k)|r(k)) ≤ αtp̄, t ∈ T

w(t+ 1) ≥ 0, t ∈ T
B̄(t) ≤ F (t), t ∈ T .

V. NUMERICAL ILLUSTRATION

To illustrate the proposed approach, we consider a
schematic network with 6 nodes, plus the external fictitious
node, as shown in Figure 1.

The numbers on the edges in the graph in Figure 1
represent the initial nominal liabilities, forming the liability
matrix P̄ , vector e = (e1, . . . , e6) represents the external
cash inflows at the nodes. We assume that the proportionality
rule for default payments is in force.

A. Nominal control

Consider first a nominal scenario over a single period
T = 1, in which e(0)=(105, 25, 10, 190, 10, 120, 0) . In this case,
with no control, all nodes default. The clearing payments,
computed according to (5), result to be

P (0) =


0 164.6 0 0 0 0 174.3
0 0 94.81 0 0 0 94.81

86.18 0 0 100.5 43.09 0 0
147.7 0 0 0 0 0 142.8

0 0 0 0 0 53.09 0
0 0 125.0 0 0 0 48.08
0 0 0 0 0 0 0

 .
After such a clearing round, each node owes the residual
amounts ( 11.08 10.38 10.18 4.45 6.91 6.91 0 ), for a total loss
of 49.92. The question now is the following: what control
intervention may avoid the default? To answer this question
we solved the control problem (27), over a single period
T = 1, setting parameters η = 0.9, γ = 1, and a total control
budget F (0) = 50. The resulting optimal control action
resulted to be u(0) = (5, 5, 0, 0, 5, 0). It can be readily
checked that with such control action the total in-flows are
c(0) = e(0)+u(0), and for such inputs the network returns to
regular operations, with no default. Overall, in this example,
a relatively small intervention of amplitude ‖u(0)‖1 = 15
would be able to completely prevent the defaults and bring
the losses to zero.

We next consider a multi-stage setup with T = 3 periods.
We assume a 1% interest rate on residual payments (i.e.,
α = 1.01), and assume the following predicted stream of
external payments

e(0) =


105
0
10
0
0
0
0

 , e(1) =


0
25
0

190
0
0
0

 , e(2) =


0
0
0
0
10
120
0

 .
We use, as in the previous case, η = 0.9, γ = 1, and
we assume that the total control budget of 50 is available
progressively as F (0) = 15, F (1) = 30, F (2) = 50. In this
case, the solution of the control problem (27) gave us the
optimal interventions

u(0) =


2.19
5.25

0
0

5.20
2.36

0

 , u(1) =


2.84

0
0

1.9
0
0
0

 , u(2) = 0.

These optimal injections, together with the computed optimal
payment matrices at the intermediate times, are such that the
network arrives to a regular (i.e., non default) situation at
T = 3. The optimal payment vectors were

p(0) =


143.82
75.11
61.32
26.83
16.69
19.06

0

 , p(1) =


131.04
88.65
51.27
214.33
9.61
9.61

0

 , p(2) =


77.96
37.87
130.49
57.09
34.47
154.47

0

 .
The full payment matrices can be deduced from the above
payment vectors via the relation P (t) = diag(p(t))A, where
A is the pro-rata matrix

A =


0 0.4857 0 0 0 0 0.5143
0 0 0.5 0 0 0 0.5

0.375 0 0 0.4375 0.1875 0 0
0.5085 0 0 0 0 0 0.4915

0 0 0 0 0 1.0 0
0 0 0.7222 0 0 0 0.2778
0 0 0 0 0 0 1

 .



The control effort in the present case amounts to a total
1>(u(0) + u(1) + u(2)) = 19.74, which is higher than
the control effort needed in the single-stage case. This is
expected since, due to interest, there is a price to pay for
not having all the external payments available at t = 0, and
making the total control budget available only partially at the
intermediate stages.

B. Robust control

We now examine the case of uncertain input flows. We
discuss first a single-step case (T = 1). Consider the nominal
input cash flow ê(0) = (158, 38, 15, 285, 15, 180, 0). In
this nominal situation, the network is in regular operation,
all payments meet their liabilities, no default occurs, and
no corrective control action is needed. Assume, however,
that the actual inputs are not exactly known, being however
within a 33% interval from the nominal values. By solving
the robust control problem (31) with η = 0.9, γ = 1, and
F (0) = 50, we obtain that the optimal policies (29) are able
to maintain the system default free in the worst case. This is
achieved via the nominal control action and nominal payment

û(0) =


1.32
1.49
0.61
0.13
1.31
0.65
0.0

 , p̂(0) =


348.69
198.52
239.40
294.87
58.70
179.35

0.0

 ,
and reaction matrices

Θ(0) =


23 1.8 6.5 0.22 2.8 0.32 0
5 95 1.1 0.049 0.46 0.054 0

1.1 13 38 0.011 16 1.8 0
0.11 0.75 1.9 0.93 1.7 0.16 0
0.086 1 3.1 0 250 0.13 0
0.029 0.34 1 0 55 6 0

0 0 0 0 0 0 0

× 10−3,

Γ(0) =


−23 −1.8 −6.6 −0.22 −2.8 −0.32 0
−5.0 −96 −1.1 −0.049 −0.47 −0.055 0
−1.1 −13 −39 −0.011 −16 −1.8 0
−0.11 −0.75 −2 −0.93 −1.7 −0.16 0
−0.087 −1 −3.1 0 −250 −0.13 0
−0.029 −0.34 −1 0 −55 −6.1 0

0 0 0 0 0 0 0

× 10−3.

We finally consider a multi-step situation with T = 3 and
nominal external in-flows

ê(0) =


15
30
10
200
5

100
0

 , ê(1) =


80
4
0
40
5
40
0

 , ê(2) =


63
4
5
45
5
40
0

 .
We assume that the external flow has 10% uncertainty at
t = 0, while the ucertainty rises to 33% at t = 1 and t =
2. We let η = 0.9, γ = 1, α = 1.01, and F (0) = 15,
F (1) = 30, F (2) = 50. Solving (31) gives optimal policies
that guarantee that the system is default free at the final time
T , in all possible scenarios. The control effort was equal
to 3.9 in the nominal scenario and to 4.87 in the worst-
case scenario, meaning that at most this sum is spent by the
regulatory authority to maintain the system free of defaults.

VI. CONCLUSIONS

In this paper, we proposed a multi-period financial network
model with an external control term representing corrective
cash injections that can be performed by a ruling authority
in order to prevent catastrophic cascaded failure events. We
studied both the nominal case, in which the cash inflows from

the external sector are precisely known in advance, and the
more realistic case where the inflows are known only up to
some interval of uncertainty. In this latter case, we proposed
a robust approach based on linear feedback policies. In all the
considered scenarios, the proposed control problems turn out
to be efficiently solvable by means of linear programming.
Numerical examples support the claim that small targeted
interventions may avoid a cascaded failure effect and may
thus significantly reduce the interbank contagion.
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