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Vertical profiling of atmospheric air pollutants in rural India: A 1 

case study on particulate matter (PM10/PM2.5/PM1), carbon 2 

dioxide, and formaldehyde  3 

Abstract  4 

Particulate matter is one of the major air pollutants that challenge the environment and human 5 

health. In this study, we used an unmanned aerial vehicle associated with smart, low-cost sensors 6 

to record the vertical profiles of particulate matters (PM10/ PM2.5/ PM1), carbon dioxide, and 7 

formaldehyde in a rural area of southern India.  Our study covered the surface to 60 m above the 8 

ground level compiling data over twenty days of measurements in March 2021. A total of thirty 9 

flights were performed in the five selected locations. The data show a decrease in air pollutant 10 

concentration with increasing height from the surface. However, statistical data analysis through 11 

CHAID Decision Trees and 3-D visualization of the relationship between the pollutants and the 12 

height, RH, and temperature show that the concentration of pollutants is more strongly influenced 13 

by the location and meteorological parameters rather than the height from the surface. We infer 14 

that transport through both advection and convection influences the vertical distribution of air 15 

pollutants as inferred from meteorological analysis, including back trajectories using the Hybrid 16 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model. The long-range transport of 17 

air mass could also contribute to the high concentration values of particulate matters, as found 18 

through the five-day air mass backward trajectory analysis. Although the observed data sets are 19 

confined to a height of 60 m AGL, the results from this study provide insights into the vertical 20 
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distribution of air pollutants, complementing ground-based measurement variations with different 21 

spacing and timing.  22 

Keywords: Particulate matter vertical profile; CO2; Formaldehyde; Unmanned aerial vehicle; 23 

Rural India. 24 

1. Introduction  25 

Our planet’s environment is affected by various air pollutants in the atmosphere, particularly as a 26 

result of anthropogenic activities (e.g., Li et al., 2015; Silva et al., 2021; Gollakota et al., 2021). 27 

The particulate matter with different sizes affects climate change and visibility by reducing the 28 

light as well as altering the atmospheric radiative budget (Wang et al., 2015; Praveen et al., 2012). 29 

Air pollutants have also significantly severely impacted the life and environment (Lei et al. 2016; 30 

Bond et al. 2013). Among these, formaldehyde, an organic component, has been shown to cause 31 

serious health issues (Vardoulakis et al. 2020). 32 

Ground-based measurements of particulate matter have been reported in several previous studies  33 

(Ravina et al., 2021; Liu et al., 2019; Retama et al., 2015; Gautam et al. 2016; Patra et al. 2016; 34 

Klompmaker et al., 2015). TA variation in chemical composition, size distribution, and mass 35 

concentration of air pollutants at different heights in the urban atmosphere has also been reported 36 

(Lu et al. 2016; Minguillón et al. 2015; Ferrero et al. 2010). The upward movement, dispersion, 37 

diffusion, accumulation, and deposition of the particle are also influenced by planetary boundary 38 

layers (Tang et al., 2016; Gautam et al. 2015). Thus, studies on the vertical profile of air pollutants 39 

are critical to assess the air pollutant concentration at different heights and their spatial 40 

characteristics, especially in the rural atmosphere.  Various techniques such as Tethered balloons, 41 

remote sensing, meteorological towers, and human-made aircraft were employed to assess the 42 
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vertical distribution of air pollutants in different geographic regions (Ran et al. 2016; Han et al. 43 

2015; Ding et al. 2009; Strawbridge and Snyder 2004). Unmanned Aerial Vehicles (UAVs) 44 

provides one of the robust and alternative methods with high-cost efficiency, flexibility, and 45 

mobility to assess the vertical behavior of air pollutants (Schuyler and Guzman, 2017; Villa et al. 46 

2016).  47 

Previous studies which investigated air pollutant concentration / vertical distribution by using 48 

UAVs (Bates et al. 2013) reported notable variation in the distribution patterns of particle 49 

concentration. Some studies reported contrasting results of higher concentrations with increasing 50 

height causing enhanced light absorption (Bates et al. 2013) or decreasing trend of fine particles 51 

with increasing height (Zhu et al. 2019). Some researchers (Chilinski et al. 2016; Ran et al. 2016; 52 

Ferrero et al. 2011) have observed lower air pollutants concentration above the planetary boundary 53 

layer (PBL) compared to ground level under clean conditions. Some of the recent studies (Lu et 54 

al. 2019; Ran et al. 2016) correlated these features to local emissions or local fossil fuel combustion 55 

sources rather than the long-range transport sources. Peng et al. (2015) highlighted that the vertical 56 

profile (300 and 1000 m above the ground level) of air pollutants, especially PM2.5, might be 57 

affected significantly by diurnal variation of temperature. However, one of the limitations in most 58 

of these studies is the limited number of days/flights and the restricted data on specific pollutants. 59 

Comprehensive investigations to understand the relationship between contaminants and 60 

atmospheric stability are rare.  61 

Analysis of the vertical distribution of such pollutants is necessary to understand the emission 62 

sources, residence period, and dispersion of pollutants in the atmosphere. Most contaminants are 63 

emitted from the ground sources and are usually limited to the lower atmosphere, within the PBL 64 
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(Samad et al., 2020), and the heights vary throughout the daytime, subject to atmospheric 65 

conditions. 66 

Pollutants from different sources get mixed, and their vertical distribution varies diurnally with 67 

height. This layer in the lower atmosphere is termed a mixing layer (Baumbach 1996). Studies 68 

have shown that the stability of PBL can reduce the mixing of pollutants due to the stable 69 

atmosphere governed by wind speed and solar radiation (Zoras et al., 2006). Higher air pollution 70 

episodes were reported previously during the temperature inversion in the lower atmosphere over 71 

different geographical conditions (Janhall et al., 2006; Baumbach and Vogt, 2003; Silva et al., 72 

2007; Olofson et al., 2009; Guzmán-Torres et al., 2009; Panday and Prinn, 2009). Temperature 73 

inversion hinders the convective air movement, and also restricts the dispersion of pollutants and 74 

confines the pollutants within the limited air mass (Allaby 2007). This study was undertaken with 75 

a view to assess the vertical distribution of pollutants and meteorological parameters and to 76 

understand the temperature inversion and its impact on pollution over the study region. 77 

Here we investigate the vertical profile distribution of major pollutants (i.e., formaldehyde 78 

(HCHO), carbon dioxide (CO2), and fine particulate matter (PM)) with meteorological conditions 79 

to explore the vertical distribution pattern of air pollutants (i.e., PM10, PM2.5, PM1, CO2, & HCHO) 80 

in a rural area of southern India. In the present study, we measured the vertical profile of air 81 

pollutants (PM10, PM2.5, PM1, CO2, & HCHO) using UAVs (450 mm 3s quad multi-rotor setup) 82 

for 12 days in  March 2021 at the Karunya Institute of Technology and Sciences, Karunya Nagar, 83 

Coimbatore, India. A total of 30 flights were employed at five different locations of the university 84 

area with a height of 15 m, 30 m, 45 m, and 60 m (regulated by the DGCA (Directorate General 85 

of Civil Aviation) above ground level between 08:00 am - 12:00 pm local time. The selected study 86 

area is located approximately 28 km away from the urban area (Coimbatore city), thus providing 87 

https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib22
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib5
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib40
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib40
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib34
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib19
https://www.sciencedirect.com/science/article/pii/S1309104220301252#bib35
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an opportunity to investigate the effects of meteorological parameters (i.e., temperature and 88 

relative humidity) and regional transport on the local air pollution. Building Decision-trees (DTs) 89 

in IBM® SPSS® software, the strength and effect of meteorological parameters and concentration 90 

of the pollutants with height were evaluated for each of the five sampling locations. Furthermore, 91 

the vertical distribution of air pollutants was visualized using the Fuzzy toolbox in MATLAB® to 92 

understand how the atmospheric stability and layers influence pollutants' behavior at a vertical 93 

scale. Our study reveals the influence of temperature and relative humidity. We also present and 94 

evaluate cases with transportation influence from the main road (~ 1 km),  95 

2. Material and methods  96 

2.1 Site Description and Experiment Design 97 

Karunya Nagar is in a rural area located within the Tamil Nadu State of southern India (Fig. 1 1), 98 

around 30 km from the densely populated Coimbatore city. The study was piloted at the campus 99 

of the Karunya University of Technology and Sciences (10.93620N, 76.74410E). By following 100 

the regulation of DGCA, 30 successive flights were undertaken inside and outside the campus. 101 

The duration of each round trip of flight (0 – 15m – 30m – 45m – 60 m from the ground and back) 102 

was 10 minutes. Before each flight, ground-based measurement was conducted for 5 minutes.  103 

2.2 UAVs platform and instruments 104 

In this study, we conducted vertical monitoring by using a UAV (450mm 3s quad multi-rotor 105 

setup). The drone moved upward in the direction from the ground to 60 m above ground level at a 106 

constant speed of 1 m/s and then descended along the same path at the same rate. The total 107 

developed payload was mounted on the drone for conducting air pollutant and meteorological 108 
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parameters (i.e., temperature and relative humidity) measurements. All sensors were mounted on 109 

the UAV to minimize the influence of the downwash effects (Zhou et al., 2018). 110 

The sensor (Prana Air – CIA+) is used for pollution measurement.  The "Prana Air – CIA+" was 111 

mounted on a quad configuration multi-rotor of 450 mm dimension, which runs on a 35 (12.6 V 112 

3800 mah) lipo battery producing an appropriate flying time of 15 minutes. The multi-rotor 113 

combined with 10 inches propellers and 900 kV high torque BLDC (Brushless DC) motor can lift 114 

1.5 kg of payload in Air. The brain of the multi-rotor (ic) flight controller used in the setup is DJI 115 

NAZA H LITE, which offers a steady flight to perform the flight plan. The GPS (Global 116 

Positioning System) integrated with the flight controller helps in a stable flight, and features like 117 

RTL, failsafe, altitude lock and GPS lock make the flight highly functional. Used an additional 118 

flight controller (JHEHCU FTBT) to obtain live altitude telemetry using the JHEHCU FTBT flight 119 

controller's barometric sensor. The flight controller also has an OSD (On Screen Display Chip) 120 

and an additional intractable camera (RUNCAH Micro Swift 2 600 TVL) and AKK VTX (video 121 

transmitter) of 5.8GHz band. The VTX transmits the on-flight footage and OSD data to a 5.8 GHz 122 

video receiver connected to an android device. 123 

Cluster analysis of air mass trajectories is used to find the contribution function of potential sources 124 

of pollutants (Argyropoulos et al., 2013). This approach also provides information on the pathways 125 

and flow patterns of air mass followed before reaching the observation site (Borbély-Kiss et al., 126 

1999). Trajectory statistics and transport models combined with satellite or ground-based 127 

observations provide spectral and temporal distribution of pollutants and improve the forecast of 128 

air quality (Mijling et al., 2012). Cluster analysis of five days’ air mass back trajectories was 129 

performed using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) model 130 

(Stein et al., 2015). The meteorological data for the trajectory calculation is obtained from 131 
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NOAA’s Global Data Assimilation System (GDAS, 1˚ × 1˚). All trajectories were calculated at 132 

500 m above ground level (AGL) ending at the observation site (10.94° N, and 76.74° E) for the 133 

observation period between 5 Mar 2021 to 17 Mar 2021. A multivariate statistical tool (Cluster 134 

analysis) is used to group the calculated trajectories based on its similarity of spatial distribution 135 

and number of optimal clusters considered based on the change in the spatial variance of all 136 

obtained trajectories (Draxler et al., 2014). 137 

2.3  Uncertainties associated with the sensor and the reference laboratory to calibrate the 138 

instrument 139 

In order to overcome the uncertainties associated with the collection of data by the sensor, some 140 

criteria were considered in this study as follows. First, in order to procure suitable multi-rotor 141 

components fitting the criteria of application, a detailed study was performed to choose the 142 

components offering the best performance and endurance for the flight plan of vertical profiling. 143 

Therefore, the frame dimension was chosen, which was capable of mounting the payload for 144 

vertical profiling. Besides, accurate decisions were made regarding (1) the BLDC motor KV rating 145 

providing enough torque and thrust to carry the payload, (2) the proper combination of propeller 146 

length and pitch offering good thrust to weight ratio and endurance, and (3) the LIPO (lithium 147 

polymer) battery rating providing the fly time required for the flight plan of vertical profiling. 148 

Second, DJI NAZA M LITE was considered as the flight controller being used for the multi-rotor. 149 

Live data telemetry of parameters like altitude, battery status, live flight footage, and multi-rotor’s 150 

orientation was required in this study to carry out the flight for data gathering. (1) A separate unit 151 

of FC was used to perform the telemetry. (2) The FC chosen was JHEMCU F7BT DUAL GYRO, 152 

since it had an inbuilt barometer and on-screen display (OSD). The barometer was used to get 153 

altitude data with the help of atmospheric pressure difference. (3) The camera and the VTX (video 154 
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transmitter) were connected to the JHEMCU F7 flight controller and the data was received using 155 

a VRX (video receiver), which was connected to a monitor. (4) With the help of camera footage 156 

and OSD details on the monitor, the flight was performed. 157 

Third, high wind current was one of the major uncertainty associated with the study. At an altitude 158 

of  40 m to 60 m the wind current was high resulting in an unsteady flight and rolling down of the 159 

multi-rotor. High wind currents lead to multiple crashes resulting in damage of the multi-rotor 160 

components like propellers and frame arms, leading to time-consuming delays to complete the 161 

study. Therefore, (1) flights were conducted considering the wind speed, certain flight maneuvers 162 

were performed to have a steady flight at high wind speeds; and (2) the flight controllers gain 163 

settings were tuned to offer high stability in windy situations. 164 

Furthermore, the multi-rotor was built and calibrated by the Aerospace engineering department of 165 

Karunya Institute Of  Technology And Sciences, and the following calibration procedure was 166 

considered for it. First, all the components were connected in a proper and correct way. Second, 167 

the transmitter was bound with the receiver. For the research, Radiomaster TX16s was bounded 168 

with a Flysky FSi6 receiver operating on 2.4 GHz, offering strong connectivity throughout the 169 

flight. Third, the ESC (Electronic Speed Controller) was calibrated, in which the maximum and 170 

minimum throttle values were given to the ESC, resulting in the spinning of all motors at the same 171 

RPM. And finally, the FC DJI NAZA M  LITE  was calibrated using the DJI NAZA configurator, 172 

which is a PC software. 173 

3. Results and discussion  174 
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3.1 Data analysis  175 

The distribution of the collected data for PM1, PM2.5, PM10, CO2, and HCHO in each of the five 176 

sampling locations are presented through Box and Whisker plots in Figure 2. The vertical lines in 177 

each plot (whiskers) show the minimum and maximum values, while the dots above the maximum 178 

or below the minimum points illustrate the outliers in the dataset. Besides, the boxes represent the 179 

lower and upper quartiles, with a line in the middle as the median. The mean for each plot is 180 

illustrated by an “X” sign. 181 

Based on the plots in Figure 2, the collected data for different pollutants in this study is skewed, 182 

since the density of observations on the two sides of the median is not equal. Considering PM1, 183 

PM2.5, and PM10, the Petrol Pump has the highest level of data density compared with the other 184 

locations, but on the other hand, it has the highest number of outliers. The Administration Block 185 

comes after the Petrol Pump in terms of both the density of the collected data and the number of 186 

outliers. In contrast with the Petrol Pump and the Administration Block, Bethesda’s data has the 187 

lowest density in terms of PM1, PM2.5, and PM10, but it has no outlier. Except in the Petrol Pump, 188 

the range of observed values (between the minimum and maximum) in all the locations are the 189 

largest for PM10. The second and third ranks go to PM2.5 and PM1, respectively. Besides, in all the 190 

five locations, PM1, PM2.5, and PM10 keep the same sequence if they are sorted based on the 191 

minimum, lower quartile, median, mean, upper quartile, or maximum (i.e. 𝑃𝑀1 < 𝑃𝑀2.5 < 𝑃𝑀10 192 

in terms of minimum, lower quartile, median, mean, upper quartile, and maximum in all the 193 

sampling locations). These sequences are clarified in Table 1. 194 

As can be seen from the top right part of Figure 2, the collected CO2 data in the Petrol Pump has 195 

a higher density in comparison with the other locations and is more concentrated between 408 and 196 
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459 𝑝𝑝𝑚. Ignoring the two outliers, the range of data for this greenhouse gas in the Petrol Pump 197 

is lower in comparison with the other locations, with a minimum of 408 𝑝𝑝𝑚 and a maximum of 198 

533 𝑝𝑝𝑚. The collected data for CO2 in the Flight Hangar is in contrast with the Petrol Pump since 199 

its range is larger (between 4.8 𝑝𝑝𝑚 as the minimum and 655 𝑝𝑝𝑚 as the maximum), and its 200 

density is lower (between 415 𝑝𝑝𝑚 as the first quartile and 515.5 𝑝𝑝𝑚 as the third quartile). The 201 

density of observations for HCHO, as illustrated in the bottom right of Figure 2, is the highest in 202 

the CTC Block (between 0.010 and 0.011 𝑚𝑔 𝑚3⁄ ), followed by the Petrol Pump (between 0.009 203 

and 0.011 𝑚𝑔 𝑚3⁄ ). This is while the Administration Block, the Flight Hangar, and Bethesda are 204 

equally ranked third, having 0.009 and 0.012 𝑚𝑔 𝑚3⁄  as their first and third quartiles. All these 205 

three locations have a minimum of 0.009 𝑚𝑔 𝑚3⁄  in terms of HCHO concentration, which is 206 

equal to their first quartile. However, since the outliers are ignored, the maximum HCHO 207 

concentration in the Administration Block and the Flight Hangar are equal (both 0.016 𝑚𝑔 𝑚3⁄ ), 208 

attributing to them the largest range of observed values. Bethesda is ranked second in this regard 209 

since its maximum value is 0.014 𝑚𝑔 𝑚3⁄ . 210 

3.2 Impact of meteorological parameters and height on the concentration of pollutants in the 211 

sampling locations 212 

Variations in the concentration of the pollutants evaluated in this study in the five locations at 213 

different sampling times indicate the influence of various parameters. The RH and temperature 214 

were measured in each trial at each of the four specified heights for sampling. Considering the 215 

variations observed between the sampling locations (Figure 2), we infer that some of the influential 216 

factors that are specific to each sampling location are not captured in our study. Therefore, here 217 
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we analyze the role of RH, temperature, and height in different sampling locations on the 218 

concentration of pollutants. 219 

In order to determine the most relevant factors for the concentration of pollutants, CHAID (CHi-220 

square Automatic Interaction Detection) algorithm (Kass, 1980) was applied to build a Decision 221 

Tree (DT) for each of the pollutants. The DT is a data mining technique, which is trained on a base 222 

dataset and can identify the existing relationships between independent variables and the 223 

dependent variable (Hagenauer and Helbich, 2017) regardless of the linearity or non-linearity of 224 

the relationships (Gao et al., 2021). The DT is a tree-like model with several layers of node, in 225 

which the first node is the root, the terminal nodes are the leaves, and the internal nodes between 226 

the root and the leaves correspond to specific attributes. The CHAID algorithm applied to construct 227 

the DTs followed the steps of (a) merging, (b) splitting, and (c) stopping to derive statistically 228 

significant segments of data presented in non-binary tree-shaped models (Onwuegbuzie and 229 

Johnson, 2021). This algorithm uses Pearson’s chi-square test to best split the nodes at each step, 230 

and its procedure can be summarized as follows.  231 

First, the categories of the independent variables are cross-tabulated with the categories of the 232 

dependent variable. Second, the pair of independent variable categories that have the least 233 

significant difference are identified and merged if the difference is less than a considered threshold. 234 

Third, the compound categories of independent variables are analyzed to identify the most 235 

statistically significant binary split if the significance exceeds the threshold. In case the split is 236 

done, the algorithm returns to the merging stage and repeats the merging and splitting stages. This 237 

repetition continues until all the merged categories of independent variables reach optimality. 238 
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Finally, the significance of all optimally merged variables is calculated (Kass, 1980; Rashidi et al., 239 

2014; Huang and Lin, 2013). 240 

To build the DTs in this research, the records containing missing or corrupted values were excluded 241 

from the database of the observations, and the remaining 2271 observations for each of the 242 

pollutants were used to build five DTs in IBM® SPSS® software, each for one of the measured 243 

pollutants. The role of the dependent variable was given to each of the pollutants in the DTs, 244 

whereas the other variables were considered as independent variables. To specify the importance 245 

level of RH, temperature, and height in the vertical concentration of pollutants in each sampling 246 

location, the variable “location” was forced to be used for branching at the first level in the DTs. 247 

Figures 3 to 6  illustrate the resulting CHAID DTs for PM1, PM2.5, PM10, CO2, and HCHO, 248 

respectively. As can be seen in these figures, all the branching processes in these DTs are highly 249 

statistically significant (P-value = 0.000). The mean and standard deviation mentioned in each 250 

node refers to the “n” observations located in that node. 251 

The DT presented in Figure 3 shows that in the sampling locations Administration Block, 252 

Bethesda, and CTC Block, RH has the most important role in the concentration of PM1. In these 253 

locations, when 𝑅𝐻 ≤  48%, 𝑅𝐻 > 71%, or 50% <  𝑅𝐻 <  55%, temperature plays the second 254 

important role and height does not have any significant impact. On the contrary, when 55% <255 

 𝑅𝐻 <  57% in these locations, height plays the second important role, and the temperature does 256 

not have any significant impact. For the ranges of 48%-50%, and 57%-61% for RH in the 257 

mentioned locations, neither height nor temperature play a significant role in the variations in the 258 

PM1 concentration. Finally, for these three sampling locations, when 61% <  𝑅𝐻 <  71% , 259 

regardless of height and temperature, we can separate Bethesda from the two other locations in 260 
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terms of the mean of the observations located in that node. For the Petrol Pump, similar to the 261 

previously mentioned locations, RH has the most significant role. However, in this sampling 262 

location, neither height nor temperature proves to be significantly effective in PM1 concentration. 263 

And last but not least, the branch referring to Flight Hangar identifies temperature as a significant 264 

player in terms of the changes in PM1 concentration and removes RH and height from the list of 265 

significantly effective factors in this location. 266 

Considering location as the branching variable in the first level in Figure 4, Petrol Pump grasps a 267 

separate node from the other locations, which are in the same node altogether. In the Petrol Pump, 268 

temperature is the leading factor in terms of the PM2.5 concentration, and only if temperature is 269 

between 84.6 °F and 85.1 °F (or equivalently, 29.22 °C < 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 29.5 °C ), RH is 270 

considered the next significantly effective factor. In the other four sampling locations, RH is 271 

identified as the most significantly effective factor in the concentration of PM2.5. When 𝑅𝐻 ≤272 

 43%, 𝑅𝐻 > 71% , or 48% <  𝑅𝐻 <  55%, temperature is the next significantly effective factor, 273 

while if 55% <  𝑅𝐻 <  57%, height plays the next important role. Finally, when 43% <  𝑅𝐻 <274 

 47% or 61% <  𝑅𝐻 <  71%, the observations are split again based on location. 275 

When it comes to PM10, the sampling locations are put into three nodes in the first level of 276 

branching in the DT, as illustrated in Figure 5. In the Petrol Pump, temperature has the most 277 

statistically significant impact on the concentration of PM10, followed by height, as the next 278 

significant factor. Similar to the Petrol Pump, in the Administration Block and Flight Hangar, the 279 

main branches are made based on temperature. However, in the next level, RH is the leading factor 280 

for the observations made in the temperature between 82.1 °F and 84.2 °F (or equivalently, 281 

27.83 °C < 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 29 °C), and location becomes important for the observations made 282 
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in the temperature between 84.2 °F and 85.1 °F (or equivalently, 29 °C < 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 <283 

29.5 °C). Finally, the branching for Bethesda and CTC Block is based on RH, followed by 284 

temperature when 𝑅𝐻 ≤  48% , 𝑅𝐻 > 71% , or 50% <  𝑅𝐻 <  51% , and by location when 285 

61% <  𝑅𝐻 <  71%. 286 

Figure 6 shows more splits based on the location when analyzing the concentration of CO2. 287 

Although RH is the main significant effective factor on the concentration of CO2, for 288 

Administration Block, CTC Block, Bethesda, and Petrol Pump, the second effective factor is 289 

different for various ranges of RH. In the Administration Block and CTC Block, for 𝑅𝐻 > 61%, 290 

height is the next effective factor, while for 50% <  𝑅𝐻 <  57%, temperature plays the next 291 

significant role. For other ranges of RH values, no significant factor is identified. In Bethesda, 292 

when 61% <  𝑅𝐻 <  71%, no other significant factor is identified, while if 𝑅𝐻 ≤  61%, height 293 

is identified as the second significantly effective factor and if 𝑅𝐻 > 71%, temperature plays an 294 

effective role in determining the concentration of CO2. In the Petrol Pump, after RH, height is 295 

identified as a significantly effective factor, but only when 48% <  𝑅𝐻 <  57%. The case is 296 

different in Flight Hangar, as temperature is the leading factor in splitting the observations, and 297 

RH is the second significantly effective factor only for the observations referring to the 298 

temperature between 79.4 and 85.1 °F (or equivalently, between 26.33 °C and 29.5 °C). 299 

The CHAID DT in Figure 7 makes a separation between Petrol Pump and the other sampling 300 

locations by considering only two nodes in the first level of branching. In Petrol Pump, 301 

temperature has been identified as a statistically significant variable to split the observations on 302 

the concentration of HCHO. However, for all the other sampling locations, RH is the main 303 

identified significant factor that makes the splits in the next level of branching. In case 43% <304 
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 𝑅𝐻 <  47%, 53% <  𝑅𝐻 <  57%, or 𝑅𝐻 > 71%, height would be the second significantly 305 

effective factor in terms of the concentration of HCHO. For the observations with 48% <  𝑅𝐻 <306 

 53% and 57% <  𝑅𝐻 <  71%, the second split of observations would be based on location. For 307 

other ranges of RH, no factor is recognized as to be statistically significant. 308 

We show in Figure 2 a general view of the differences between the observations in each location. 309 

Figures 3 to 7 illustrate a more in-depth analysis of the role of location along with the 310 

meteorological parameters and height on the concentration of pollutants. The analysis presented 311 

in this section confirms the findings from the initial statistical analysis, highlighting that in addition 312 

to the meteorological parameters and height, different attributes of the sampling locations may 313 

affect the concentration of studied pollutants. These attributes may be linked with the width of the 314 

sampling location, the height of the nearby buildings, wind direction, or other factors.  However, 315 

a detailed analysis of the location attributes is out of the scope of this research, and therefore we 316 

provide an analysis of the concentration of pollutants with respect to meteorological parameters 317 

and height.  318 

3.3 The concentration of pollutants with respect to meteorological parameters and height 319 

In order to better visualize the changes in the concentration of the studied pollutants with respect 320 

to the meteorological parameters and height, a fuzzified DT-based 4-D space is developed for each 321 

of the pollutants, and then, the 3-D surfaces extracted from these spaces are presented in this 322 

section. To do so, two main steps were taken. 323 

First, the recorded observations for each of the pollutants were introduced into a DT with the 324 

CHAID growing method to build five new decision trees based on the observations related to the 325 
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pollutants, this time regardless of their sampling location. The overall accuracy of the DTs was 326 

confirmed by their risk estimate (within-node variance). The risk estimate for PM1, PM2.5, PM10, 327 

CO2, and HCHO was 60.35, 90.727, 221.557, 1123.556, and 1.469E-6, respectively. Considering 328 

the structure of the DTs, relevant if-then rules were extracted for each leaf, such as “𝐼𝐹 [(𝑅𝐻 ≤329 

 43)) 𝑎𝑛𝑑 (𝑇𝐸𝑀𝑃 >  85.09))] 𝑇𝐻𝐸𝑁 [𝑃𝑀1 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =  30.37]”. The predicted values for 330 

the pollutants in each node of the tree refer to the mean of the observations located in that node. 331 

Second, based on the ranges of values determined by the branches of the DTs, relevant membership 332 

functions were designed for the pollutants, height, RH, and temperature to build a Fuzzy Inference 333 

System (FIS) in MATLAB® for each of the pollutants. All these membership functions were set 334 

in the form of Gaussian functions. Furthermore, the rules extracted from each DT were used to 335 

build the Mamdani rule-based inference engine for the FISs.  336 

The built FISs can be used to estimate the concentration of pollutants with respect to different 337 

levels of RH, temperature, and height (Ranjbari et al., 2021). However, since this is not the main 338 

purpose of our study, we have only applied them to visualize the relationship between various 339 

levels of meteorological parameters and the pollutants through 3-D surfaces. 340 

Figures 8 to 10 show the changes in the concentration of the studied pollutants with respect to RH 341 

and temperature, height and temperature, and RH and height, respectively. Each variable follows 342 

its own scale in these figures, and a color range of dark blue to bright yellow is used to show very 343 

low to very high concentrations of studied pollutants based on their own scale of measurement.   344 

Figure 8 provides a general view of the concentration of the pollutants, considering RH and 345 

temperature. As can be seen from this figure, the concentration of each of the pollutants has 346 
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different behavior in terms of the changes in RH and temperature. However, the surfaces referring 347 

to PM1, PM2.5, and PM10 follow the same behavior in some points. For these three pollutants, high 348 

levels of RH and temperature leads to low concertation of the pollutants. Besides, PM1 and PM2.5 349 

show rather similar fluctuations in most parts of the surface. Focusing on the fluctuations caused 350 

by the changes in the values in X and Y axes, it can be inferred that changes in the RH have a 351 

stronger effect than temperature in changing the concentration of PM1, PM2.5, PM10, and CO2. 352 

However, this cannot be concluded for HCHO, since both variables seem to be effective in making 353 

the changes in the HCHO concentration. 354 

Having an overview of the surfaces presented in Figure 9, it can be seen that compared with 355 

temperature, height has a very weak role in changing the concentration levels of PM1, PM2.5, PM10, 356 

and CO2. Besides, considerable changes due to temperature start to occur when the temperature 357 

exceeds 80 °F, leading to an increased concentration of PM1, PM2.5, and CO2 and decreasing PM10. 358 

Again, HCHO concentration shows a different behavior compared with the other pollutants and is 359 

slightly affected by both of the considered factors. 360 

Referring to Figure 10, the stronger impact of RH changes compared with the height changes on 361 

the concentration of PM1, PM2.5, PM10, and CO2 is realizable. As can be seen in this figure, the 362 

concentration of PM1, PM2.5, and PM10 have almost similar fluctuations after around 55% of RH 363 

regardless of the height, but with different levels of pollutant concentration. Besides, considerable 364 

fluctuations are observed due to changes in the RH level, which highlight the significant role of 365 

RH in pollutant concentrations. These fluctuations were also observed in Figure 8 when comparing 366 

the significance of changes made by RH and temperature. Similar to the previous figures in this 367 

section, different behavior is observed in the HCHO surface, indicating more impact received from 368 
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height, in comparison with the other pollutants. These analyses also confirm the strong role of RH 369 

and the weak role of height, in comparison with other factors, regarding the concentration of the 370 

studied pollutants. 371 

3.4 Cluster analysis 372 

This section reports the results of cluster analysis to evaluate the contribution of possible sources 373 

of aerosols from different regions. Figure 11 shows the clusters of five days air mass back 374 

trajectories arriving at the observation site from different regions. Air mass back trajectories were 375 

calculated using the HYSPLIT model and it is used for the indication of general airflow followed 376 

by an air parcel. Further, these trajectories were merged together representing a group called a 377 

cluster. Differences between trajectories within the clusters are minimized and the difference 378 

between clusters is maximized. 379 

The distributions of four clusters were calculated for the hourly airmass trajectories clusters 380 

obtained for each day of the observation period. The highest number of trajectories belongs to 381 

cluster 2 (41%) arriving from the Bay of Bengal region. Cluster 1 (39%) and cluster 4 (17%) 382 

contribute significantly to the air mass arriving at the observation site during the observation 383 

period. All these trajectories carry the effect of air mass originating from the Bay of Bengal with 384 

a longer range for cluster 4 from the altitude range up to 2000 m AGL, as indicated in the vertical 385 

profile of airmass with distance from the observation site in Figure 11. The other clusters (except 386 

cluster 2) achieve altitudes lower than 500 m AGL only for all hours of observation before reaching 387 

the observation site. The lowest contribution of air mass is obtained from trajectories 388 

corresponding to cluster 3 (3%) originating from the Arabian sea region. Clusters highlight the 389 

pathways of air mass and advected moisture from oceanic regions adjacent to the observation site. 390 
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Vertical columns in the lower section of figure 11 indicate the percentage contribution of each 391 

cluster to the individual day of the observation period.  392 

The contribution of each cluster to individual days is presented by the corresponding colors of the 393 

respective cluster. It is observed that trajectories corresponding to cluster 2 contributed to almost 394 

all days and cluster 1 contains trajectories of days except 09-12 March. Air mass corresponding to 395 

cluster 3 arrives at the observation site on 06 and 07 March only, with the lowest number of 396 

trajectories corresponding to it. Nair et al. (2008) characterized the influence of marine aerosols 397 

originating from the Arabian Sea and Bay of Bengal reaching over the Indian subcontinent. It 398 

contains the aerosols dominated by SO4
2−, NH4

+, and NO3
− over the oceanic region, and suggests 399 

the presence of ammonium sulfate and ammonium nitrate which are responsible for the radiation 400 

budget in the atmosphere. 401 

4. Summary and conclusion  402 

This study presents the vertical distribution of air pollutants based on the measurements conducted 403 

by UAV at different fixed locations in a rural area of southern India. The investigations were 404 

carried out through 30 flights in March 2021 to gather data regarding the concentration of PM10, 405 

PM2.5, PM1, CO2, and HCHO as well as RH and temperature in four height levels (15, 30, 45, and 406 

60 m) in five different locations within the area of Karunya Institute of Technology and Sciences, 407 

Karunya Nagar, Coimbatore.  408 

The gathered database was used to build a CHAID DT for each of the pollutants, considering 409 

different sampling locations for the analysis. The results indicate the weak role of height on the 410 

concentration of pollutants in the sampling locations, and instead, highlight the role of temperature 411 

and RH in this regard. Besides, to better visualize the relationship between the concentration of 412 
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each of the studied pollutants and height, RH, and temperature regardless of the specific sampling 413 

locations, new CHAID DTs were built for the pollutants, disregarding the sampling locations, and 414 

the extracted “if-then” rules were used to build fuzzy surfaces for each pollutant. These surfaces 415 

show that in comparison with the other studied pollutants, HCHO is more variant with the changes 416 

in height, and the concentration of HCHO changes more than the other pollutants by changing 417 

height and the RH level. The findings are then confirmed by the cluster analysis, which showed 418 

that meteorological parameters, regional transport, and atmospheric condition may play an 419 

essential role in the vertical distribution of air pollutants.  420 

The study area of Karunya Nagar is located in the southernmost part of the Indian peninsula and 421 

the prevailing air masses exert more influence on the concentration profile of air pollutants with 422 

different sources than inland cities. The significant impact of regional transport/ sources was 423 

analyzed using cluster analysis (back- trajectory). Cluster analysis of five days' hourly air mass 424 

back-trajectories suggests the contribution of possible sources of air mass transported over the 425 

observation site. The maximum contribution of air mass is from the Bay of Bengal, which 426 

contributes to the loading of pollutant concentration over a different altitude of India's rural area. 427 

Furthermore, the relationship between the vertical concentration of pollutants and meteorological 428 

parameters was observed by advanced statistical analysis. The outcomes of the study indicate the 429 

potential of identifying the vertical distribution of air pollutants by using UAV measurements. 430 

Besides, it can be realized from this study that transport, through both advection and convection, 431 

influences the vertical distribution of air pollutants as inferred from meteorological analysis, 432 

including back trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory 433 

(HYSPLIT4) model. The long-range transport of air mass could also contribute to the high 434 

concentration values of particulate matters, as found through the five-day air mass backward 435 
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trajectory analysis. Although the observed data sets are confined to a height of 60 m AGL, the 436 

results from this study provide insights into the vertical distribution of air pollutants, 437 

complementing ground-based measurement variations with different spacing and timing. 438 

However, further studies are suggested to clarify the different times (other times of the day), 439 

space/locations, and extended altitudes to gain insights into the vertical profile/movement of air 440 

pollutants upward. 441 

 442 

Acknowledgments 443 

We are thankful to Karunya Institute of Technology and Sciences Coimbatore, Tamil Nadu, India 444 

for providing us the required funding to complete this study. 445 

References  446 

Allaby, M., 2007. Encyclopedia of Weather and Climate. Rev. Facts on File (Facts on File science 447 

library, New York (2007). [Last Assess:13 July, 2021]. 448 

 449 

Argyropoulos, G., Grigoratos, T., Voutsinas, M., Samara, C., 2013. Concentrations and source 450 

apportionment of PM10 and associated elemental and ionic species in a lignite-burning 451 

power generation area of southern Greece. Environ. Sci. Pollut. Rea. 20, 7214 – 7230. 452 

Bates, T.S., Quinn, P.K., Johnson, J.E., Corless, A., Brechtel, F.J., Stalin, S.E., Meinig, C., 453 

Burkhart, J.F., 2013. Measurements of atmospheric aerosol vertical distributions above 454 

Svalbard, Norway, using unmanned aerial systems (UAS). Atmos. Meas. Tech. 6, 2115 – 455 

2120. https://doi.org/10.5194/amt - 6 -2115 -2013  456 

https://doi.org/10.5194/amt%20-%206%20-2115%20-2013


22 
 

Baumbach, G., Vogt. U., 2003. Influence of inversion layers on the distribution of air pollutants 457 

in urban areas. Water Air Soil Pollut. 3 (5–6), 65-76. 458 

Borbély-Kiss, I., Koltay, E., Szabó, G.Y., Bozó, L., Tar, K., 1999. Composition and sources of 459 

urban and rural atmospheric aerosol in eastern Hungary. J. Aero. Sci. 30, 369 – 391.  460 

Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., Deangelo, B.J., Flanner, M.G., 461 

Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., 462 

Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., 463 

Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., 464 

Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., 2013. Bounding the 465 

role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. 466 

Atmos. 118, 5380 –5552. https://doi.org/10.1002/jgrd.50171   467 

Chilinski, M.T., Markowicz, K.M., Markowicz, J., 2016. Observation of vertical variability of 468 

black carbon concentration in lower troposphere on campaigns in Poland. Atmos. Environ. 469 

137, 155 –170. https://doi.org/10.1016/j.atmosenv.2016.04.020  470 

Ding, A., Wang, T., Xue, L., Gao, J., Stohl, A., Lei, H., Jin, D., Ren, Y., Wang, X., Wei, X., Qi, 471 

Y., Liu, J., Zhang, X., 2009. Transport of north China air pollution by midlatitude cyclones: 472 

Case study of aircraft measurements in summer 2007. J. Geophys. Res. Atmos. 114, 1 –16. 473 

https://doi.org/10.1029/2008JD011023 474 

Draxler, R., Stunder, B., Rolph, G., Stein, A., Taylor, A., 2014. HYSPLIT4 user’s guide version 4 475 

- Last revision: September 2014. 476 

https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1016/j.atmosenv.2016.04.020
https://doi.org/10.1029/2008JD011023


23 
 

Essa, K.S.M., Mubarak, F., Elsaid, S.E.M., 2006. Effect of the plume rise and wind speed on 477 

extreme value of air pollutant concentration. Meteorol. Atmos. Phys. 478 

https://doi.org/10.1007/s00703 -005 -0168 - 1  479 

Ferrero, L., Mocnik, G., Ferrini, B.S., Perrone, M.G., Sangiorgi, G., Bolzacchini, E., 2011. Vertical 480 

profiles of aerosol absorption coefficient from micro -Aethalometer data and Mie 481 

calculation over Milan. Sci. Total Environ. 409, 2824 –2837. 482 

https://doi.org/10.1016/j.scitotenv.2011.04.022  483 

Ferrero, L., Perrone, M.G., Petraccone, S., Sangiorgi, G., Ferrini, B.S., Lo Porto, C., Lazzati, Z., 484 

Cocchi, D., Bruno, F., Greco, F., Riccio, A., Bolzacchini, E., 2010. Vertically - resolved 485 

particle size distribution within and above the mixing layer over the Milan metropolitan 486 

area. Atmos. Chem. Phys. https://doi.org/10.5194/acp -10 -3915 -2010 487 

Gao, Y., Wang, Z., Li, C.Y., Zheng, T. and Peng, Z.R., 2021. Assessing neighborhood variations 488 

in ozone and PM2. 5 concentrations using decision tree method. Building and 489 

Environment, 188, p.107479. 490 

Gautam, S., Kumar, P., Patra, A.K., 2016. Occupational exposure to particulate matter in three 491 

Indian opencast mines. Air Qual. Atmos. Health 9(2), 143-158. 492 

Gautam, S., Patra, A.K., 2015. Dispersion of particulate matter generated at higher depths in 493 

opencast mines Environ.Technol. Inn. 3, 11-27.  494 

Gollakota, A.R.K., Gautam, S., Santosh, M., Sudan, H.A., Gandhi, R., Jebadurai, V.S., Shu, CM., 495 

2021. Bioaerosols: characterization, pathways, sampling strategies, and challenges to geo-496 

environment and health. Gondwana Research 99, 178-203, doi.org/10.1016/j.gr.2021.07.003. 497 

https://doi.org/10.1007/s00703%20-005%20-0168%20-%201
https://doi.org/10.1016/j.scitotenv.2011.04.022
https://doi.org/10.5194/acp%20-10%20-3915%20-2010


24 
 

Günter Baumbach. Air Quality Control. Formation and Sources, Dispersion, Characteristics and 498 

Impact of Air Pollutants? Measuring Methods, Techniques for Reduction of Emissions and 499 

Regulations for Air Quality Control. Springer Berlin Heidelberg (Environmental 500 

Engineering), Berlin, Heidelberg (1996). 501 

Guzmán-Torres, D., Eiguren-Fernández, A., Cicero-Fernández, P., Maubert-Franco, M., Retama-502 

Hernández, A., Villegas, R., Rafael, Miguel, A. H., 2009. Effects of meteorology on diurnal 503 

and nocturnal levels of priority polycyclic aromatic hydrocarbons and elemental and organic 504 

carbon in PM10 at a source and a receptor area in Mexico City. Atmos. Environ. 43 (17), 2693-505 

2699.  506 

Hagenauer, J. and Helbich, M., 2017. A comparative study of machine learning classifiers for 507 

modeling travel mode choice. Expert Systems with Applications, 78, pp.273-282. 508 

Han, S., Zhang, Y., Wu, J., Zhang, X., Tian, Y., Wang, Y., Ding, J., Yan, W., Bi, X., Shi, G., Cai, 509 

Z., Yao, Q., Huang, H., Feng, Y., 2015. Evaluation of regional background particulate 510 

matter concentration based on vertical distribution characteristics. Atmos. Chem. Phys. 15, 511 

11165 –11177. https://doi.org/10.5194/acp -15 -11165 -2015  512 

Huang, C. and Lin, Y., 2013. "Applying CHAID algorithm to investigate critical attributes of void 513 

formation in QFN assembly", Soldering & Surface Mount Technology, Vol. 25 No. 2, pp. 514 

117-127. https://doi.org/10.1108/09540911311309086Janhall, S., Olofson, K., Andersson, 515 

P., Pettersson, J., Hallquist, M., 2006. Evolution of the urban aerosol during winter 516 

temperature inversion episodes. Atmos. Environ. 40 (28), 5355-5366. 517 

Kass, G.V., 1980. An exploratory technique for investigating large quantities of categorical data. 518 

Journal of the Royal Statistical Society: Series C (Applied Statistics), 29(2), pp.119-127. 519 

https://doi.org/10.5194/acp%20-15%20-11165%20-2015


25 
 

Klompmaker, J.O., Montagne, D.R., Meliefste, K., Hoek, G., Brunekreef, B., 2015. Spatial 520 

variation of ultrafine particles and black carbon in two cities: Results from a short -term 521 

measurement campaign. Sci. Total Environ. 508, 266 –275. 522 

https://doi.org/10.1016/j.scitotenv.2014.11.088  523 

Lee, M., Brauer, M., Wong, P., Tang, R., Tsui, T.H., Choi, C., Cheng, W., Lai, P.C., Tian, L., 524 

Thach, T.Q., Allen, R., Barratt, B., 2017. Land use regression modelling of air pollution in 525 

high density high rise cities: A case study in Hong Kong. Sci. Total Environ. 526 

https://doi.org/10.1016/j.scitotenv.2017.03.094  527 

Lei, X., Xiu, G., Li, B., Zhang, K., Zhao, M., 2016. Individual exposure of graduate students to 528 

PM2.5 and black carbon in Shanghai, China. Environ. Sci. Pollut. Res. 23, 12120 – 12127. 529 

https://doi.org/10.1007/s11356 -016 -6422 - x  530 

Li, Y.J., Lee, B.P., Su, L., Fung, J.C.H., Chan, C.K., 2015. Seasonal characteristics of fine 531 

particulate matter (PM) based on high -resolution time -of-flight aerosol mass 532 

spectrometric (HR -ToF -AMS) measurements at the HKUST Supersite in Hong 533 

Kong.Atmos. Chem. Phys. 15, 37 –53. https://doi.org/10.5194/acp -15 -37 -2015  534 

Liu, B., He, M.M., Wu, C., Li, J., Li, Y., Lau, N.T., Yu, J.Z., Lau, A.K.H., Fung, J.C.H., Hoi, K.I., 535 

Mok, K.M., Chan, C.K., Li, Y.J., 2019. Potential exposure to fine particulate matter 536 

(PM2.5) and black carbon on jogging trails in Macau. Atmos. Environ. 198, 23 – 33. 537 

https://doi.org/10.1016/j.atmosenv.2018.10.024  538 

Lu, Y., Zhu, B., Huang, Y., Shi, S., Wang, H., An, J., Yu, X., 2019. Vertical distributions of black 539 

carbon aerosols over rural areas of the Yangtze River Delta in winter. Sci. Total Environ. 540 

https://doi.org/10.1016/j.scitotenv.2019.01.170  541 

https://doi.org/10.1016/j.scitotenv.2014.11.088
https://doi.org/10.1016/j.scitotenv.2017.03.094
https://doi.org/10.5194/acp%20-15%20-37%20-2015
https://doi.org/10.1016/j.atmosenv.2018.10.024
https://doi.org/10.1016/j.scitotenv.2019.01.170


26 
 

Minguillón, M.C., Brines, M., Pérez, N., Reche, C., Pandolfi, M., Fonseca, A.S., Amato, F., 542 

Alastuey, A., Lyasota, A., Codina, B., Lee, H.K., Eun, H.R., Ahn, K.H., Querol, X., 2015. 543 

New particle formation at ground level and in the vertical column over the Barcelona area. 544 

Atmos. Res. 164 –165, 118 –130. https://doi.org/10.1016/j.atmosres.2015.05.003  545 

Mijling, B., Van Der, R. J., 2012. Using daily satellite observations to estimate emissions of short-546 

lived air pollutants on a mesoscopic scale. J. Geophys. Rea. Atmos. 117, D17302.  547 

Moreno-Ríos, A.L., Tejeda-Benitez, L. and Bustillo-Lecompte, C., 2021. Sources, characteristics, 548 

toxicity, and control of ultrafine particles: An overview. Geoscience Frontiers, p.101147. 549 

Nair, V.S., Babu, S.S., Moorthy, K.K., 2008. Aerosol characteristics in the marine atmospheric 550 

boundary layer over the Bay of Bengal and Arabian Sea during ICARB: Spatial distribution 551 

and latitudinal and longitudinal gradients. Journal of Geophysical Research –Atmosphere, 552 

10.1029/2008JD009823.  553 

Olofson, K.F.G., Andersson, U. P., Hallquist, M., Ljungström, E., Tang, L., Chen, D., Pettersson, 554 

J.B.C., 2009. Urban aerosol evolution and particle formation during wintertime 555 

temperature inversions. Atmos. Environ. 43 (2),340-346. 556 

Onwuegbuzie, A.J. and Johnson, R.B. eds., 2021. The Routledge Reviewer’s Guide to Mixed 557 

Methods Analysis. Routledge. 558 

Panday, A. K., Prinn. R. G., 2009. Diurnal cycle of air pollution in the kathmandu valley, Nepal: 559 

observations. J. Geophys. Res., 114 (D9). 1295. 560 

https://doi.org/10.1016/j.atmosres.2015.05.003
https://doi.org/10.1029/2008JD009823


27 
 

Patra, A.K., Gautam, S., Majumdar, S., Kumar, P., 2016. Prediction of particulate matter 561 

concentration profile in an opencast copper mine in India using an artificial neural network 562 

model. Air Qual. Atmos. Health 9 (6), 697–711. (IF = 2.87) 563 

Peng, Z.R., Wang, D., Wang, Z., Gao, Y., Lu, S., 2015. A study of vertical distribution patterns of 564 

PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case 565 

in Hangzhou, China. Atmos. Environ. 123, 357 –369. 566 

https://doi.org/10.1016/j.atmosenv.2015.10.074  567 

Philip, S., Eric L., 2007. Vawdrey, Misty Corbett, Mark Erupe. Fine particle concentrations and 568 

composition during wintertime inversions in Logan, Utah, USA. Atmos. Environ. 41 (26), 569 

5410-5422.  570 

Praveen, P.S., Ahmed, T., Kar, A., Rehman, I.H., Ramanathan, V., 2012. Link between local scale 571 

BC emissions in the Indo -Gangetic plains and large scale atmospheric solar absorption. 572 

Atmos. Chem. Phys. 12, 1173 –1187. https://doi.org/10.5194/acp -12 -1173 - 2012  573 

Ran, L., Deng, Z., Xu, X., Yan, P., Lin, W., Wang, Y., Tian, P., Wang, P., Pan, W., Lu, D., 2016. 574 

Vertical profiles of black carbon measured by a micro -aethalometer in summer in the 575 

North China Plain. Atmos. Chem. Phys. 16, 10441 –10454. https://doi.org/10.5194/acp -576 

16 -10441 -2016  577 

Ranjbari, M., Shams Esfandabadi, Z., Scagnelli, S. D., Siebers, P.-O., & Quatraro, F. (2021). 578 

Recovery agenda for sustainable development post COVID-19 at the country level: 579 

developing a fuzzy action priority surface. Environment, Development and Sustainability, 580 

0123456789. https://doi.org/10.1007/s10668-021-01372-6 581 

https://doi.org/10.1016/j.atmosenv.2015.10.074
https://doi.org/10.5194/acp%20-12%20-1173%20-%202012
https://doi.org/10.5194/acp%20-16%20-10441%20-2016
https://doi.org/10.5194/acp%20-16%20-10441%20-2016


28 
 

 Rashidi, S., Ranjitkar, P. and Hadas, Y., 2014. Modeling bus dwell time with decision tree-based 582 

methods. Transportation Research Record, 2418(1), pp.74-83. 583 

Ravina, M., Shams Esfandabadi, Z., Panepinto, D., Zanetti, M.C., 2021. Traffic-induced 584 

atmospheric pollution during the COVID-19 lockdown: Dispersion modeling based on 585 

traffic flow monitoring in Turin, Italy. J. Clean. Prod. 586 

https://doi.org/10.1016/j.jclepro.2021.128425 587 

Retama, A., Baumgardner, D., Raga, G.B., McMeeking, G.R., Walker, J.W., 2015. Seasonal and 588 

diurnal trends in black carbon properties and co -pollutants in Mexico City. Atmos. Chem. 589 

Phys. 15, 9693 –9709. https://doi.org/10.5194/acp -15 -9693 -2015  590 

Samad, A., Vogt, U., Panta, A., & Uprety, D., 2020. Vertical distribution of particulate matter, 591 

black carbon and ultra-fine particles in Stuttgart, Germany. Atmos. Pollut. Res. 11(8), 592 

1441–1450. 593 

Schuyler, T., Guzman, M., 2017. Unmanned Aerial Systems for Monitoring Trace Tropospheric 594 

Gases. Atmosphere (Basel). 8, 206. https://doi.org/10.3390/atmos8100206  595 

Silva, L.F., Santosh, M., Schindler, M., Gasparotto, J., Dotto, G.L., Oliveira, M.L. and Hochella 596 

Jr, M.F., 2021. Nanoparticles in fossil and mineral fuel sectors and their impact on 597 

environment and human health: A review and perspective. Gondwana Research 92, 184-598 

201. 599 

Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. Noaa’s 600 

hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 601 

96, 2059 –2077. https://doi.org/10.1175/BAMS - D -14 -00110.1  602 

https://doi.org/10.1016/j.jclepro.2021.128425
https://doi.org/10.5194/acp%20-15%20-9693%20-2015
https://doi.org/10.3390/atmos8100206
https://doi.org/10.1175/BAMS%20-%20D%20-14%20-00110.1


29 
 

Strawbridge, K.B., Snyder, B.J., 2004. Daytime and nighttime aircraft lidar measurements 603 

showing evidence of particulate matter transport into the Northeastern valleys of the Lower 604 

Fraser Valley, BC. Atmos. Environ. 38, 5873 –5886. 605 

https://doi.org/10.1016/j.atmosenv.2003.10.036  606 

Tang, G., Zhang, Jinqiang, Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, 607 

Junke, Wang, L., Xin, J., Suppan, P., Wang, Y., 2016. Mixing layer height and its 608 

implications for air pollution over Beijing, China. Atmos. Chem. Phys. 16, 2459 –2475. 609 

https://doi.org/10.5194/acp -16 -2459 -2016  610 

Vardoulakis, S., Giagloglou, E, et al., 2020. Indoor exposure to selected air pollutants in the home 611 

environment: A systematic review. International Journal of Environmental Research and 612 

Public Health 17, 8972.  613 

Villa, T., Salimi, F., Morton, K., Morawska, L., Gonzalez, F., 2016. Development and Validation 614 

of a UAV Based System for Air Pollution Measurements. Sensors 16, 2202. 615 

https://doi.org/10.3390/s1612220 2  616 

Wang, Y.Q., Zhang, X.Y., Sun, J.Y., Zhang, X.C., Che, H.Z., Li, Y., 2015. Spatial and temporal 617 

variations of the concentrations of PM 10 , PM 2.5 and PM 1 in China. Atmos. Chem. 618 

Phys. Discuss. 15, 15319 –15354. https://doi.org/10.5194/acpd -15 -15319 -2015  619 

Zoras, S., Triantafyllou, A.G., Deligiorgi, D., 2006. Atmospheric stability and PM10 620 

concentrations at far distance from elevated point sources in complex terrain: worst-case 621 

episode study. J. Environ. Manag. 80 (4), 295-302. 622 

Zhou, S., Peng, S., Wang, M., Shen, A., Liu, Z., 2018. The Characteristics and Contributing 623 

Factors of Air Pollution in Nanjing: A Case Study Based on an Unmanned Aerial Vehicle 624 

https://doi.org/10.1016/j.atmosenv.2003.10.036
https://doi.org/10.5194/acp%20-16%20-2459%20-2016
https://doi.org/10.3390/s1612220%202
https://doi.org/10.5194/acpd%20-15%20-15319%20-2015


30 
 

Experiment and Multiple Datasets. Atmosphere (Basel). 9, 343. 625 

https://doi.org/10.3390/atmos9090343. 626 

Figure captions 627 

Figure 1: Location of Karunya Nagar, Karunya Institute of Technology and Sciences in the Tamil 628 

Nadu State of southern India (red circle within map of India), with the flight site and the 629 

meteorological station.  630 

Figure 2. Box and Whisker plots for graphic presentation of the collected data for PM1, PM2.5, 631 

PM10, CO2, and HCHO in each of the five sampling locations  632 

Figure 3. The overall structure of the CHAID DT for PM1.  Locations are as follows. A: 633 

Administration Block; B: Bethesda; C: CTC Block; F: Flight Hangar; P: Petrol Pump. 634 

 635 

Figure 4. The overall structure of the CHAID DT for PM2.5. Locations are as follows. A: 636 

Administration Block; B: Bethesda; C: CTC Block; F: Flight Hangar; P: Petrol Pump. 637 

Figure 5. The overall structure of the CHAID DT for PM10. Locations are as follows. A: 638 

Administration Block; B: Bethesda; C: CTC Block; F: Flight Hangar; P: Petrol Pump. 639 

Figure 6. The overall structure of the CHAID DT for CO2. Locations are as follows. A: 640 

Administration Block; B: Bethesda; C: CTC Block; F: Flight Hangar; P: Petrol Pump. 641 

Figure 7. The overall structure of the CHAID DT for HCHO. Locations are as follows.: A: 642 

Administration Block; B: Bethesda; C: CTC Block; F: Flight Hangar; P: Petrol Pump. 643 

Figure 8. The concentration of pollutants based on temperature and RH. 644 

https://doi.org/10.3390/atmos9090343
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Figure 9. The concentration of pollutants based on temperature and height. 645 

Figure 10. The concentration of pollutants based on RH and height. 646 

Figure 11. Cluster analysis of five days’ hourly air mass back-trajectories arriving at 500 m AGL 647 

over the observation site. 648 

Table captions 649 

Table 1. The sequence of PM1, PM2.5, and PM10 concentration in the studied locations in terms of 650 

the minimum, lower quartile, mean, upper quartile, and maximum 651 

 652 



  

 

Figure 1: Location of Karunya Nagar, India. Karunya Institute of Technology and Sciences 

with the flight site and the meteorological station is denoted using a red dot in the picture at the 

lower-left portion of the figure. 
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Figure 2. Box and Whisker plots for graphic presentation of the collected data for PM1, PM2.5, 

PM10, CO2, and HCHO in each of the five sampling locations  



 

Figure 3. The overall structure of the CHAID DT for PM1 

 



 

Figure 4. The overall structure of the CHAID DT for PM2.5 



 

Figure 5. The overall structure of the CHAID DT for PM10 



 

Figure 6. The overall structure of the CHAID DT for CO2 

 



 

Figure 7. The overall structure of the CHAID DT for HCHO 
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Figure 8. The concentration of pollutants based on temperature and RH 
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Figure 9. The concentration of pollutants based on temperature and height 
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Figure 10. The concentration of pollutants based on RH and height 



 

Figure 11. Cluster analysis of five days’ hourly air mass back-trajectories arriving at 500 m 

AGL over the observation site.  



Table 1. The sequence of 𝑃𝑀1, 𝑃𝑀2.5, and 𝑃𝑀10 concentration in the studied locations in terms 

of the minimum, lower quartile, mean, upper quartile, and maximum 

Value  Location 

Pollutant concentration (µ𝒈 𝒎𝟑⁄ ) 

PM1 PM2.5 PM10 

Minimum Administration Block 25 28 42 

 Flight Hangar 18 24 28 

 CTC Block 26 34 39 

 Bethesda 12 24 26 

 Petrol Pump 40 57 73 

Lower quartile Administration Block 36 49 61 

 Flight Hangar 34 46 57 

 CTC Block 30 38 46 

 Bethesda 22 28 31 

 Petrol Pump 46 62 78 

Median Administration Block 38 54 67 

 Flight Hangar 40 58 73 

 CTC Block 42 58 72 

 Bethesda 40 58 74 

 Petrol Pump 48 63 80 

Mean  Administration Block 40.81 55.33 68.68 

 Flight Hangar 42.01 55.71 69.14 

 CTC Block 40.23 54.11 66.74 

 Bethesda 40.21 54.20 65.80 

 Petrol Pump 52.79 69.91 87.01 

Upper quartile Administration Block 45 60 74 

 Flight Hangar 51.5 66 82 

 CTC Block 45 61 76 

 Bethesda 49 66 84.25 

 Petrol Pump 51.25 67 85 



Maximum Administration Block 58 76 91 

 Flight Hangar 63 76 90 

 CTC Block 58 73 88 

 Bethesda 72 99 123 

 Petrol Pump 58 74 94 

 


