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Abstract—Adversarial machine learning manipulates
datasets to mislead machine learning algorithm decisions.
We propose a new approach able to detect adversarial
attacks, based on eXplainable and Reliable AI. The results
obtained show how canonical algorithms may have difficulty
in identifying attacks, while the proposed approach is able to
correctly identify different adversarial settings.

Index Terms—machine learning, detection algorithms, ad-
versarial machine learning, reliable

I. Introduction
A. Background

Machine learning (ML) is being increasingly adopted in
many fields of our lives today. It is used for image analytics
[1], diseases prevention [2], cyber-attacks discovery [3], [4],
in Industry 4.0 [5] and many other applications.

Because of this great spread, the risk of possible attacks
on ML systems increased in recent years, giving rise to
the adversarial machine learning. The main scope of these
attacks is the injection of malicious data (perturbed by
an attacker starting from legitimate data) with the aim of
making the algorithm fail its predictions [6]. The original
idea of adversarial attacks was related to misclassification
of images [7], then it was extended to other fields such as
intrusion detection systems [8].

B. Contribution
In this paper, we focus on a tough adversarial ML

setting, both in terms of the number of attacks, their
aggressiveness and with respect to a case study that is
already difficult by its nature. This demands for a brand
new approach, beyond canonical ML. Custom Reliable
AI approaches (built on existing explainable and black
box approaches) are then elaborated to individuate the
adversarial attacks; reliability allows to guarantee zero

statistical error and maximize the number of the detected
attacks. These approaches are compared to canonical ML
as well.

Specifically, two Reliable AI solutions are investigated.
The first is a novel scheme, in the black-box Support
Vector Data Description (SVDD) [9], [10] framework, here
re-designed to surround the adversarial attacks within a
controlled region [11], which we call the adversarial region.
The methodology also involves explainability through
proper rule extraction.

The second approach comprises three methods based on
a natively explainable model (the LLM), yet re-designed
for reliability [12]. The aim is the same as above for the
SVDD, but it is obtained through sensitivity analysis of
rules thresholds, until the constraint on false positives
(FPs) has come to convergence.

The performance evaluation of the case study will
corroborate the reliability of the threat detection, which is
otherwise very hard through canonical ML and shows that
at least one of the proposed algorithms outlines adversarial
regions with a good trade-off between false positives and
false negatives.

II. Related work
The topic of adversarial machine learning has been

largely investigated in the scientific community in recent
years. The consequent impact on AI certification is becom-
ing an urgent problem as well, see, e.g., [13] in the avionic
field (other examples may be related to automotive). Fig.
1 summarizes the EASA [13] concept of the ML lifecycle,
possible cyber-threats and related defense; the poisoning
attacks are those that corrupt the training data and lead
to contamination of the generated ML model, thus altering
predictions on new data.



Furthermore, [14] proposes a vision on the possible
adversarial attacks exploiting the CIA (confidentiality,
integrity and availability) requirements, with a focus on
a poisoning attack against images. Also [15] categorizes
the possible adversarial attacks occurring in cyber warfare
contexts, with focus on privacy issues.

Fig. 1. Illustration of defensive techniques of machine learning in
[13]

[16]–[18] instead analyze the bad consequences to which
these attacks can lead to, like misclassifications in the
medical field, where algorithm failures may not recognize
severe diseases.

The adversarial ML framework is also studied to en-
hance malware detection systems, where ML algorithms
are adopted to detect malicious mobile apps [19], [20].
Due to the high sensitivity of smartphones data, a correct
protection against malware is fundamental [21], [22]

Speech recognition is another field subject to adversarial
attacks.In [23], [24] the robustness of neural networks
for speech recognition to possible adversarial attacks
is investigated. Authors discover the weaknesses of the
recognition models towards these attacks.

A critical context where ML algorithms are widely used
is the Internet of Things (IoT). [25], [26] focus on how an
adversarial attack could alterate the detection of a cyber-
attack against IoT devices, generating unwanted alarms.
[27] studies an adversarial ML attack by using a partial-
model attack to manipulate the data fusion/aggregation
process of IoT: aim of this work is to lead the model to
take a wrong decision with respect to the input data of
the IoT sensors.

III. Work concept
A. Detection

We considered the following attacks: Carlini-Wagner
(CW) [28], the Fast Gradient Sign Method (FGSM) [29]
and the Jacobian based Saliency Map (JSMA) [6].

The detection phase involves the solution of canon-
ical supervised learning problem, combining legitimate
and adversarial data and training further ML models.
Both canonical ML algorithms and Reliable AI methods
are adopted to discriminate the attacks. The adopted
classifiers are designed to identify as many attacks as
possible (minimize false positives). In this way, some
legitimate data may be misclassified as malicious (increase

of false negatives), but a good balance is seeked under the
proposed Reliable AI. As to Fig. 1 again, our approach
consists in a defensive technique through robustness en-
hancement outside the main training model, which is
specific for the target application, e.g., visual landing,
predictive maintenance, see, e.g., the Annex 2 of the EASA
doc [13]. Our detection (through reliable ML) understands
if the inputs provided to the machine learning lifecycle
(yellow box in Fig. 1) are corrupted.

B. Attacker assumption
Adversarial machine learning algorithms require an un-

derlying algorithm as the victim of their attack. Assuming
that an attacker does not know the algorithms of a
detection system, in this paper we decided to adopt a
neural network as the victim of the various adversarial
ML attacks.

In particular, we implemented a neural network made
up of 3 layers with 512, 256 and 128 neurons respectively
and the output layers. The network is trained with
ReLu activation function for the hidden layers, a sigmoid
function for the output, an Adam optimizer with learning
rate of 1.0e − 5, 300 epochs and a batch size of 16. The
accuracy is stably around 95% during all the training
phase.

IV. Reliable AI

The proposed approaches identify means to surround
the adversarial class through confidence envelopes with
zero statistical error.

A. Safe SVDD
The SVDD algorithm [9], [10] is a versatile ML tool

that is well suited to the field of safety engineering and
cybersecurity [11], [30]. The zeroFPRSVDD algorithm
performs successive iterations of the SVDD on the safe
region, found with a preliminary SVDD, until there are
no more negative points inside it. We achieve convergence
when we reach a fixed number of iterations or when the
condition on FPR is satisfied.

Algorithm 1 zeroFPRSVDD
Data set X ×Y is divided in training
set Xtr × Ytr and test set Xts × Yts.
A threshold of ε is set.

1. S1 = SVDD(Xtr,Ytr)
2. Test S1 on Xts × Yts

3. maxiter=1000; i=2;
4. while(i < maxiter)
4.1. Xtri = Si(Xts);
4.2. Si = SVDD(Xtri ,Ytri )
4.3. Test Si on Xts × Yts

4.4. if(FPR< ε)
4.4.1. return S∗ = Si

4.5. end
4.6 i = i+ 1;
5. end



(a) FPR=0.925 (b) FPR=0.079

Fig. 2. Application of Algorithm 1 on a data set of 2000 target
objects sampled from a gaussian with mean [1, 1] and variance 4 and
100 negative examples sampled from a gaussian with mean [1, 1] and
variance 5. (a) is the first iteration of the algorithm and (b) is the
convergence at the 97th iteration.

B. Logic Learning Machine
Logic Learning Machine (LLM) is a supervised method

[31], developed by Rulex [32]. Considering classification
tasks, the LLM builds a set of M intelligible rules in if-
then format, predicting an output class value based on
the logical product of conditions on input variables.

Each rule rk, k = 1, . . . ,M can be evaluated by two
useful metrics, the covering C(rk) and the error E(rk),
defined as follows:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
, E(rk) =

FP (rk)

TN(rk) + FP (rk)
(1)

with TP (·), FP (·), TN(·), FN(·) being the confusion ma-
trix values associated to the classification of the data
through the rule. Both covering and error are useful to
define feature ranking and value ranking. Feature ranking
finds out the variables that have a greater impact on the
output based on a measure of relevance, which depends
on the error and covering measures (Eq. 4 in [33]). Value
ranking instead individuates the intervals of values, for
each attribute, that impact more on the rules output class.

1) LLM-driven reliable AI: For a XAI-driven detection
of adversarial attacks, we propose the novel application
of three methods, previously introduced in our work [12],
that exploit feature and value ranking to detect the highest
number of adversarial attacks with zero FPR: reliability
from outside, reliability from inside and LLM with zero
error.

The first two methods share the same methodological
approach, as summarized in Algorithm 2.

Let X be the input dataset, with D1 samples for class
y = 1 (adversarial class) and D0 samples for class y = 0
(legitimate class).

Algorithm 2 ReliabilityFromLLM
Inputs: dataset X ; number of features NFR;
candidate perturbations ∆ = (δ1, ..., δNFR

),
δj = (δsj , δtj ), j = 1, ..., NFR.

1. Apply LLM on X ;
2. Select features fj from feature ranking;
3. Find [sj , tj ] from value ranking;
4. Define logical OR:
I =

∪NFR
j=1 [sj , tj ];

5. Find hyper-rectangle:
P (∆) =

∪NFR
j=1 [sj ∓ δsj · sj , tj ± δtj · tj ];

6. Find optimal perturbations ∆∗

Both methods consist in determining the optimal shape
of an hyper-rectangle P(·), by finding the optimal pertur-
bations ∆∗ of value ranking thresholds.

This can be differently formalized in the following way.
Reliability from outside method starts from the other

class with respect to the target (Sec. 5.1 in [12]), y = 0 in
our case. Hence, the solution is found by solving:

∆∗ = arg min
∆:N0=D0

V(P(∆)) (2)

being N0 the number of elements in X classified as
y = 0 and included into P, with V being the volume of
P. Since the optimal P contains all legitimate points, the
complementary is considered as adversarial region.

Reliability from inside starts from the target class (see
Sec. 5.2 in [12]), i.e. class y = 1 in this case. The optimal
solution is as follows, with P (∆∗) being the adversarial
region:

∆∗ = arg max
∆:N0=0

V(P(∆)) (3)

Since hyper-rectangles shape might be too simple to
follow potentially complex boundaries between output
classes, another solution consists in joining (in OR op-
eration) the m0 highest covering rules obtained for the
adversarial class by training the LLM with 0% maximum
error (LLM 0% from now on, see Section 5.3 in [12]),
obtaining predictor r̂. Again, feature ranking can be
exploited to select NFR features and apply perturbations δ
on their most stringent thresholds present in r̂, thus having
r̂(δ). The optimal perturbations are chosen according to
the following problem:

δ∗ = arg max
δ:E(r̂(δ))=0

C(r̂(δ)) (4)

V. Tests and obtained results
A. DNS tunneling dataset

The used dataset represents a challenging scenario for
the detection even outside the adversarial scope. It deals
with covert channel detection in cybersecurity [4].

B. Canonical supervised learning with hyperparameter
optimization

In order to provide a first possible protection from
the adversarial machine learning attacks, we focused on
the adoption of classic machine learning (ML) algo-
rithms. As presented in Section V-A, we used the DNS
tunneling dataset for the experiments. We implemented
different classification algorithms.The algorithms were
implemented through the Sklearn [34] library, an open
source ML library for Python.

The dataset, composed by balanced legitimate and
malicious samples, was split in 70% of training and 30%
of test set.



-0.5 0 0.5 1 1.5 2 2.5 3 3.5

86

87

88

89

90

91

92

Fig. 3. 2D graph of the “adversarial region” (the red points are the
attacked ones) with mDt (average interarrival time between query
and answer packet over 1000 sample) and mQ (average size of query
packet) as input features of the jsma-DNS dataset. The star points
are the SVs of the description, coloured referring their specific label.

We consider hyperparameters optimization through Op-
tuna [35], which allows to find out a set of optimal
parameters for the models to improve their performance.

In our tests, 1000 parameter combinations with different
values (chosen by Optuna according to its intrinsic logic)
were performed for each algorithm to allow efficiency and
high variety of combinations.

Performance metrics are: false positive rate (FPR), true
positive rate (TPR), false negative rate (FNR) and true
negative rate (TNR). They are reported in Table I.

Looking at the results, in the FGSM and the JSMA
only the native SVM guarantee almost good performance,
except for CW in virtue of its larger complexity.

C. Obtained results with zeroFPRSVDD algorithm
The aim is now to determine the largest region of

parameters with no false positives (i.e. prediction of
attack, but no attack in reality). To do this, we applied the
algorithm proposed in Section IV-A using C1 = 1/ν1N1,
where N1 = #{yi = +1} and ν1 = 0.01 (i.e. we allow
the acceptance of up to 1% of negative objects in the
target class), C2 = 1/ν2N2 where N2 = #{yi = −1} and
ν2 = 0.05 (i.e. we allow up to 5% negative objects to be
included in the classifier shape) and RBF kernel with σ
determined with cross-validation. The results are shown in
Table II for the DNS tunneling dataset (a normalization
with the z-score has been performed to improve the
computational speed of the algorithm), where FPR, TPR,
TNR and FNR are the usual metrics for the confusion
matrix, #iter is the number of algorithm iterations,
#time (s) is the time in second for the convergence,
R2 is the squared hypersphere’s radius. The last column
holds the precision on the target class TP

TP+FP . When
compared to SVM algorithm (to which the SVDD is closely
related [9]) we can observe that the results have been
improved. It is also possible to combine SVDD and XAI

to obtain intelligible rules from the black box [11], [30].
The derivation of intelligible rules is made by proper
rule extraction. Differently from [11], we need a more
refined sampling of SVDD classification to derived the new
dataset, as performed in [30]. The sapling is performed by
setting a threshold ε, such that the extracted observations
are sufficiently close to the boundary of the trained and
tested SVDD. The first highest-covering rule (i.e. the rule
involving the largest number of data points, (1)) for the
class attack is

if (30931149 < vA ≤ 166588766) ∧
(211 < vQ ≤ 2604) ∧ (3779 < vDt ≤ 155832) ∧
(360 < sDt ≤ 392) ∧ (52 < sA ≤ 326) ∧
(368 < kDt ≤ 4874 ∧ (29 < kA ≤ 328)

then attack

The fact that the rules are very intricate and that each
rule involves almost all input parameters is because we are
approximating the nonlinear form of SVDD with hyper-
rectangles. To ensure acceptable prediction confidence
with these rules, a large amount of them is required: for
the cases in example, CW-DNS, the total number of rules
generated is 146, respectively. Moreover, having a high
number of rules means having low coverage for each rule:
this may suggest that, first, the task is very difficult but,
second, that the regions developed by SVDD are widely
and sporadically distributed inside the space of the input
parameters.

Algorithm 3 ExplainableSVDD
Get S∗ from zeroFPRSVDD
algorithm. Fix ε.

1. Sample uniformly a new dataset
Xnew s.t. xi ∈ Xnew ⇐⇒
| ||xi − a||2 −R2 | < ε

2. Classify Xnew in Ynew through
optimal zeroFPRSVDD (w.r.t. S∗)
3. Solve a classification problem via
LLM w.r.t. [Xnew,Ynew]
4. The LLM rules defines an
explained zeroFPRSVDD region R
5. return R

Below, Table III, are the statistics obtained by applying
Algorithm 3 for the previous data: the results are quite
good, keeping in mind that the classification problem
is very difficult and that the procedure of extracting
intelligible rules from the model can be affected by
overfitting and approximations.

D. Detection through LLM-driven Reliable AI
We now test the methods described in Sec. IV-B1 on

the DNS tunneling dataset. The LLM was trained with
the default 5% maximum error on a 70% portion of data
as training set (the same used for the other detection
algorithms).



CW JSMA FGSM
FPR TPR TNR FNR FPR TPR TNR FNR FPR TPR TNR FNR

Decision tree 0.50 1.00 0.50 0.00 0.25 1.00 0.75 0.00 0.50 1.00 0.50 0.00
Gradient boost 0.48 1.00 0.52 0.00 0.50 1.00 0.50 0.00 0.03 0.36 0.97 0.64
KNN 0.97 1.00 0.03 0.00 0.89 1.00 0.11 0.00 0.11 0.28 0.89 0.72
Logistic regression 0.49 0.99 0.51 0.01 0.09 0.98 0.91 0.02 0.03 0.99 0.97 0.01
Random forest 0.49 1.00 0.51 0.00 0.50 1.00 0.50 0.00 0.03 0.32 0.97 0.68
SVM 0.39 0.65 0.61 0.35 0.09 0.98 0.91 0.02 0.15 0.95 0.85 0.05

TABLE I
Canonical machine learning with hyperparameters optimization. FPR, TPR, TNR and FNR for each ML algorithm on the adversarial

attacks.

FPR TPR TNR FNR # iter # time (s) R2 PPV
CW 0.0422 0.3544 0.9578 0.6456 6 59.432 0.5019 0.8936

JSMA 0.1522 0.8589 0.8478 0.1411 2 30.445 0.6064 0.8495
FGSM 0.0344 0.7789 0.9656 0.2211 3 43.282 0.4129 0.9131

TABLE II
zeroFPRSVDD. Algorithm statistics after applying Algorithm 1 for the DNS tunneling dataset.

FPR TPR TNR FNR
CW 0.2388 0.3544 0.7611 0.6455
JSMA 0.2866 0.5366 0.7133 0.4633
FGSM 0.2866 0.2833 0.7133 0.7166

TABLE III
ExplainableSVDD. FPR, TPR, TNR and FNR for each attacked
DNS tunneling dataset based on the SVDD-LLM algorithm for

classification.

Concerning reliability from outside and inside methods,
we chose NFR = 2 and obtained the adversarial regions
shown in Tab. IV, along with the performance metrics
(FPR, TPR, TNR and FNR) as obtained when the regions
were evaluated on the test set.

METHOD ADVERSARIAL
REGIONS FPR TPR TNR FNR

CW Inside mA > 275.7 ∨
sDt > 70.65

0.03 0.45 0.97 0.55

CW Outside mDt < 0.34 ∧
vA < 25923

0 0.01 1 0.99

JSMA Inside mA > 275.7 ∨
kA > 6.99

0.03 0.93 0.97 0.07

JSMA Outside mA > 276.58 ∧
vA < 39286

0 0.72 1 0.28

FGSM Inside sA ≤ 1.63∨mA >
270.9

0.04 0.62 0.96 0.38

FGSM Outside sA ≤ 1.68∧mA >
275.02

0 0.25 1 0.75

TABLE IV
Inside and Outside. Adversarial regions obtained for DNS

tunneling with outside and inside methods.

By looking at the results, we can observe that a TPR
higher than 0.60 is reached for JSMA attack detection,
with both inside and outside methods, and for FGSM
detection with inside method: this means that more than
60% of attacks is detected in these cases. In particular, it
is worth underlying the surprising result on JSMA, that
can be recognized very well by using the inside method,
as shown in the plot in Figure 4). A way to look for more

Fig. 4. Adversarial Region obtained for JSMA attack in DNS
tunneling dataset by perturbing the intervals thresholds for features
mA and kA with inside method (TPR=0.93, FPR=0.03, TNR=0.97,
FNR=0.07).

refined regions than the sharp rectangles obtained so far
is provided by our third method: LLM0% (Eq. 4). First of
all, we trained the LLM model by setting the maximum
error allowed in each rule to 0%: this resulted in 364 rules
for CW attack with covering up to 38%, 40 rules with
covering up to 47% for FGSM and 7 rules with covering
up to 79% for JSMA.

For each attack case, we decided to select the first 5
highest-covering rules for the adversarial class and merged
them in logical OR. Then, we optimized the thresholds
of the conditions involving the first two most important
features, chosen according to LLM feature ranking, as ex-
pressed by Equation 4. The obtained performance metrics
are shown in Table V.

Although the optimal solution (zero FPR) is never
achieved, it is relevant to underline that LLM0% is the
only method, compared to inside and outside, that works
better on CW attack than on JSMA or FGSM. This is
in reason of the higher complexity involved in LLM 0%



FPR TPR TNR FNR
CW 0.04 0.44 0.96 0.56
JSMA 0.47 0.50 0.53 0.50
FGSM 0.39 0.42 0.61 0.58

TABLE V
LLM0%. Results of LLM0% on DNS tunneling dataset.

method (see Sec. IV-B1). For CW attack, we report the
LLM0% suboptimal predictor below, where the threshold
perturbations were applied to features mA and sDt.

if (mA > 291.83) ∨
(mA > 274.55 ∧ 26257 < vA ≤ 39245) ∨
(mA > 271.67 ∧ sDt > 8.14) ∨
(mA > 269.84 ∧ 8.98 < vDt ≤ 11179

∧ kDt > 55.19) ∨ (mDt > 0.95

∧ mA > 265.03 ∧ 223.15 < kQ ≤ 543101255)

then attack

E. On the choice of the best defense
The best algorithm is chosen as having the minimum

FPR (the target of Reliable AI), still maintaining a good
balance of FNR. This definition leads to inside method
as the best on CW (0.03 FPR, 0.55 FNR) and JSMA
(0.03, 0.07) and zeroFPRSVDD for FGSM detection (0.03,
0.22). zeroFPRSVDD and inside thus figure as the most
competitive and should be considered jointly if one wants
to build the right firewall in front of unknown adversarial
threats.

VI. Conclusion and future works
In this paper, we investigated an innovative approach to

detect adversarial machine learning attacks by comparing
canonical ML algorithms with an innovative approach
focused on a Support Vector Data Description (SVDD)
and a reliable approach based on explainable AI.

The study may extend the testing through deeper cross-
validation in the presence of a large amount of data,
including the adoption of explainable data augmentation
[2]. The characterization of the placement of the adver-
sarial points, as through rules or other means, deserves
further study to understand the behaviour of the attack
and profile personalized counterattacks. [33].
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