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Abstract—Translating high-level policies to lower-level network
rules is one of the main goals of control or data plane network
programmability. To further abstract requirements and propel
automation in networking, several industries have proposed the
paradigm of “network intent”. However, the translation from
intents to low-level policies is considered critical to program
data planes and other network elements, especially when dealing
with P4-enabled switches. In this paper, we present NLP4, an
architecture that helps translate intents, in the form of human
language, into data-plane programs, in the form of P4 rules.
In particular, NLP4 uses Natural Language Processing (NLP)
techniques to translate high-level human-language intents, a
MultiLayer Perceptron (MLP) model for processing the NLP
output and converting it into mid-level policy. An API then uses
this information, which separates the intent from the network to
generate commands readable by P4-enabled switches. Our initial
prototype on a network emulator validates our architecture for a
specific case: load profiling, demonstrating how even users with
limited P4 expertise may customize their networks by merely
specifying intents.

Index Terms—network intent, load profiling, machine learning

I. INTRODUCTION

Trying to make our networks more programmable has been
a goal of the networking research and business community
for the last few years [1]. Recent advances in data-plane
programmability have allowed implementing customized high-
speed network services directly into programmable switches.
Programming Protocol-independent Packet Processors (P4) is
an “open source, domain-specific programming language for
network devices, specifying how data plane devices (switches,
routers, NICs, filters, etc.) process packets” [2]. P4 language
allows network operators to realize custom network functions
without tailoring them to the specific networking hardware in
use.
The need for data plane intent programmability ab-
stractions. While P4 has been promising as it lets operators
customize network functions at a line rate, writing functional
P4 programs still arguably requires detailed knowledge and a
steep learning curve, even for networking experts.

The main focus of researchers in programming languages,
in general, and network programming languages, in particular,
has been on either making programming safer [3]–[5] or
easier [6]. Many successful studies have been conducted to

The work of Antonino Angi and Alessio Sacco was performed in the
Department of Computer Science at Saint Louis University.

reach these goals [7], [8]. Some of them focus on control plane
programmability, such as OpenFlow [9], others on making
easier or more elastic data plane programs [6], [10].

One of the aims of intent-driven networking is precisely this:
simplify network requirement specification, making network
programming accessible to inexperienced users. Others re-
searchers instead proposed applying natural language process-
ing for programming in general or network intents, as shown in
this recent survey [11]. A particularly inspiring approach was
proposed by Riftadi and Kuipers [12]. Their solution uses an
Intent Definition Language specifically for intent interpretation
and translation.
Our contribution. Inspired by their solution, we are taking
their approach one step further by applying Natural Language
Processing to close the loop. In particular, our solution, NLP4,
translates a specific input given by the user to a P4 program
so that the user can customize the network as he wants,
following the P4 criteria. This is done using a combination of
mechanisms, as shown in Figure 1. First, a user or a program
generates the intent; such intent is then preprocessed returning
an array that is tokenized and encoded using a dictionary
of words. Subsequently, we apply a MultiLayer Perceptron
(MLP) model to obtain an array where each cell corresponds
to the element of the network the intent is referred to. For
example, it can be a server, if the intent is to operate on servers
traffic, or ports of the switch, if the intent operates on the link
load. Independently of the network element, such mapping
gives information on the main goal, and to achieve this user
goal we modify the behavior of main network forwarding
elements. To do so, NLP4 contains an API used to convert
this encoded array into the P4-enabled switches’ configuration
files.

We then evaluate our approach with an initial prototype
tested over a virtual network testbed. The focus of our eval-
uation has been on a load profiling [13] use case, a superset
of load balancing. In particular, we evaluate how P4 switches
can be automatically programmed to meet the desired profile
of traffic expressed by the user.

The rest of the paper is structured as follows. Section II
presents other state-of-the-art solutions; in Section III we
give an overview on NLP4’s architecture. Possible application
examples are shown in Section IV. Our results are presented
and described in Section V. Finally, we conclude the paper in
Section VI.



II. RELATED WORK

Many studies have tried to automatize the network as much
as possible, proposing solutions that combine frameworks to
low-level policy translator [14], [15]. Some of them attempt
to improve the expressiveness of data-plane programming lan-
guages and facilitate customization and simulation on different
hardware vendors.

For example, Pyretic is a Python-based language that ab-
stracts the possibly complicated network rules [16]. Another
language, Merlin [17], was deployed with the goal of express-
ing networking rules as a series of logical predicates to manage
traffic among the network. P4 is another recent programming
language for data-plane programmable switches, which soon
became one of the most used [2]. However, experience with P4
programming has shown that it is not an easy programming
language, not providing enough abstract features. Many at-
tempts were made to make P4 easy writable; although it is still
challenging to write code with this programming language as
it is still very low-level [6]. Beside, these languages are more
focused on managing network administration issues rather
than identifying, understanding, and translating application
requirements.

To simplify coding in P4, researchers started using intents
and, in particular, intent-driven networking techniques, allow-
ing even inexperienced user to customize their networks, such
as Nile [18] and Marple [19]. Nile uses the human language to
retrieve the intent and get the feedback of the retrieved text to
improve other translations. Marple uses P4 to perform network
monitoring and performances evaluation, translating dynamic
queries into primitives where the result is stored. Despite being
very successful and helpful for future studies, these works still
do not help create the topology used by P4 at startup.

Recently organizations such as IETF and ONF have been
working hard to provide a NorthBound Interface (NBI) suit-
able for intent and applicable to SDN contexts [20]. Re-
searches have also added recent software techniques to provide
capacities of expressing intents more easily (e.g., human
language); see for example [14]. In particular, this work
focuses on applying a Behaviour Driven Development frame-
work in Python, behave, and combines it with intent-policy
translators and interpreters. However, this work does not allow
to customize a switch’s forwarding rules using data-plane
programming languages. Other recent solutions apply Machine
Learning (ML) techniques to abstract low-level network details
from a natural language and, specifically, from a text written
in English [21], [22].

Differently from previous work, we apply an Intent-Driven
API to interpret the user needs by converting those into
P4 configuration files applied directly to each switch of the
network, customizing their forwarding rules. This is possible
using Natural Language Processing and MultiLayer Perceptron
techniques, and we show how, thanks to the combination of
these mechanisms, even a non-experienced user can customize
a data plane for its network without having to code in P4.
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Fig. 1: NLP4: Overview and Workflow. The user intent is first
preprocessed and converted into an intermediate representa-
tion. Then, based on this, our API generates the commands
for P4 switches.

III. NLP4 ARCHITECTURE OVERVIEW

This section describes the main components of NLP4 fo-
cusing on its design particularities. As represented in Figure 1,
our solution is composed of three components operating
sequentially: (i) an NLP technique using text mining for
preprocessing purposes, (ii) an MLP model to process the
output from this first phase, (iii) and an API to finally add
the intent specification in the configuration files used by P4
switches. In particular, after the user has specified the intent
and desired behavior of the network, the NLP model processes
the natural language to obtain a compact representation that
expresses the context. This information is then used by the
MLP to generate the mid-level policy that is retrieved by our
API, responsible for populating the configuration file accepted
by the P4 switches when they startup.

A. Interpreting User Language via NLP

When a user specifies the intent, it can be done in English
or other natural languages as our solution is not language-
dependent. However, this intent might contain words not
beneficial for the general understanding that could increase
the computational time to retrieve the meaning of the phrase
or, even worse, could bring to a misunderstanding of the whole
sentence. For this purpose in NLP4, we use Natural Language
Processing (NLP) techniques as the first part of our process:
the preprocessing part.

NLP is a branch of Artificial Intelligence (AI) whose aim is
to understand the natural language and extract the main infor-
mation in order to perform activities such as content analysis,
chatbot, and sentiment analysis, but even preprocessing tasks.
NLP offers two main functionalities: Natural Language Under-
standing (NLU) and Natural Language Generation (NLG). The
former is used to convert the input into an easily analyzable
representation. Therefore NLU only focuses on catching the
meaning of the human language rather than processing it.
The latter generates text from various input representations.
Such a representation might be numerical or even visual input
data [23].

During this preprocessing phase, we first go into a text
cleaning function, which better organizes and structures our
intents, deleting potentially unnecessary words and punctua-
tion that could bring noise to our ML model, and returning
a list of tokens. Secondly, we transform our tokens into their
root form using normalizing rules.



In literature, there are alternative normalization techniques
to accomplish this goal: lemmatization and stemming. The first
uses vocabulary to reduce words to their dictionary form [24];
the second brings all words characterized by the same root
(stem) to their common form. A recent study [25] shows
that stemming performs better and gives better results with
short sentences. As for our intent-based network, we are not
expecting to have long queries as inputs; therefore, we decide
to go further with the stemming techniques, and especially
with the Porter’ stemmer, which is known nowadays as one
of the most used [24].

Lastly, since machines do not understand human language,
the NLP model needs to convert this knowledge into a numer-
ical representation. As such, it counts the words appearing on
the intent, tokenizes them, builds a dictionary, and generates
the final output in the form of an encoded vector. This vector
will be the input of the subsequent MLP module.

B. MLP for Mid-level Policy Generation

A MultiLayer Perceptron (MLP) is an artificial Neural Net-
work (NN) composed of one or more hidden layers between
the input and the output ones. Particularly, an MLP is a model
of NN which is fully connected, does not contain any loop
between nodes (i.e., is a feed-forward NN) and learns via
the Back-propagation approach. The main reason for using
an MLP model is to find sufficient parameters and good
generalization for classification or regression tasks because of
its flexibility when applied to different contexts and types of
data [26]. In an MLP model, the input layer is composed
of many neurons as the number of measurements for the
prediction model; meanwhile, the number of neurons in the
output layer equals the number of classes [27].

In our prototype, we set the MLP model with two hidden
layers: the first consists of 20 neurons (whose value is achieved
after a preliminary performance analysis) and uses the rectified
linear unit activation function; the second is characterized as
many neurons as the number of the network elements, i.e.,
servers or switches, of the topology, and uses the sigmoid
activation function.

The output of this MLP model is thus a mid-level policy that
encodes the action to the involved network elements. Finally,
these values are packed in a single vector and passed as input
to our Intent-Driven API.

C. Intent-Driven API

As the next and final step of our workflow, we use an
Application Programming Interface (API) to add the output
from the MLP model to the configuration files used by P4 at
startup.

Our API is written and follows the idea of behave, a
Behaviour Driven Development (BDD) framework. BDD is an
agile software technique that allows people with less technical
experience to specify some high-level requirements, avoiding
further low-level details on how to reach them. This can be
done by defining the needed specifics with a special language,
called Gherkin, which uses the Scenario-Given-When-Then

(SGWT) formula. BDD finds applicability for various pur-
poses [28], such as testing verification techniques for software-
defined networking behavior, despite its maintenance cost [29].

In NLP4, we use an Intent-Driven API in Python to convert
the the intent specification, which has already been processed
and analyzed by the NLP and MLP components, to a configu-
ration file for the P4 switches. We limit our focus to the switch
behavior so that, even when the intent is servers specific, we
configure the switches accordingly. For example, if the user
wants to disable a server, our solution would interact with the
switches by putting a weight of 0 to the port associated to that
server. In such a way, our approach with this API is shown
to be easily adaptable for users with minimal experience in
network management and coding.

Although P4 switches can be used for many purposes aside
from the simple forwarding, in this paper we limit the possible
P4 actions to a load profiling use case [13], [30], leaving the
implementation of other actions as future work. In this load
profiling scenario, we allow the user to specify how to split
traffic over outgoing links of a switch and the desired load
on these links. If links have different features or traffic have
different priorities, an unequal balance may be convenient,
where these balances constitute the profiles. Our P4-enabled
switches are thus programmed to read these profiles from the
configuration file and implement the desired policy.

D. P4-enabled Switches

For this solution, we used P4 programmable switches as it
is one of the most used programming languages that allows
customizing data-planes. However, the P4 syntax is quite
elaborate, and we argue that an intent-based approach to
program the switches can open new business opportunities and
new research activities.

P4 is composed of three main blocks: a parser, a match-
action pipeline, and a deparser. The parser is structured as a
finite-state machine used first to analyze and extract headers.
A packet, for example, could start with an Ethernet header,
followed by either IPv4 or IPv6 header; the parser extracts all
these headers, passing them to the match-action pipeline. The
match-action pipeline contains tables that P4 manipulates to
customize the switch behavior and perform routing strategies
according to the defined policy. The deparser is the last stage
of our P4 runtime, and it is used to collect the potentially
modified headers that have been through the match-action
pipeline.

It is well known that writing code in P4 is challenging,
especially for newbies. Since its commands must be executed
at line rate, P4 has limitations in the possible instructions.
For example, it does not allow loops cycles, and the code has
to be developed using switch-case and if-else cases. Although
developed with the idea of increasing abstraction from an even
lower-level language such as direct writing code for PISA
architecture, P4 is considered as a complex language due to the
limited available resources, the inability to use loops cycles,
and the little feedback that the compiler gives when there are
errors. This brings the programmer to make various trials and



errors, being guided by log files to understand how to fix the
code, which is an incredibly time-consuming process for the
programmer.

There have been steps to make P4 more abstract and easier
programmable, using shared modules in various applications
and switch specifications hardware. However, we are far from
considering P4 as a high-level language that newbies can easily
learn with no much effort [6]. There have also been studies
that enable users and applications to give requirements in the
form of intents and have them translated to a more low-level
language for data-plane programmable switches [12].

In NLP4, we modified our P4 code according to the intent
specified by the user. To do so, we stored the information
contained on the switches’ configuration files into registers that
are then retrieved at P4 startup. We wrote the code according
to P4 rules in which all the loop cycles were replaced with a
cascading series of if-cases, and the register could have only
been manipulated inside match-action tables.

Furthermore, when implementing the load profiling use
case, we created multiple match-action tables in order to
manipulate the registers that contained the intent specification.
This is due to P4 expressiveness limitations, which do not
allow a register to be manipulated inside if-else cases and we
have dealt the problem by moving the manipulation inside
apply modules when there is a match inside a table. This
simple example of P4 complexity further motivates an intent-
based architecture as the one proposed in this paper.

IV. ILLUSTRATIVE EXAMPLES

To explain the functionalities of NLP4 in general and of
each component, in this section we present two simple use
cases and the steps performed by NLP4 when dealing with
them.

A. Load Profiling

A possible intent specification is load profiling, in which
NLP4 is used to adapting the P4 switch behavior to network
operator demanded profiles. However, not necessarily the
user must specify the profiles, but he/she can express some
objectives. For example, a possible high-level intent can be
“Disable server 2 because of maintenance”. After the NLP
preprocessing we would get a dictionary of words:

{ ’ d i s a b l ’ : 1 , ’ s e r v e r ’ : 2 ,
’ 2 ’ : 3 , ’ ma in t en ’ : 4} .

Subsequently, we applied our MultiLayer Perceptron (MLP)
model to get a mid-level policy corresponding to the specified
intent. Our MLP model would return an array corresponding
to the elements on the network interested by the intent. In
our case, considering a topology composed of 4 servers,
the output would be: “[1 0 1 0 0]”, where the first value
indicates the intent main goal (presuming that “1” is linked to
“disable” in our dictionary), and the other values correspond
to the server which had to be applied. This specific vector
is then used by our API to create the configuration files
for all switches in the network to redirect traffic to other

Spine
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Switches
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Fig. 2: Network topology used in the experiments.

servers, while the switch attached to S1 would block that port.
While in this case the vector is referred to the servers, this
approach can be generalized to all elements on the network
(i.e. switches, servers, ports) so that it can easily reproduce
the intent specified by the user. The API detects the specific
element using the first value, and then configure the switches
accordingly.

B. Traffic priority

NLP4 can be also used to give priority to a certain traffic
coming from or going to a specified server. For example,
if the user wants to give priority to traffic on the network
going to/from a server, e.g., S1. As such, an intent might be
something like “On my network, I want to prioritize the traffic
of Server S1”. Our NLP preprocesses this sentence containing
operator’s intent tokenizing all words and performing the
Porter’ stemming algorithm. So the output from this initial
preprocessing phase would be “network, priorit, traffic, server,
s1”. After that, we converted this tokens into numbers so that
we could apply our ML algorithm. This task is performed
using an encoded vector with dictionary of words.

In our case, our tokens would be:

{ ’ ne twork ’ : 1 , ’ p r i o r i t ’ : 2 ,
’ t r a f f i c ’ : 3 , ’ s e r v e r ’ : 4 ,
’ s1 ’ : 5} .

After this conversion, our MLP model predicts the output
value for the encoded tokens, returning an array of values
where each cell corresponds to the servers of the network.
Still assuming the network consists of 4 servers, our output
would be “[2 2 1 1 1]”, where the first value corresponds to
the main goal of the intent taken from the dictionary, and the
other values correspond to the priority of servers’ traffic.

After this phase, our Intent-Driven API processes this vector
and append the traffic priorities in the configuration files that
are subsequently used and manipulated by P4 during its initial-
ization process. At run-time, the switch uses these weights for
forwarding packets directed to/from S1 with higher priority.

V. EVALUATION

This section describes our experimental settings and results
obtained over a virtual testbed, with particular focus on how
NLP4 works in the use case of intent-based load profiling.



A. Evaluation settings

Specifically, to test NLP4, we used Mininet, a network
emulator that gives the possibility to create virtual networks
and use them as a testbed for simulation purposes. As known
in [31], Mininet is specially adapted to deploy software-
defined networking (SDN) solutions, also using P4 as a
language to simulate various topologies and case scenarios.
We have set up a datacenter-like topology network with 10
servers connected to their switches which are consequently
connected to other 4 switches, in a leaf-spine fashion, as shown
in Figure 2. We set the links in the topology to have 100 Mbps
bandwidth.

For the language interpretation process, we considered a
MultiLayer Perceptron (MLP) algorithm with two connected
hidden layers. The first hidden layer consists of 20 neurons and
uses the rectified linear unit activation function; the second
and last layer uses the sigmoid activation function. In our
MLP model, the number of neurons is defined by the number
of elements to be profiled: they can be the servers of the
network, the switches, or the ports of a specified switch.
In the following, we consider the profiling of servers, and,
since our topology consists of 10 servers, the last layer of
MLP has 10 neurons. Our model’s number of layers, i.e.,
2, and neurons are set after testing the accuracy metric in
a preliminary performances analysis.

B. Evaluation results

In the following, we test the applicability of NLP4 when it
has different profiles of traffic to maintain in the network. After
converting load profiling intents into weights reported in the
configuration file, our P4 switches perform a weighted choice
when selecting the output links, so to match the traffic profile
chosen by the user. Load balancing can be one particular case
of traffic profiling, in which the network is optimized so that
the load is equally distributed among the various links attached
to the switch. Otherwise, in the more general case, the switch
directs the outgoing traffic according to the weights assigned
to its ports: ports with a higher weight are chosen more than
ports with a lower one.

To test if the network’s nodes can maintain the desired
profile, we generate traffic (ping requests) sending 1000 pack-
ets between two servers not in the same leaf. In Figure 3,
we compare the desired profile, specified by the user, and
the actual profile that we obtain from the experiments. Such
desired link load, only related to the leaf switches, are designed
for testing purposes and are randomly chosen. From the figure,
it is visible that the weighted port selection is coherent with
the expected profile through each port, and the desired traffic
is well maintained.

We then measure the overhead introduced by the execution
of NLP4, and we compute the execution time of the program
at varying the number of switches in the topology (Figure 4).
We can observe how as the number of switches in the network
increases, NLP4 maintains a limited execution time. This
proves that even in a real data-center scenario, where the
number of switches may be considerable, the execution time
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Fig. 4: Intent parser’s overhead (execution time) as the number
of P4 switches grows.

keeps being in the order of milliseconds. However, it must
be noted that our program should run only when we want to
change the load profile, whose occurrence is not very frequent.

VI. CONCLUSION

In this paper, we presented NLP4, an intent-based solution
that makes P4 data-plane programmability easier to implement
thanks to a combination of Natural Language Processing
(NLP) and MultiLayer Perceptron (MLP) techniques which led
to the definition of an Intent-Driven solution. Through NLP4,
even an inexperienced user can have his own customized net-
work by making programmable switches behave as specified
by the intent. Our preliminary results validate the validity
of our approach in the case of load profiling specifications.
Future work will consider more use cases, a more exhaustive
dataset of possible intents for the user, and generalization of
this solution to allow more switches actions.
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