POLITECNICO DI TORINO Repository ISTITUZIONALE

Corrections to "MagCAD: A Tool for the Design of 3-D Magnetic Circuits" (vol 3, pg 65, 2017)

Original Corrections to "MagCAD: A Tool for the Design of 3-D Magnetic Circuits" (vol 3, pg 65, 2017) / Riente, Fabrizio; Garlando, Umberto; Turvani, Giovanna; Vacca, Marco; Roch, Massimo Ruo; Graziano, Mariagrazia In: IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS ISSN 2329-9231 ELETTRONICO 3:(2017), pp. 111-111. [10.1109/JXCDC.2018.2794158]
Availability: This version is available at: 11583/2968711 since: 2022-06-27T16:54:10Z
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Published DOI:10.1109/JXCDC.2018.2794158
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Received 8 January 2018; accepted 12 January 2018. Date of current version 27 January 2018.

Digital Object Identifier 10.1109/JXCDC.2018.2794158

Corrections to "MagCAD: A Tool for the Design of 3-D Magnetic Circuits"

FABRIZIO RIENTE, UMBERTO GARLANDO, GIOVANNA TURVANI, MARCO VACCA, MASSIMO RUO ROCH, AND MARIAGRAZIA GRAZIANO

Electronics and Telecommunications Department, Politecnico di Torino, 10129 Turin, Italy CORRESPONDING AUTHOR: F. RIENTE (fabrizio.riente@polito.it)

In [1], Tables 2–5 in the results section report the performance of different logic circuits. Unfortunately, due to a mistake, the bounding box area reported for all circuits is higher than their actual value. Tables 2–5 in [1] are here reprinted with the correct area. Moreover, the bounding box area of the 4-bit RCA and the 32-bit RCA are 105.47 and 2191.77 μ m², respectively. The authors regret their mistake.

TABLE 2. Performance Analysis for a 2-D Minority Voter.

Minority Voter 2D				
Critical path = $5.82E-7 s$				
Bounding Box Area = $3.06 \ \mu m^2$				
Input pattern	Output	Latency		
ABC	О	[s]		
000	1	2.03E-6		
001	1	2.03E-6		
010	1	2.03E-6		
011	0	1.29E-6		
100	1	2.03E-6		
101	0	1.29E-6		
110	0	1.29E-6		
111	0	1.29E-6		

TABLE 3. Performance Analysis for a 3-D Minority Voter.

Minority voter 3D				
Critical path = $5.75E-7 s$				
Bounding Box Area = 2.45 μm^2				
Input pattern	Output	Latency		
ABC	О	[s]		
000	1	2.01E-6		
001	0	2.73E-6		
010	1	2.01E-6		
011	1	2.01E-6		
100	0	2.73E-6		
101	0	1.29E-6		
110	1	2.01E-6		
111	0	1.29E-6		

TABLE 4. Performance Analysis for a 3-D Crosswire.

Crosswire 3D				
Critical path = $8.52E-7 s$				
Bounding Box Area = $4.29 \ \mu m^2$				
Input pattern	Output	Latency		
AB	OUTA OUTB	[s]		
00	00	4.52E-6		
01	01	3.73E-6		
10	10	4.52E-6		
11	11	3.73E-6		

TABLE 5. Performance Analysis for a 3-D Full Adder.

Full Adder 3D				
Critical path = $6.26E-7 s$				
Bounding Box Area = 12.1 μm^2				
Input pattern	Output	Latency		
ABC	C _{out} S	[s]		
000	00	6.05E-6		
001	01	3.7E-6		
010	01	5.27E-6		
011	10	6.05E-6		
100	01	5.27E-6		
101	10	6.05E-6		
110	10	2.91E-6		
111	11	5.27E-6		

REFERENCES

[1] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. R. Roch, and M. Graziano, "MagCAD: Tool for the design of 3-D magnetic circuits," *IEEE J. Explor. Solid-State Computat. Devices Circuits*, vol. 3, pp. 65–73, 2017.