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Abstract.

Objective. Processing strategies are analysed with respect to the classification of

electroencephalographic signals related to brain-computer interfaces based on motor

imagery. A review of literature is carried out to understand the achievements

in motor imagery classification, the most promising trends, and the challenges in

replicating these results. Main focus is placed on performance by means of a rigorous

metrological analysis carried out in compliance with the international vocabulary of

metrology. Hence, classification accuracy and its uncertainty are considered, as well

as repeatability and reproducibility. Approach. The paper works included in the

review concern the classification of electroencephalographic signals in motor-imagery-

based brain-computer interfaces. Article search was carried out in accordance with

the PRISMA standard and 89 studies were included. Main results. Statistically-based

analyses show that brain-inspired approaches are increasingly proposed, and that these

are particularly successful in discriminating against multiple classes. Notably, many

proposals involve convolutional neural networks. Instead, classical machine learning

approaches are still effective for binary classifications. Many proposals combine

common spatial pattern, least absolute shrinkage and selection operator, and support

vector machines. Regarding reported classification accuracies, performance above the

upper quartile is in the 85 % to 100 % range for the binary case and in the 83 % to 93 %

range for multi-class one. Associated uncertainties are up to 6 % while repeatability

for a predetermined dataset is up to 8 %. Reproducibility assessment was instead

prevented by lack of standardization in experiments. Significance. By relying on

the analysed studies, the reader is guided towards the development of a successful

processing strategy as a crucial part of a brain-computer interface. Moreover, it

is suggested that future studies should extend these approaches on data from more

subjects and with custom experiments, even by investigating online operation. This

would also enable the quantification of the results reproducibility.
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1. Introduction

A brain-computer interface (BCI) provides a direct communication channel between

the user’s brain and external devices, thus enabling non-muscular interactions [1]. A

BCI involves three main steps: signals acquisition, processing, and translation into

a command. The BCI loop is then typically closed with feedback, which can be

either naturally or artificially provided. According to the degree of invasiveness of

the neuroimaging technique(s) adopted in brain signals acquisition, a BCI system can

be invasive, semi-invasive, or non-invasive [2]. In non-invasive BCIs, brain signals are

acquired without entering the scalp. Although less risky, the measurement of brain

activity is significantly affected with respect to invasive or semi-invasive techniques

[3]. Despite that, electroencephalography (EEG) is a widely spread non-invasive

technique [4]. In addition to non-invasiveness, its main advantages include high temporal

resolution, low cost, wearability, and portability.

A useful distinction between BCIs is carried out in terms of reactive, passive, and

active paradigms [5]. Reactive BCIs rely on the detection of brain potential evoked

by sensory stimulation, e.g. visual, auditory, or haptic [6, 7]. Passive BCIs are instead

based on spontaneous brain potentials whilst not involving voluntary control. These can

as an example improve human-computer interaction by considering cognitive mental

load [8, 9]. Finally, in active BCIs, the users voluntarily modulate their spontaneous

brain potentials as a means for communication and control. As an advantage, active

BCIs are independent of external events since they rely on performing intentional mental

tasks [10].

Among the active paradigms, motor imagery (MI) is widely exploited in BCI

research [11]. It consists of the imagination of a movement without its actual execution

[12]. MI generates phenomena known as event-related desynchronization and event-

related synchronization, a decrease or an increase in the power of sensorimotor rhythms,

respectively [13]. These brain rhythms are localized over sensorimotor areas in the µ

band (7Hz to 13Hz) and β band (13Hz to 30Hz) [14]. MI-BCIs have been extensively

used as assistive tools for disabled people [15]. The most important achievements

include rehabilitation [16–18], wheelchair control [19], cursor control [20,21], and spelling

systems [22]. Moreover, they appear as a promising technology also in virtual reality,

gaming, robotic arm control, and navigation in 2D and 3D environments [23–26].

As previously stated, independence from external stimuli is one of the main

advantages of active BCIs. This means that no additional hardware is required for

stimulation and asynchronous paradigms are theoretically possible. Nevertheless, a

relatively long training period is required for the users before being capable to modulate
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brain rhythms [11,27,28]. In addition, because of baseline brain activity overlapped with

the neurophysiological phenomena of interest, motor imagery detection is affected by low

signal-to-noise ratio [11], and within- and cross-subject variability must be handled [29].

These aspects imply lack of robustness for the system.

Many challenges must be still faced in order to bring MI-BCI systems into everyday

life [11, 30]. This is indeed true for signal acquisition, where the intention is to ensure

a reliable, affordable, wearable, and portable end-user device [11]. Nevertheless, much

research considers the development of EEG processing strategies for MI-BCI with the

aim of improving the classification performance [31–33]. A crucial point for a robust

and reliable system consists of achieving high classification performance indeed.

In recent years, many reviews resumed the characteristics of an MI-BCI [34], the

signals exploited in control applications [2], the most popular applications [35], their

usage in everyday life [4, 36], and open challenges along with possible solutions [37, 38].

Most reviews on MI focused on rehabilitation [15, 18, 39, 40]. Other studies, instead,

gave an overview of the most popular signal processing steps and strategies in MI

classification [11, 41], and deep learning techniques were of particular concern in recent

works [42, 43]. However, current reviews do not compare the studies in terms of

performance, and best strategies are merely highlighted per singular processing step,

without considering the processing strategy as a whole.

In the present work, after a preparatory overview of MI data creation, an analysis of

the state of the art is carried out by focusing on strategies proposed for MI processing.

Indeed, identifying a suitable signal processing approach is a crucial requirement in

building effective BCIs. The aim is to address the following questions:

• What levels of performance have been achieved so far in classifying EEG signals

associated with MI?

• Which are the most promising trends in MI-BCI processing? Are there common

elements in successful strategies?

• Which challenges should be addressed in terms of replication of the results?

Therefore, the remainder of the paper is organized as follows. Section 2 recalls

background knowledge associated with the creation of MI data. Section 3 states the

methods adopted in searching, selecting, and analysing the studies. Then, Section 4

reports the analysis carried out for the included studies. Finally, Section 5 discusses the

analysis results and addresses future challenges.

2. Background

Figure 1 represents a typical BCI system, including the acquisition block, the processing

block, and the final application. Before reviewing signal processing approaches, an

overview of MI data creation appears essential. This involves either the hardware and

the adopted experimental procedures. Hence, EEG signal acquisition is discussed in the

following, as well as typical experimental procedures applied in the MI-BCI field.
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Figure 1: Functional components of a MI-BCI system based on EEG.

2.1. EEG signal acquisition

Utmost signal quality can be achieved with wired EEG acquisition systems adopting a

large number of electrodes (typically up to 64 [44]) placed all over the scalp. A wired

system is little constrained in terms of transferable amount of data and latency, and

it is robust against packet loss and data corruption. However, the biggest drawback

of a cable connection is limited user’s mobility. The placement of electrodes on the

scalp is regulated by the international standards, such as the 10–20 system, or the 10-10

system [45, 46]. The actual number of electrodes do depend on the application, and

it could vary from as low as 1 to more than 200 [47]. The gold standard for clinical

recordings are wet electrodes. These typically have silver/silver chloride (Ag/AgCl)

coating, they use conductive gels or paste, and have a 1mm to 3mm diameter. The

gel ensures a proper skin-electrode contact, namely a low impedance at the skin-

electrode interface associated with good signal-to-noise ratio and high signal reliability.

Thus, voltages in the µV range can be accurately detected with down to 10ms time

resolution [47]. Setups with the mentioned characteristics are reasonably considered

a reference for EEG acquisition and they are commonly employed in research or even

clinical applications.

In recent times, an increasing number of attempts has been made to develop

EEG systems for ”out-of-the-lab” acquisitions [48]. Many of them are wireless devices

(commonly WiFi or Bluetooth), thus allowing freedom of movement at the expense of

greater latency and less robustness in data transmission if compared to wired devices.

In addition, they have a reduced number of electrodes with respect to reference EEG

setups. This clearly enhances usability and comfort for the end user, but it also implies
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that processing techniques must rely on a limited number of signals. In such a scenario,

conductive gels are undesirable. Thus, semi-dry or dry electrodes are used. The former

rely on electrolyte liquids, such as saline solution [49], while the latter do not need any

conductive gel or liquid, but they are usually made of conductive materials like foams,

rubbers, or carbon nanotubes [50–52].

Signal conditioning and digitization introduce reasonably negligible uncertainty

during acquisition, even in commercial setups [53]. Therefore, the bottleneck to signal

quality is in sensing with the electrodes.

EEG systems with wet and dry electrodes were compared in [54, 55]. While

confirming shorter preparation times for dry electrodes, lowering contact impedance

was time-consuming and these electrodes became uncomfortable after a few hours.

In [56], electrodes were also evaluated in a MI experiment by comparing them in

terms of mean accuracy on 20 subjects, and no significant difference was revealed in

distinguishing between left and right hand. Although dry and semi-dry electrodes are

suggested as suitable alternatives to wet ones by different studies [54–57], only a few

explicitly considered active BCI paradigms like MI. Instead, experiments were mostly

considering evoked potentials, and further studies would be needed to better evaluate

differences between electrodes for MI measurement. Hence, as it will be clear from

the following, many available data for MI were acquired with setups relying on wet

electrodes.

2.2. MI-BCI experimental procedures

The acquisition of EEG data requires specific procedures in order to investigate the

neurophysiological phenomena of interest or validate the design of a BCI device. MI

experiments usually take place over several sessions carried out on different days. Each

session is divided into parts referred to as “runs”, and a run consists of repeating different

tasks. Typically, the sequence of tasks is randomized while the number of trials per

each task is fixed. Two to four MI tasks are currently considered among imagining the

movement of a hand, both hands, a foot, both feet, the tongue, a wrist, an elbow, a

forearm, or fingers [43]. Furthermore, at the beginning of a session, the EEG might be

recorded during guided eye movements as a baseline for artifact removal.

Indeed, the BCI competitions held in 2000s [58–61] had a strong impact on the

BCI community. Their goal was to promote signal processing in the field of BCI and

challenge new paradigms and complex data [61]. The data generated in those events are

still largely used today, and they have been inspiring experimental procedures especially

in terms of timing schemes [62–65]. Two main timing schemes can be distinguished:

synchronous or asynchronous schemes [66]. In a synchronous BCI system, interactions

between the user and the system can only happen in specific time windows preceded

by a cue. Conversely, in an asynchronous BCI, the user can perform the mental task

at any time, though the distinction between an intentionally generated signal from

an involuntary one is non-trivial. Figure 2 reports a representative example of a
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Figure 2: A representative example of synchronous timing scheme for MI experiments [71].

synchronous MI experiment recalled from the BCI competition IV. This consists of

a cue-based paradigm where a single trial is divided into four main parts:

(i) an initial relax phase, often triggered by an acoustic signal, during which the user

has to stare at a fixation cross appearing at the center of a screen; the cross helps

the user to limit involuntary eye movements;

(ii) a cue phase, during which an indication is provided about the imagination task to

perform a while after;

(iii) an interval for performing the MI task, usually with a 3 s to 5 s duration;

(iv) an ending relax phase (break), whose duration is random (few seconds) to avoid

user’s adaptation to timing.

Different schemes were also proposed in accordance with specific experimental needs by

eventually relying on this basic scheme. For instance, some authors took into account

distinguishing between resting state and motor imagery [67], or others considered both

motor imagery and execution tasks [68]. Some studies also suggest to enlarge the

motor imagery window, e.g. up to 10 s, so as to make the system suitable for real-

time applications [69]. Finally, in some other paradigms, the cue and the onset of motor

imagery overlap [70].

A major limitation in MI-BCI is the user’s ability to properly imagine the

movement [72], and many training sessions are required before being able to modulate

sensorimotor rhythms. In these regards, neurofeedback is sought to improve MI training

by engaging the user while performing the mental task. Closing the sensorimotor loop

with neurofeedback is claimed to substantially change the way the user imagines a

movement [73]. Therefore, several experimental procedures include runs with online

EEG processing and sensory feedback [61, 74–76]. A typical timing scheme for MI

experiments with neurofeedback is compatible with the one of figure 2, with the

exception that the cue indication persists over all the MI period. Moreover, a sensory

feedback is given during the MI period thanks to an online classification of the ongoing

EEG signals. In classifying MI-related signals, the knowledge about the experimental
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procedure is surely essential, and the MI period must be usually extracted for processing.

In these regards, researchers are currently investigating how often the neurofeedback

should be provided [77], if to provide only positive or also negative feedback [69], and

whether multi-sensory feedback is better than unimodal one [78]. As a side note, some

researchers argue that feedbacks may introduce artifacts in the recorded signals [77],

and suitable paradigms should be used to investigate that. These questions remain

mostly unanswered due to the large number of involved variables, but sharing common

methods and paradigms should help in finding the answers.

3. Methods

The current section describes the methods adopted when reviewing the literature about

signal processing approaches for MI-BCIs. The aim was to compare the best processing

approaches for EEG signals classification and then guide the reader towards the

development of a successful processing strategy. In this regard, the studies were included

according to a standardized procedure, and particular attention was given to the

qualitative aspects of their proposals. Then, a rigorous analysis of the performance was

carried out by exploiting the framework established with the international vocabulary of

metrology. In doing that, statistical tools were employed for an objective quantification

of the classification performance.

3.1. Articles search and selection

The present study was carried out according to the “Preferred Reporting Items

for Systematic reviews and Meta-Analyses” (PRISMA) statement [79] schematically

represented in figure 3. The article search focused on paper works aiming to classify

MI signals in BCI systems, while papers primarily focusing on channel reduction or

strategies for improving training were not taken into account. To compare their results,

studies considering at least one public dataset were selected. This also guarantees

the repeatability of the reported results, i.e. the proposed processing can be applied

to the same experimental setting to assess the compatibility of the achieved results.

Furthermore, the reproducibility of the results can be evaluated by testing the proposed

strategies on different datasets, either public or non-public. Article search was carried

out by means of the Scopus and PubMed search engines. The following combinations of

keywords were exploited: (BCI AND motor AND imagery AND public AND dataset)

OR (BCI AND competition AND dataset) OR (motor AND imagery AND dataset). As

an alternative to BCI, its extended version (brain computer interface) was exploited.

Only journal papers, written in English, published between 2017 and 2021, and at the

final publication stage were included in the present study.

As a preliminary step, the duplicated papers were excluded. Thereafter, the title

and abstract of each record were screened. Part of them were then excluded according

to the following criteria:
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Records identified through database searching:

Scopus = 360, PubMed = 165

(n = 525)

Records screened on basis of title and 
abstract
(n = 365)

Reports excluded (n = 169) for 
not matching inclusion criteria:
• signal source, 
• dataset, 
• paper scope.

Full-text studies assessed for eligibility
(n = 196)

Reports excluded (n = 107) for 
not matching inclusion criteria:
• signal source, 
• dataset, 
• paper scope.

Id
en

tif
ic

at
io

n
In

cl
ud

ed Total studies included in qualitative 
synthesis
(n = 89)

Records after duplicates removed
(n = 365)

Sc
re

en
in

g
El

ig
ib

ili
ty

Figure 3: PRISMA flow diagram for identification, screening, eligibility, and inclusion of

relevant studies. The number of studies is reported for each step.

• signal source - only studies exploiting EEG signals were included, while

works considering neuroimaging techniques like fNIRS, ECoG, or even hybrid

combinations with EEG were excluded;

• dataset - works testing the proposed approaches by removing subjects from the

whole dataset without reasonable motivations were excluded, and datasets including

only one subject were excluded as well;

• paper scope - works aiming to improve the classification of MI were only included,

while articles related to topics like channel reduction or transfer learning for training

time improvement were excluded.

After that, the remaining papers were considered for eligibility by means of their full

texts. Part of them were furtherly excluded for not matching the aforementioned criteria.

Finally, a total of 89 studies were actually considered for the present review. Further
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details on screening and eligibility are shown in figure 3.

3.2. Data collection

The information extracted from the included studies was enclosed in the eight categories

reported below:

(i) dataset;

(ii) MI tasks;

(iii) pre-processing step;

(iv) features extraction step;

(v) feature selection step;

(vi) classification step;

(vii) assessment method;

(viii) performance.

Notably, in some approaches, the processing steps (iii)-(vi) may be indistinguishable.

Meanwhile, assessment methods refer to how data were used to validate the proposal,

and highest achieved results are reported as performance.

3.3. Metrological analysis

The included studies were analysed by relying on the results reported in the respective

studies. In carrying out a rigorous analysis, a metrological framework was adopted as

it provides a set of statistical tools for an objective quantification of results. Aspects of

concern were the uncertainty, the repeatability, and the reproducibility of the results.

In agreement with the international vocabulary of metrology [80], the uncertainty

characterizes the degree of dispersion of the classification performance, the repeatability

characterizes the dispersion of results when taking into account the same experimental

setups, while the reproducibility refers to the dispersion of results associated with setups

with differences under control. By exploiting a type-A statistical assessment [81], the

uncertainty of a mean performance value was calculated as the associated standard

deviation divided by the square root of the number of values contributing to the mean.

In the present analysis, the standard deviation was either retrieved from each study, or

it was calculated from the reported performance values. In calculating the repeatability,

the range of performance values was considered once the dataset was fixed. This

range corresponded to the difference between the maximum value and the minimum

one. Finally, the same criterion was used for calculating the range associated with the

reproducibility, though in this case the performance values were associated with different

datasets.

For comparison purposes, studies exploiting at least one public dataset had to be

considered in analysing MI-BCIs achievements. Then, a focus had to be made on metrics

for reporting the performance of MI-BCI prior to identifying the best proposals. Overall,
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Datasets Subjects Channels Tasks % of use

BCI competition IV-2a [71] 9 22 LH, RH, F, T 58

BCI competition IV-2b [26] 9 3 LH, RH 40

BCI competition III-4a [60] 5 118 RH, RF 30

BCI competition III-3a [60] 3 64 LH, RH, F, T 19

BCI competition IV-1 [61] 7 59 LH, RH, F 15

Dataset from GigaScience [82] 52 64 LH, RH 3

High-Gamma Dataset [83] 14 128 LH, RH, F, rest 3

PhysioNet EEG [84] 109 64
opening and closing left/right fist or

both fists/feet
2

MAMEM Phase I [85] 34 61 LH, RH 2

Upper limb movements [86] 15 61

elbow flexion/extension,

forearm supination/pronation,

hand open/close (right upper limb)

1

SMR-BCI [87] 14 15 RH, F 1

Dataset from Shanghai Jiao

Tong University (SJTU) [88]*
5 62 LH, RH 1

Table 1: Summary of public datasets employed by the studies included in the comparative

analysis. LH: left hand, RH: right hand, F: both feet, LF: left foot, RF: right foot, T: tongue.

*The dataset should be public but it is not available on any platform.

statistically-based analyses were carried out by considering the distribution of reported

performance, so to retrieve not only median performances, but also the most performing

approaches with results above the upper quartile of the distribution. The focus on most

promising approaches thus allowed to highlight promising trends in terms of successful

processing strategies. The results of collected data analyses are reported and discussed

in the following.

4. Results

In this section, analysis results are reported in terms of exploited data, processing

approaches, performance assessment methods, and achieved performance. Common

trends are highlighted by also considering their chronological evolution. In analysing

proposals and results, some hints are given on how to develop an effective processing

approach for MI classification. A focus on metrological aspects is given for a rigorous

quantification of current levels of performance and highlighting the possibility to

replicate most promising results.

4.1. Data

Twelve public datasets were exploited in total, including those made publicly available

by the BCI competitions. A brief description of these is given in table 1 and the

respective reference is indicated for further details. The highlighted information consists

of the number of participants, number of EEG channels, number of motor imagery tasks,
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and a percentage of usage for the dataset estimated from the included studies. Most

studies exploited more than one dataset to validate their methods. However, only a

limited percentage of the studies (9 out of 89) exploited their own data to furtherly

test the proposed methods. A detailed description of these non-public datasets is given

in table 2 for the sake of repeatability of the results. In addition to the reported

information, specifying the channel positions is also recommended. The considered

datasets as a whole, either public or non-public, relied on synchronous acquisition

paradigms, with the only exception of the dataset 1 from the BCI competition IV

and the online experiments carried out in [70,89], where an asynchronous paradigm was

adopted.

4.2. Processing approaches

Measured EEG signals contain artifacts from external sources (e.g. environmental)

and internal ones (e.g. physiological). A pre-processing phase is thus required in

order to improve the EEG signal quality, especially during online experiments [36].

Temporal and spatial filtering approaches are mostly used in MI-BCI [11]. Regarding

temporal filtering, Butterworth or Chebyshev filters with band from 8Hz to 30Hz are

typically applied to remove artifacts while preserving the information in µ and β bands.

Meanwhile, common average referencing and Laplacian spatial filters [95] are widely

used to extract spatial information associated with motor activities.

Time-domain, frequency-domain, and spatial domain are popular feature extraction

techniques in EEG-based MI-BCIs. Time-domain methods study sensorimotor rhythms

over time by means of statistics like mean, root mean square, standard deviation,

variance, skewness, and kurtosis [96], but also power analysis or auto-regressive (AR)

modelling [97] were explored, as well as graph-based methods [98]. These methods

typically operate channel-by-channel. In extracting frequency-domain information, the

most exploited methods are fast Fourier transform [33], power spectral density [20], and

band power [99]. Temporal or frequency features alone may not be sufficient for the

classifier. Therefore, time-frequency methods are employed too. Common algorithms

are the short-term Fourier transform [100] and the wavelet transforms [101]. Finally, in

the spatial domain, the most popular approach is the Common Spatial Pattern (CSP)

with its variants [38]. In order to retrieve band-specific information, this is often used in

combination with filter banks [102]. Independent Component Analysis (ICA) and the

Laplacian filtering are also used extensively for extracting spatial domain features [38].

Once features are extracted, a feature selection process is also required to eliminate

redundant information. Correlation criteria and mutual information are widely used

ones [11].

Lastly, classification strategies are involved. Common classification strategies are

decision trees [103], Support Vector Machines (SVM) [104,105], and Linear Discriminant

Analysis (LDA) [106], while most recent approaches are deep neural networks [107]

or spiking neural networks [108]. Notably, most recent approaches can accomplish
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Subjects Device
Electrode

type
Channels

Reference

channel

Ground

channel

Sample

rate (Sa/s)
Filters

Sessions

and trials
Tasks

[90] 12 64 250
8-30 Hz

BP

234 training

trials, 234

testing trials

LH, RH

[91] 12 Neuroscan 60 2 (n.s.) 1000 LH, RH

[67] 11
eegoTMrt

Ant Neuro
64 CPz AFz 512

0.5-40 Hz

BP
160 trials

dominant

hand MI

(kinesthetic

grasping)

[65] 8 Open BCI dry 8 Fz A2

5 sessions,

120 trials

per session

LH, RH,

LF, RF

[89] 8

UE-16B

EEG

amplifier

16 A1, A2 forehead 1000

100 Hz

LP,

50 Hz

notch

1 training

session

(100 trials),

1 online

session

LF, RH,

F, T

[92] 5 g.tec 2 Fz 256
50 Hz

notch
2 sessions LH, RH

[70] 5
Emotiv

Epoc+

semi

dry
6 P3 and P4 128

180 offline

trials, 420

online trials

LH, RH

[93] 5

SynAmps2

system

(Neuroscan)

21 vertex forehead 1000
0.5–200 Hz

BP

3 sessions,

40 trials

per session

RH index

finger

(extensions/

flexions),

idle state

[93] 4

SynAmps2

system

(Neuroscan)

27

mastoid

behind

the left

ear

forehead 1000
0.5–200 Hz

BP

3 sessions,

40 trials

per session

LH, RH

[94] 1
Emotiv

Epoc
128 160 trials LH, RH

Table 2: Details about the non-public datasets employed by the studies included in the

comparative analysis. Empty spaces are associated with unavailable information. Channel

position refers to the 10-20 or 10-10 standards. BP: band-pass, LP: low-pass. LH: left hand,

RH: right hand, F: both feet, LF: left foot, RF: right foot, T: tongue, (n.s.): not specified.

feature extraction, selection, and classification as a single pipeline. It is worth noting

that, especially with deep approaches, it is easy to incur in overfitting due to the

scarcity of available data [43]. To overcome this problem, data augmentation or transfer

learning strategies can be used. Data augmentation is a set of techniques aiming to

artificially increase the amount of available data by generating new data samples from

existing training data. In doing that, better generalization to further unseen data is

provided [109]. Meanwhile, transfer learning allows to train a model by relying on the

knowledge learned from another pre-trained model [43], with the advantage of reducing

training time.
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As a first result of the analysis, two main approaches could be distinguished for

signal processing in accordance with literature [110–112]: non-brain-inspired machine

learning approaches and brain-inspired ones. Overall, machine learning algorithms learn

from data without making data regularities explicit. Within this field, it appears useful

to underline the brain-inspired (BI) approaches due to the increasing interest on them.

Therefore, non-brain-inspired approaches (non-BI) consist of learning from data usually

by extracting features designed a-priori. They simply need to learn, through training,

how to handle each new problem. Examples of these algorithms are decision trees or

SVM. Meanwhile, BI approaches propose algorithms inspired by human neurons. The

neuron, or node, receives the input from external sources and, to produce an output, it

has weights, biases parameters, and activation functions to be learnt from data. Among

the BI approaches, three main sub-areas can be mentioned: artificial neural networks,

deep neural networks, and spiking neural networks. The first two cases take inspiration

from the value scaling performed by the synapses. Specifically, these algorithms consist

of a set of interconnected nodes (neurons), each one implementing a weighted sum of

input values and thresholding through a non-linear function. In designing a neural

network, their structure is merely defined, while the effective number of neurons and

their connections are identified by training the model. Each network has an input

layer, hidden layers, and an output layer. Actually, deep neural networks are a subset

of artificial ones in which more than one hidden layer is considered [111]. Spiking

neural networks are instead inspired by communication of dendrites and axons [108].

Hence, they are based on spike-like pulses. The information transmitted depends on

the amplitude of a spike and the time at which the pulse arrives. In addition, the

computation that occurs in the neuron is a function of the pulse amplitude and the

temporal relationship between different pulses.

In the current distinction, proposals exploiting a neural network for at least a part

of the processing fall into the BI category. As a whole, the included works could be

separated into 53% non-BI and 47% BI. However, by considering their chronological

evolution (figure 4), in the last 5 years non-BI approaches have been gradually less

exploited in favor of BI ones.

4.3. Assessment and performance

The reviewed papers reported results in terms of classification accuracy or equivalent

metrics like error rate and Cohen’s kappa coefficient. It is worth recalling that

classification accuracy measures the percentage of correctly predicted target trials with

reference to all available trials, the error rate is simply its complement, while the Cohen’s

kappa coefficient also takes into account the possibility of an agreement occurring by

chance [113]. Note that the concept of classification accuracy should not be confused

with the measurement accuracy, defined in [80] as the “closeness of agreement between

a measured quantity value and a true quantity value of a measurand”.

In assessing classification accuracy, different methods are adopted to split a dataset
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Figure 4: Percentage of studies proposing non-brain-inspired and brain-inspired approaches

in the last five years.

in training and evaluation data. The most frequently exploited are cross-validation and

hold-out. In cross-validation, the dataset is split into k parts (folds), where k-1 folds are

used to train the algorithm and the remaining one is used for evaluation. The splitting

is repeated k times and the mean accuracy over these iterations is given as the final

performance. A standard deviation is also associated with that. In the hold-out method,

the dataset is just split once into two parts, a part for training and a part for evaluation.

Therefore, accuracy is only calculated once.

In the present review, the 45% of works adopted cross-validation, with a number

of folds between 5 and 30, while the 37% of them exploited the hold-out method. The

remaining 8% includes unspecified methods or other methods such as cross-validation

on segmented trials and averaging over different training/test splits. Finally, the 10%

did not specify the adopted assessment method. A comparative analysis of assessment

methods was carried out through the box-plots of figure 5. Per each dataset, these were

built upon the reported mean accuracy across subjects. The three mostly used public

datasets (BCI competition IV-2a, BCI competition IV-2b and BCI competition III-4a)

were considered there to maximize the number of works to compare. Notably, the first

two cases in figure 5 are both related to BCI competition IV-2a with reference to 4-tasks

classification and 2-tasks classification, respectively. Interestingly, the cross-validation

outperforms hold-out in all cases except BCI competition IV-2b, whereas in that case

data were more variegated, e.g. EEG signals were acquired either with and without

feedback.
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Figure 5: Performances assessed with hold-out versus cross-validation on data from BCI

competitions.

4.4. Promising trends

In comparing the best processing approaches for MI, the datasets exploited at least

in 10% of the included studies were considered, namely the BCI competition IV-2a,

BCI competition IV-2b, BCI competition III-4a, BCI competition III-3a, and BCI

competition IV-I datasets. Note that the BCI competition IV-2a and BCI competition

III-3a datasets include up to four classes. Only two studies were excluded in this step

because they did not use any of the mentioned datasets, but only the PhysioNet EEG

dataset [114,115]. Per each dataset, a box-plot was built by relying on the respectively

reported accuracies (mean across subjects). All possible pairs of classes were considered

for the binary classification case (figure 6), which is distinguished from the multi-

class case considering all classes (figure 7). Proposals above the 75th percentile (upper

quartile) were better investigated as they are associated with the highest classification

accuracies (section 4.2). Outliers in the upper part of the box-plots deserved specific

attention because they are associated with a performance significantly higher than the

other observations. In the current case, one of such outliers indeed appeared. Figure 8

and figure 9 resume the publication years, processing strategies, and assessment methods

related to the binary and multi-class cases, respectively. For binary classification, highest

accuracies are concentrated in the last years, with more than half best performances

achieved in 2021. Non-BI approaches are dominant, but it should be taken into account

that, although they are increasing, there were fewer works exploiting BI approaches

in these 5 years. Lastly, the majority of works used cross-validation to assess the

performance. Even in the multi-class case, the best results were obtained in recent years,
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Figure 6: Box-plots of accuracies achieved in binary classification cases using the mostly

exploited public datasets.
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Figure 7: Box-plot of accuracies achieved in the multi-class cases using the mostly exploited

datasets.
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Figure 8: Analysis of most performing approaches in binary classification.
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Figure 9: Analysis of most performing approaches in the multi-class case.

particularly in 2021. This is also motivated by a greater number of works investigating

multi-class problems in recent years. Instead, unlike the binary case, BI approaches

stand out, while hold-out was preferred for performance assessment. These two facts

are correlated because cross-validation is typically needed in BI approaches to tune the

hyperparameters of the network (e.g. define the network structure), while hold-out is

then used to test the trained network.

4.5. Most performing approaches

The abovementioned best proposals were analysed in detail to highlight the best

strategies for a performant processing. The reported classification accuracies above the

upper quartile are in the 85% to 100% range for the binary case and in the 83% to 93%

range for the multi-class case. With the type-A statistical assessment method, it was

calculated that the uncertainty associated with these performance values is up to 6% in

binary classification, and up to 5% in the multi-class case. It is worth remarking that

type-A uncertainty assessment was here carried out by dividing the standard deviation

of the reported results by the square root of the number of available subjects. Therefore,

the lower the uncertainty, the more homogeneous the performance is across subjects.

The results suggest that there is no substantial difference in terms of uncertainty among

best approaches. Moreover, their overall classification performances are compatible

since the intervals defined by the respective mean accuracy and associated uncertainty

overlap. In terms of repeatability, the classification accuracies vary up to 7% in

the binary case and 8% in the multi-class case. These values were retrieved as the

difference between maximum and minimum classification accuracies associated with

most performing approaches per each dataset. Hence, they correspond to the upper tails

of box-plots shown in figure 6 and 7 for the binary and multi-class case, respectively.

Interestingly, best repeatability was achieved on the dataset BCI competition III-3a and

it resulted equal to 3% for both the binary and multi-class cases. However, performance

is assessed in this case on a limited number of subjects, which may not be a statistically

significant sample. Finally, if looking at the overall variation of classification accuracies

across datasets, reproducibility equals 15% and 10% for the binary and multi-class case,

respectively. However, this assessment merely refers to the mostly exploited datasets, i.e.

datasets from BCI competitions. Further considerations are prevented by the limited

number of studies exploiting different datasets, and, concerning non-public datasets,
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some information on the experimental setups is also missing, as already shown in table 2.

After these considerations, the analysis was carried on by distinguishing the two

main approaches. Overall, the most performing non-BI and BI approaches are resumed

in table 3 and table 4, respectively. In non-BI approaches, the achieved accuracies

span from 85% to 100% for the binary case and from 86% to 93% for the multi-

class case. About 8 studies out of 10 relied on features extraction strategies based on

CSP [116], sometimes in combination with further extraction techniques. About half

of the studies used the CSP in combination with classification based on a SVM [117].

This fact suggests that (i) the classical combination of CSP and SVM is effective and

(ii) the non-BI studies reaching the highest accuracy are mostly distinguished in terms

of pre-processing and feature selection techniques. In the pre-processing step, standing

out strategies consist of time segmentation of trials, a-priori selection of channels over

the sensorimotor area, and band-pass filtering often done over multiple bands [102]. The

wavelet transform is frequently exploited too [118,119]. Moreover, among studies using

CSP and SVM, least absolute shrinkage and selection operator (LASSO) [120] was also

used to select the most discriminating features. Notably, only two among the mostly

performing non-BI proposals were applied to the multi-class case.

In BI approaches, the achieved accuracies span from 82% to 99% for the binary

case and from 82% to 95% for the multi-class case. Only a single included work [108]

proposed spiking neural networks and the best reported accuracy was 91% in a multi-

class case, with 4% uncertainty. All the other works adopted artificial neural networks.

Among them, almost 7 out of 10 used deep neural networks, where convolutional layers

were mostly exploited. Recurrent neural networks like the long short-term memory

(LSTM) [121] and adversarial-based methods [31] were used as well. In the multi-class

cases, the mean classification accuracy of most performing deep neural networks resulted

equal to 85% with 4% uncertainty, while non-deep artificial neural networks did not

result among the most performing ones. Instead, non-deep artificial neural networks

are associated with a mean classification accuracy equal to 93% (and mean uncertainty

3%) in the binary cases. This should be compared to the 88±4% associated with deep

neural networks.

Overall, if taking into account the uncertainties, classification accuracy is relatively

compatible for the different BI approaches. However, there is a difference in terms

of mean accuracy. Finally, particularized considerations about repeatability and

reproducibility are prevented due to the lack of information for each sub-field of BI

approaches. This is also better commented later on. In general, it should be noted

that BI approaches are much more effective in multi-class classification than non-BI

approaches. Typically, for deep approaches the raw EEG signal [31, 32] or 2-D or 3-

D arrays obtained by Fourier or wavelet transforms [33, 107, 122] were given as input.

With a few exceptions [121, 123], features were extracted by hand mainly for the other

methods. As for the non-BI approaches, CSP or FBCSP were the most exploited feature

extraction algorithms.

In general, channel selection, time segmentation and band-pass filtering were
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largely used as pre-processing strategies for BI approaches. In addition, unlike non-

BI approaches, the need for a larger amount of training data emerged. Half of the

best proposals using convolutional networks exploited data augmentation strategies.

All of these were deep approaches. The used strategies were: (i) circular translation

strategy [31, 124], where samples are circularly shifted by a fixed time step, (ii) the

extraction of noise from a trial and its application to another trial [32], and (iii) Long

short-term memory Generative Adversarial Networks (LGAN), which use random noise

and label as input to generated realistic motor imagery data [33]. Transfer learning

was adopted as well in [107]. This approach consisted of a CNN architecture (AlexNet)

pre-trained on the ImageNet dataset. The idea was to transfer previous knowledge on

image classification to feature extraction and classification of EEG. Indeed, the final

CNN is fine-tuned on an EEG dataset, but with a limited number of training samples.

In concluding, it should be noted that the study [33] represents a positive outlier

among those tested on the BCI Competition IV-2b dataset. In there, the authors

proposed the usage of an independent component analysis, a band-pass filter in the 4Hz

to 50Hz range, features extraction with wavelet and fast Fourier transforms, a multi-

output convolutional neural-network, and an attention network for classifying the motor

imagery tasks. The proposal was implemented either with and without the LGAN data

augmentation strategy. The highest performance was reached when data augmentation

was applied (93%), while the accuracy dropped to 88% without data augmentation,

which is still over the 75th percentile. The proposal of [33] thus appears compatible

with other performant BI approaches, but the data augmentation would have been a

key factor for a superior performance.

4.6. Online experiments

As already mentioned in subsection 4.1, few studies tested their proposal also on self-

collected data. Only in [89] and [70], online experiments were also performed in order to

test their algorithm in a more realistic condition. Both synchronous and asynchronous

modalities were proposed in [89] to drive a robot. In synchronous control, the robot

performed the movement only if the classification result matched the required task. On

average, subjects took 41 s to complete 17 instructions. In asynchronous control, instead,

the robot performed the movement only after two consecutive equal classification results.

On average, subjects reached the predefined goal in 37 s, while no accuracy result was

reported. In [70] three subjects exploited the MI to turn a wheelchair reaching a mean

accuracy of 84%. The approaches proposed by these two studies were not included in

the most performing approaches, even when tested on public datasets. However, all

proposals should be tested with online experiments to assess whether they are suitable

for real-time applications.
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5. Discussion

In analysing the included studies, state-of-the-art approaches and constitutive elements

of a successful processing strategy were investigated. The overall aim is to consolidate

knowledge and achievements in MI processing, and thus guide the reader in developing

MI-BCIs. However, some limitations arise due to heterogeneity in terms of experimental

setups and protocols, e.g. different tasks, variegated number and position of EEG

channels, and diversified number of participants. For those reasons, the repeatability

and reproducibility of the results are often precluded. On these premises, the current

section discusses the achievements of the analysis, but it also addresses the need of

further work facing open issues and challenges.

5.1. Achievements

The investigation of successful processing strategies was carried out in two steps.

First, approaches and assessment methods were investigated by taking into account

the included studies as a whole. Next, the most performing approaches were derived

by considering widely used datasets. The reason for such a choice was to have enough

evidence for a statistically-based comparison, namely a proper number of proposals

to compare. Then, since most studies tested their proposals on multiple datasets,

87 studies out of 89 were considered in this second step because they exploited at

least one of the mentioned datasets. Instead, the remaining 2 studies could not be

taken into consideration because they only tested their proposal on the PhysioNet

EEG dataset [114, 115]. Given the small number of proposals for that dataset, it

was hence not possible to make a statistical analysis. Indeed, for the classification of

right-hand versus left-hand imagery, these reported a performance compatible with the

median performance achieved on dataset BCI competition IV-2a. However, a dataset-

specific analysis should be carried out also for this dataset because accuracy is strongly

dependent on the available subjects.

It is worth noting that the included studies for the binary cases are homogeneously

distributed over the five years, while the majority of included studies for the multi-

class case were published in the last two years. In both cases, the analysis pointed

out that most performing approaches are concentrated in the last years. In details,

it could be noted that 5 studies of 2021 [31–33, 122, 127] exceeded the 75th percentile

both in the binary and in the multi-class case. Among them, 4 studies exploited a

BI approach. Meanwhile, 2 other recent studies [129, 136] reached high performance in

binary case on all the exploited datasets. Moreover, the approaches proposed in [136,137]

are among the best performing ones for classifying different binary combinations of

motor imagery tasks, but the performance reported for the multi-class case resulted

below the respective median performance. Unfortunately, few proposals were tested on

multiple public datasets and only two proposals were also tested online. Thus, further

considerations are precluded by limited evidence.

The reported accuracy results demonstrated that compatible classification
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performance can be achieved with either BI or non-BI approaches, though nowadays

there is an increasing interest in BI ones. Concerning non-BI approaches, literature

already reports that the CSP is one of the most exploited feature extraction techniques

indeed [37]. In addition to that, the current analysis demonstrated that it is

also associated with successful classification. Moreover, the CSP is often used in

combination with LASSO and SVM for features selection and classification, respectively.

Notably, such approaches attempt to exploit available knowledge about the underlying

neurophysiological phenomena. This limits the success of non-BI approaches to binary

classification. Then, as an additional drawback, meticulous feature extraction and

selection seem required. Meanwhile, the main advantages of these approaches are (i) ease

of implementation, (ii) reduced training time, (iii) less parameters, and (iv) reliability

even on small datasets.

On the contrary, BI approaches represent a new trend that does not always require

a-priori knowledge in signal processing. Within BI approaches, two main areas can

be distinguished: spiking neural networks and artificial neural networks. Spiking

neural networks seem appealing today because they attempt a close reproduction of the

human brain operation. Their main advantages are continuous real-time computation

capability and the ability to capture multiple dimensions of information (e.g., time,

space, frequency, phase) into a single model, as well as to handle large data volumes.

Interestingly, they are suitable for hardware implementation and online operation [139].

It is worth noting that the authors only exploited the spiking neural network as a mere

classifier but they also recognize its potential as a unique pipeline. Despite that, a

single proposal among the best ones [108] was applying this strategy, while others BI

proposals used artificial neural networks. Like non-BI approaches, non-deep artificial

networks appear limited to binary classification and they rely on more elaborate feature

extraction. However, they are easy to implement since they have a limited layers of

neurons and consequently few parameters to set. Another trend is the usage of deep

learning strategies, namely neural networks with many hidden layers. Especially in

full-deep strategies, features are no longer designed, but the network for extraction and

classification is built from data [140].

This analysis demonstrated that deep BI approaches outperform the other

approaches in multi-class MI classification. These also achieve results compatible with

the other approaches in binary classification. Among the benefits of deep strategies,

they can accomplish feature extraction, selection, and classification as a unique pipeline.

Moreover, raw data can be directly fed into them, even with little or no pre-processing.

However, as a drawback, a huge number of parameters must be trained, and this implies

a training time increase if compared with other approaches. For this reason, they also

require appropriate hardware and they may be unsuitable for online operation. Finally,

such an approach requires a large amount of data, which is not easily available in

the BCI field. As shown in Tab. 4, the two main strategies adopted to mitigate this

issue were data augmentation techniques and transfer learning. Data augmentation

has proven to be a powerful tool that increases network robustness and addresses the
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problem of overfitting when using small data sets. Instead, transfer learning harnesses

previously learned knowledge and is extremely useful for reducing network training

time and computational cost. Moreover, it is a promising tool in facing one of the main

drawbacks of motor imagery-based BCIs, namely the reduction of system calibration

for a new subject. Overall, BI strategies appear promising in classifying more than

two tasks, which is a significant challenge in the MI-BCI field [11]. Indeed, figure 9

reports that most of the best proposals for the multi-class case fall into the BI category.

In particular, spiking neural networks and deep strategies are the most recommended

in order to increase the number of commands of a MI-BCI. However, spiking neural

networks seems to be most suitable for online experiments as they are faster and more

dynamic. Thus, non-BI approaches are well established in the literature and they can be

exploited for binary classification. Instead, BI approaches are really promising and allow

to answer the main challenges of a MI-BCI such as the need to correctly classify multiple

commands in real time. The reader is addressed to explore the pipelines reported in

Tab. 3 and Tab. 4 for a successful classification of EEG in motor imagery BCI.

5.2. Open issues

MI classification depends on the available EEG signals indeed. In wanting to replicate

the results of a certain strategy, acquisition settings should be under control. Therefore,

as a basis for the analysis, public datasets were mainly exploited. They usually report

many details on the EEG data acquisition, and it was surely possible to rigorously

quantify classification performance in terms of accuracy, uncertainty, and repeatability

of the results. However, as already mentioned, current studies often lack reproducibility

because experimental conditions are not always completely reported. Moreover, by

referring to table 1, only BCI competition datasets were mostly used. Instead, further

datasets should be exploited as well, since MI-related EEG data is strongly affected by

subjects’ training, and validation on a wider sample of subjects would be needed for

proposed processing strategies. Ideally, researchers should test the proposed methods

either on benchmark datasets like BCI competition ones, other public data, and

their own experiments especially online. This would allow comparison with already

existing state-of-the-art techniques, but limitations would also be better investigated

by analysing how different performance is associated with different conditions. In these

regards, table 2 resumed the main factors for MI-related EEG acquisition, and it could

be used as a guide for future experiments if willing to take control over experimental

settings. In addition to data-related issues, the need of standardization arises for

performance assessment methods too. The literature reports a variegated number of

assessment methods, e.g. different cross-validation strategies or different data splits in

hold-out methods. This heterogeneity is also limiting results comparison. Interestingly,

many recent studies are starting to consider both cross-validation for the definition

of the algorithm model (e.g. hyperparameters optimization) and its validation, but

also testing on independent data with a hold-out strategy. Surely, challenges are
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associated with that, e.g. because of EEG non-stationarity, but this also enables a better

understanding of MI processing. Concerning standardization, the BCI community has

been discussing for years the need to share common paradigms to boost technological

advances. Among several initiatives, the Mother of all BCI Benchmarks (MOABB)

project is noteworthy because it proposes an open-source software suite as a common

framework with benchmark data and state-of-the art processing algorithms [141].

These kind of initiatives would ease throughout comparisons and development of new

algorithms, though such frameworks are still poorly exploited. As a final consideration,

it is worth emphasizing that classification accuracy is considered almost exclusively

when reporting the performance of an MI-BCI. Associated standard deviation and/or

uncertainty of the results are often not explicitly reported. Moreover, other metrics are

used for BCI systems for assessing speed and/or latency performance, but these are

rarely exploited in MI-BCIs. This is justified by the fact that MI detection still requires

relatively long time windows for acquisition and processing if compared to other BCI

paradigms [38]. However, metrics such as the information transfer rate (ITR) could

be interesting to investigate in a MI-BCI as already done in further BCI systems [11].

Reducing the target detection time is one of the objectives of BCI systems to enhance

the ITR [2], and it would interesting to highlight control application that could exploit

the MI-related phenomena.

6. Conclusions

In this review, an analysis of the state of the art was carried out to consolidate

achievements in MI-BCI, with particular regards to the development of a successful

classification approach for electroencephalographic signals. The included studies span

from 2017 to 2021 and they were selected according to the PRISMA standard. The

reported results were compared by means of the rigorous metrological framework defined

by the VIM, with a particular focus on uncertainty, repeatability, and reproducibility of

the results. The statistically-based analysis highlights that most performing approaches

achieved at least 85% and 83% accuracy in classifying EEG signals associated with

MI, respectively in the binary and multi-class cases. Essentially, uncertainty calculation

demonstrates that most of the best performing approaches lead to compatible results

since their associated uncertainty is up to 6%. Then, repeatability of the results on

a predetermined dataset is up to 8%, while reproducibility is up to 15%, though its

assessment was limited by the datasets effectively used in the included studies.

Increasing attention has been given recently to multi-class discrimination.

Promising trends can be mostly distinguished in terms of non-BI and BI approaches.

In the former case, a combination of CSP (or a variant of it), LASSO, and SVM

is commonly used and successful in terms of performance, though the specific pre-

processing strategies can significantly impact the result. In the latter case, full deep

approaches are more and more exploited, while other artificial neural networks or

spiking neural networks have been successfully employed too. Among deep approaches,
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convolutional neural networks are largely exploited indeed. Notably, data augmentation

strategies are used to fulfil their need for large amounts of data.

Lastly, this review highlights some issues and challenges that could be addressed

in the next feature. Overall, limitations emerge due to heterogeneity in terms of

different motor tasks, variegated number and position of EEG channels, and the subjects

sample. In particular, assessing the reproducibility of results should be improved

by standardizing experimental procedures and performance assessment methods. In

conclusion, some recommendation for future developments would be to (i) test the

proposals on multiple public datasets other than own data or BCI competitions ones,

(ii) take main experimental settings under control (e.g, using the table 2 as a guide),

(iii) test the proposals online, and (iv) define standard assessment methods.
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SVM BCIc.III-4a (B) [128]

C3 and C4 a-priori selection,

1 s overlapping windows,

BP in [8,14] Hz, [14,27] Hz

and [27,45] Hz

Temporal absolute

variations and

segment-based

bispectrum sums

SVM

BCIc.IV-2b,

BCIc.III-4a (B),

Non-public

[92]

Time domain staging and

discrete Fourier transform-based

decomposition.

Complex CSP

Energy and power-based selection,

CSP sorting, Gaussian weighting,

within-class scatter matrix,

eigenvalues regularization.

Mahalanobis

distance

BCIc.IV-2a (B),

BCIc.IV-2b (B),

BCIc.III-3a (B)

[129]

Time windows selection

and BP in [8,30] Hz
CSP LASSO SVM

BCIc.IV-1 (B),

BCIc.III-3a,

BCIc.III-4a

[130]

Down-sampling, channel selection,

BP in [8,30] Hz, multivariate

wavelet transform, arrangement in

vertical and horizontal sub-bands

CSP LDA
BCIc.IV-1 (B),

GS
[106]

Overlapping time windows selection,

FB in [4,40] Hz

CSP and multiple-instance

logistic regression
LASSO SVM BCIc.IV-2a (B) [131]

BP in [4,40] Hz
Local activities estimation

and regularized CSP

Power spectral density in

[8,30] Hz with 4 Hz

resolution

SVM

BCIc.IV-1 (B),

BCIc.IV-2a,

BCIc.III-4a,

GS

[132]

15 constant-Q filters

CSP plus MAV, variance,

and RMS in time domain,

plus AR and PSR

ReliefF, Minimum redundancy

maximum relevance, Fisher’s

method

SVM BCIc.IV-2b (B) [133]

C3, Cz and C4 a-priori selection,

2.0 s time windows with 1.9 s overlap,

energy spectrum by wavelet packet

decomposition and CDSF, FB in [4,40] Hz

CSP, STDF
Ensemble

SVM

BCIc.IV-2a,

BCIc.IV-2b (B)
[119]

C3 and C4 a-priori selection,

trial segmentation

STDF, wavelet packet

decomposition
SVM

BCIc.IV-2a,

BCIc.IV-2b (B)
[105]

Overlapping time windows selection,

BP in [8,40] Hz
CSP and AR

Kullback-Leibler divergence

or Mutual information
NBPW

BCIc.IV-2a (M),

BCIc.IV-2b
[134]

Table 3: Most performing processing strategies using non-BI approach. B and M indicate

the dataset for which the proposal has exceeded the 75th percentile of accuracies distribution

for the binary and multiclass cases, respectively (see figure 6, figure 7). AR: auto-regressive

coefficient, BP: band-pass, CDSF: class discrepancy guided sub-band filter, CSP: common

spatial pattern, FB: filter bank, k-NN: k-nearest neighbors, LASSO: least absolute shrinkage

and selection operator, LDA: linear discriminant analysis, MAV: mean absolute value, PSR:

power spectral ratio, RMS: root mean square, STDF: spatio-temporal discrepancy feature,

SVM: support vector machine, BCIc.: BCI competition, GS: Giga Science
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Pre-processing Feature extraction h Feature selection Classification Dataset

2-D continuous

wavelet transform
CNN pre-trained by AlexNet on ImageNet dataset BCIc.III-4a (B) [107]

Multi-scale principal

component analysis

Successive

decomposition index
Feed-forward NN BCIc.III-4a (B) [135]

BP in [8,30] Hz CSP
Particle swarm optimization

and extreme learning machine

BCIc.IV-2a (B),

BCIc.III-3a (B)
[136]

Channel selection,

FB in [8,32] Hz and

in [6,30] Hz

CSP and LDA
Sequential backward

floating selection

Radial basis

function NN

BCIc.III-4a (B),

Non-public
[94]

Time window selection,

BP in [8,30] Hz

Artifact rejected

binary CSP

Self-regulated supervised

Gaussian fuzzy adaptive system Art
BCIc.IV-2a (B) [137]

Data augmentation Electroencephalography-inception network (CNN based)
BCIc.IV-2b (B),

BCIc.IV-2a (M)
[32]

Data augmentation with

a circular translation strategy
Feature separation network based on adversarial learning

BCIc.IV-2b (B),

BCIc.IV-2a (M)
[31]

FastICA, BP in [4,50] Hz,

data augmentation with LGAN

Wavelet and fast

Fourier Transform
Multi-output CNN and attention network

BCIc.IV-2b* (B),

BCIc.IV-2a (M)
[33]

Time window selection,

BP in [0,40] Hz,

signal normalization,

Morlet wavelet transform

Multiscale space-time-frequency feature-guided multitask learning CNN

BCIc.IV-2b (B),

BCIc.IV-2a (M),

HG

[122]

Data augmentation with

a circular translation strategy
CNN framework based on the discriminative feature learning strategy

BCIc.IV-2b (B),

BCIc.IV-2a
[124]

A-priori channel selection,

common average referencing,

subject-specific time

window selection,

FB in [7,30] Hz

CSP F-score Spiking NN
BCIc.IV-2a,

BCIc.III-3a (M)
[108]

FB in [4,40] Hz

Dipole source estimation,

time of interest selection,

coordinate transformation,

construction of 4D matrix

Three-dimensional

CNN

BCIc.IV-2a (M),

ULM
[138]

FB in 43 bands CSP CNN BCIc.IV-2a (M),

[123]µ and β bands Multiple frequency CNN BCIc.III-3a

Overlapping time window

selection, FB in [4,38] Hz
CSP CNN plus long short-term memory BCIc.IV-2a (M) [121]

Table 4: Most performing processing strategies using BI approach. B and M indicate the

dataset for which the proposal has exceeded the 75th percentile of accuracies distribution

for the binary and multi-class cases, respectively (see figure 6, figure 7). * outlier in terms

of classification performance. BP: band-pass, CNN: convolutional neural network, CSP:

common spatial pattern, FB: filter bank, ICA: independent component analysis, LDA: linear

discriminant analysis, LGAN: long short-term memory generative adversarial network, NN:

neural network. BCIc.: BCI competition, HG: high gamma, ULM: upper limb movements.


