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Complementing Location-Based Social
Network Data With Mobility Data:

A Pattern-Based Approach
Elena Daraio , Student Member, IEEE, Luca Cagliero , Member, IEEE,

Silvia Chiusano, Member, IEEE, and Paolo Garza , Member, IEEE

Abstract— Location-Based Social Networks can be profitably
exploited to characterize citizens’ activities in urban environ-
ments. However, collecting LBSN is potentially challenging due
to privacy concerns, connectivity issues, and potential imbalances
in LBSN service usage. We propose to complement LBSN data
with mobility data in the analysis of citizens’ activities in urban
areas. Unlike the explicit insights provided by LBSN users,
mobility data give implicit feedback on citizens’ habits. This
paper explores the spatial and temporal conditions under which
user habits are coherent according to both sources and reports
the most reliable common sequences of visited categories of
Points-Of-Interests. To this aim, it relies on a multidimensional
model in which recurrent citizens’ activities are described by a
new pattern type, namely the generalized activity pattern. It also
detects the eventual presence of bias between LBSN and mobility
user activities by customizing the established Statistical Parity
metric. The motivations behind the detected bias are explained
in terms of combinations of POI categories that are most likely
to be the main causes. We evaluate the proposed approach
on real-world data achieved from Foursquare check-ins, taxi
service, and free-floating car sharing. The results highlight not
only the complementarity of the data sources regarding specific
POI categories, but also their interchangeability in many spatio-
temporal conditions.

Index Terms— Location-based social networks, activity pat-
terns, mobility data, sequential pattern mining.

I. INTRODUCTION

LOCATION-BASED Social Networks (LBSNs) are a par-
ticular kind of online social network where geograph-

ical locations are the core of the network structure [1].
Unlike traditional social networks, which are mainly based
on social relationships among users, LBSNs take advantage
of geo-referenced data and location-tagged content to foster
user interactions. For example, Foursquare1 is among the
most popular LBSNs. Foursquare users voluntarily ‘check in’
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to places they visit using a mobile application. Hence, they
disclose the temporal sequence of their main activities and the
related locations (e.g., she has lunch at the restaurant and then
she does the shopping).

The availability of LBSN data has prompted their use to
study life-style user patterns in urban environments to assess
different urban dynamics, such as urban land use and activi-
ties [2]–[4]. They allows a better understanding and sense of
how citizens interact with the city, such as spatio-temporal citi-
zen activities and services of interest to citizens. Their analysis
may reveal differences in users habits, preferred places, and
action and location patterns [5]. However, collecting large
real-world LBSN datasets can be challenging due to privacy
concerns, connectivity issues, and service usage imbalances.
For instance, users can either revoke their consent for public
use or be reluctant to activate geo-tagging options [6], [7].
Furthermore, check-ins are often unevenly distributed across
the urban environment, e.g., they are concentrated in the city
center, thus making life-style patterns potentially biased [8].

In situations in which there is a need to overcome the lack
of LBSN data, we propose to complement their analysis using
mobility data. The key idea is to model user activities in urban
environments by profiling their use of various means of trans-
port, such as taxi or free-floating car sharing trips, in terms of
origin/destination places and leaving and arrival times. Unlike
LBSN data, mobility data provide implicit feedback on the
most common user habits in urban activities. By construction,
they indirectly express the actual user purposes and pref-
erences even when LBSN data are missing or incomplete.
Since mobility service providers routinely gather operational
data about service provision, mobility data acquisition is less
exposed to privacy concerns and connectivity issues, and the
corresponding service usage profiles are potentially comple-
mentary to LBSN ones. For these reasons, we deem mobility
data as a valid candidate for providing additional content that
enriches and supplements citizens’ activity monitoring.

In this paper we seek the conditions under which mobility
data can effectively complement or even substitute LBSN
data in describing citizens’ activities in urban environments.
To this purpose, we define a multidimensional model that
characterizes urban activities based on different dimensions
such as location (e.g., the city district), time (e.g., season, daily
time slot), and data source type (e.g., taxis, shared bicycles,
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rented cars, Foursquare). User activities are described by a set
of generalized activity patterns mined separately from LBSN
and mobility data. They model recurrent user activities as
temporal sequences of the categories associated with the “vis-
ited” Points-of-Interests (POIs). An example of such activity
patterns is Restaurant → Theater, which indicates that users
frequently go to the restaurant and then to the theater. The
aforesaid pattern exemplifies the temporal relationship in user
behavior between a specific entertainment place and a typical
food service.

Given a specific combination of spatial and temporal dimen-
sion values (e.g., location = New York City, time = May 2020),
we study the feasibility of integrating LBSN with mobility
data. Specifically, our goal is threefold:

(1) Bias detection. Compare the activity patterns discovered
from LBSN and mobility data to detect potential bias,
which would hinder an effective integration of the afore-
said data sources.

(2) Bias explanation. Identify the combinations of categories
of Points-of-Interests that are most likely to be the cause
of bias (if any).

(3) Pattern analysis. Shortlist the top-K most reliable activ-
ity patterns in common between LBSN and mobility data.

We accomplish goal (1) by tailoring the Statistical Par-
ity (SP) metric [9], which was originally designed for mea-
suring the fairness of a classification model, to our purposes.
Specifically, we verify, via statistical test, the initial hypothesis
that the same activity patterns hold for both LBSN and
mobility data. The combinations of POI categories for which
the initial hypothesis is rejected are returned as potential
causes of bias, i.e., goal (2). To deepen the analysis of LBSN
and mobility data consistency, i.e., goal (3), we shortlist the
top-K most reliable activity patterns and repeat the SP test for
different values of K . For the pattern shortlist that is likely
to be not affected by any bias, we study the common user
activities with the aim at highlighting the complementarity or
interchangeability of the two data sources.

We report the results achieved in a real case study, i.e., the
comparison between Foursquare check-ins acquired in New
York City and Portland and mobility data collected by the taxi
and free-floating car sharing services. The top ranked patterns
such as Food → Entertainment describe common activities
shared by LBSN and mobility users. However, specific patterns
such Health → Bank reveal the presence of bias due to
specific POI categories, whose corresponding user activities
are commonly not disclosed by LBSN users. By comparing
the patterns extracted in different contexts, we also provide
interesting insights into the temporal changes in citizens’
habits.

The main paper contributions are summarized below.

• Data modelling. A joint multidimensional data model
valid for LBSN and mobility data. The model leverages
both explicit and implicit activity-related citizen informa-
tion (see Section III for a description of the data model).

• Theory. (1) A novel type of patterns that describe the
citizens’ activities in terms of sequences of visited POIs
(see Section III-C for a description of the newly proposed

patterns). (2) A new pattern-based approach to detect
bias between the activity patterns mined from LBSN and
mobility data (see Section IV).

• Methodology. An in-depth comparison between LBSN
and mobility data in terms of activity patterns. It entails
exploring contextualized data to detect bias first and then
perform detailed comparisons between unbiased pattern
shortlists (see Sections III and V).

• Empirical evidence. The outcomes achieved in a real
case study confirm the applicability of the methodology
(see Section VII for a summary of the main relevant
results).

II. RELATED WORKS

The increasing availability of LBSN data has prompted the
study and development of advanced data mining and machine
learning solutions to

1) infer individual life-style patterns from activity-location
choices revealed in social media [5],

2) recommend locations relevant to specific users [10],
3) predict the next place a user is likely to visit [11],
4) analyze tourist movements by extracting activity pat-

terns [12], and
5) compare user habits across different social plat-

forms [13].

The scope of this work is mainly related to (1). In this
regard, a particular attention has been paid to location-based
check-in services, where users notify their geographical posi-
tion to share the activity-related choices. Geo-tagged user
preferences are relevant, for instance, to model Point-of-
Interest (POI) demand (e.g., [14]–[17]) or to extract sequential
user activity patterns (e.g., [12], [18]–[20]). The present study
is related to the latter type of applications. However, as pointed
out in [6], considering LBSN data is often not sufficient to
effectively characterize life-style patterns. Thus, the research
community has started to integration of complementary data
sources. For example, in [21], [22] the authors compare the
movement, mobility, and activity patterns observed in LBSNs
with those occurring in cell phone location data. They observe
that short-ranged travels are spatially and temporally periodic
and weakly effected by the social network structure, whereas
long-distance travels are more influenced by social network
ties. The work presented in [23] aims at connecting social
sensors and road traffic conditions. The key idea is to correlate
the habits and routines of Foursquare and Instagram users to
the traffic maps acquired from Bing Map. In [24] the authors
estimate urban traffic flows using LBSN data. They highlight
a promising potential of using LBSN data for urban travel
demand analysis and monitoring. However, mobility data are
collected through a dedicated survey, which is influenced
by the user engagement, availability, and perception. Our
approach differs from [23], [24] in (1) the type of complemen-
tary data (i.e., taxi and car sharing data), (2) the customization
and application of bias detection methods to the problem
under analysis, (3) the use of sequence mining techniques to
model activity patterns and explain the bias between LBSN
and mobility data.
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TABLE I

SUMMARY OF NOTATIONS AND THEIR MEANINGS

More recently, in [6], [25] the authors propose ad hoc data
simulators to overcome the lack of LBSN data. Since they
generate new data by mimicking the original data distribution,
they are unable to capture complementary information such as
the user interest in particular POI categories that are usually
not present in the LBSN check-ins (e.g., bank, hospital, rest
home).

To complement Foursquare check-in data, the authors [26]
propose to analyze the published tips trips venues and temporal
patterns. Since they consist of User-Generated Content, the
provided information is substantially different from those
provided by mobility data.

III. MULTIDIMENSIONAL DATA MODEL

We present a multidimensional data model, in which the
activities of the users of LBSN and mobility services carried
out within the same urban context can be jointly analyzed.
A summary of the notation used throughout the paper is
reported in Table I.

A. Data Sources

Location-based Social Network (LBSN) data collect the
history of the social user check-ins. Each check-in c�u,t,l� is a
triple of user-timestamp-location �u, t, l�, u ∈ U, t ∈ P, l ∈ L.
Every check-in is associated with a set of Points-of-Interest
POI�u,t,l� that are manually annotated by user u.

Example: A Foursquare user created a check-in through
her mobility phone when she visited the Colosseo in Rome
and tagged the check-in with the corresponding POI name
(Colosseo) and category (Tourist attraction).

Mobility data consist of a set of trips from a location
to a destination. Each trip tr ∈ T can be modelled as a
sequence of location-timestamp pairs respectively denoting

the trip start and end: �lsource, tsource� → �ldest, tdest�, where
lsource ∈ L, ldest ∈ L and tsource ∈ T, tdest ∈ T. Notice that,
unlike LBSN check-ins, trip locations are neither necessarily
associated with a specific user nor annotated with any POI
information. Hence, we implicitly derive the most likely user
activities based on the presence of a set of POIs in the source
and destination neighborhoods.

Example: A taxi ride from Piazza del Colosseo to Piazza
del Popolo in Rome can be annotated with the corresponding
POI names and categories (e.g., Tourist attraction).

B. Contextual Model

We study the users activities in specific spatio-temporal
conditions and verify the consistency of the patterns extracted
from LBSN and mobility data. A sketch of the proposed
strategy is depicted in Figure 1.

We rely on a contextual model, where LBSN and mobility
user activities are described by the following dimensions:

• Data source: it reports the data source d used to retrieve
the raw data. It encompasses social data sources (e.g.,
Foursquare) and mobility data (e.g., taxi services, free-
floating car sharing services).

• Time: it indicates the time span tw (within the analyzed
time period P) in which the event (either a LBSN
check-in or a urban trip) occurred. It is a calendar
data descriptor extracted from the recorded timestamps,
which characterizes the periodicity and seasonality of the
underlying urban activities. A temporal hierarchy can be
used to aggregate the acquired timestamps at multiple
abstraction levels (e.g., daily, monthly, or different daily
time slot).

• Space: it indicates the spatial region R corresponding
either to the LBSN check-ins or the trip endpoints (source
and destination). It is useful for differentiating the activ-
ities carried out in different city areas (e.g., in the city
center, in suburbs, or in external hubs).

We define the context C as a triple of contextual dimensions
consisting of time span tw (within P), spatial region R, and
data source d ∈ D.

Example: To analyze the activities of the citizens of San
Francisco in the weekends considering only the Bay Area and
the Foursquare check-ins, the data are tailored to the context
(tw=weekend, R=Bay Area, d=Foursquare).

C. The Generalized Activity Patterns

Each context is described by a set of patterns, namely the
generalized activity patterns. They represent the underlying
user activities in terms of sequences of Points-Of-Interest
Categories. The patterns selected from different sources within
the same spatio-temporal context can be compared with each
other to verify the complementarity and interchangeability of
the analyzed sources.

Example: The comparative analysis in Figure 1 studies the
similarity between the contexts (tw=May, R=New York City
(NYC), d=Taxi) and (tw=May, R=New York City (NYC),
d=Foursquare). It quantifies the corresponding coherence level
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Fig. 1. Multidimensional data model.

based on a set of common generalized activity patterns such as
Restaurant → Theater (i.e., eat out and then go to the theater)
and their corresponding quality metrics.

a) Preliminaries: To extract the activity patterns, we need
to first build a sequential dataset collecting all the POI
sequences within a particular context. To this aim, we for-
malize the adherence of a user check-in/trip to a specified
context.

Definition 3.1 (Check-in Context Adherence): Let c�u,t,l�
be a LBSN check-in and let C be a context where the source
d ∈ D is related to the LBSN domain. A check-in c�u,t,l�
adheres to C if and only if t belongs to tw and l belongs to
the spatial region R associated with the context C.

Similarly, in the transportation domain we define the adher-
ence of the trip source and destination to the specified context.

Definition 3.2 (Trip Context Adherence): Let tr ∈ Tr be an
arbitrary trip and let C be a context where the source d ∈ D is
related to the transportation domain. A trip adheres to C if and
only if (i) tsource and tdest belong to tw and (ii) lsource and ldest
belong to the spatial region R associated with the context C.

In LBSNs POIs are manually annotated by the social users.
The set of POIs associated with a check-in c�u,t,l� is denoted
by POI�u,t,l�, where the corresponding set of POI categories,
hereafter denoted as Category Of Interest (COI), is denoted
by COI�u,t,l�. Since we are interested in modeling the general
habits of the users, our analyses will be mainly focused on
COIs rather than POIs.

In the mobility scenario we first map the trip endpoints
(origin and destination) to the set of nearest POIs and then we
associate the corresponding COIs.

Definition 3.3 (COI Mapping to Trip Endpoints. ): Let
NN(·): L → P(POI) be a function that maps an arbitrary
location to the subset of the POIs with a fixed radius r .2

The POIs associated with lsource and ldest inat ion correspond to

2Throughout the paper we will use the Euclidean distance to estimate
geographical distances as the crow flies.

NN(lsource) and NN(ldest), respectively. Each set of POIs in
NN(·) is then mapped to the corresponding COIs.

We store the temporal sequence of user check-ins in a check-
in sequential dataset as follows.

Definition 3.4 (Check-in sequential dataset): Let C be the
context under analysis. Let Su : c�u,t1,l1� → c�u,t2,l2� → . . . →
c�u,tn,ln � be the temporal sequence of all the check-ins made by
user u such that the following conditions hold: (1) t1 < t2 <
…< tn ,
(2) t1, t2, . . . tn belong to P,
(3) tn - t1 ≤ maxtimegap, and
(4) all user check-ins in the sequence adhere to C. Let SCOI

u :
COI(c�u,t1,l1�) → COI(c�u,t2,l2�) → . . . → COI(c�u,tn,ln �) be
the temporal sequence of COIs built on top of Su (hereafter
denoted as input COI sequence). The check-in sequential
dataset DBLBSN consists of the set of all the input COI
sequences for every user u ∈ U.

We characterize user activities according to their short-term
movements across different POIs located in the urban area.
Hence, we enforce both maxtimegap and mintimegap
constraints. The maxtimegap constraint ensures that the user
check-ins that are temporally distant are not included in the
same sequence. Conversely, according to the mintimegap
constraint different check-ins that are temporally close are
considered as a simultaneous events in a sequence.

Analogously to LBSN data, we build a trip sequential
dataset on top of the generated temporal sequences.

Definition 3.5 (Trip sequential dataset): Let C be the con-
text under analysis. Let Tr∗ ⊆ Tr be a subset of trips such
that
(1) tsource < tdest,
(2) tdest - tsource ≤ maxtimegap, and
(3) Tr∗ satisfies C.
The trip sequential dataset DBtr consists of the set of all the
temporal sequences of COIs for every trip tr ∈ Tr∗.

b) Pattern definition: The life-style of a LBSN user
can be modelled as an activity pattern. It describes either a
recurrent sequence of venues associated with the check-ins of
a single user [12] or a sequence of venue categories described
by the corresponding POIs [27]. In our context, an activity
is described by a subset of POIs and their categories, and
the pattern captures the temporal sequence of the performed
activities (in terms of POI categories).

Our aim is to unify the LBSN and mobility data by propos-
ing a generalized version of the activity pattern including
both user check-ins and mobility data. More specifically, a
generalized activity pattern (GAP) is a temporal sequence
of POI categories which represents either explicit social user
annotations or implicit neighbor relationships for trip loca-
tions/destinations.

Definition 3.6 (Generalized Activity Pattern (GAP)): Let
COIi be an arbitrary set of COIs recorded at time ti .
A generalized activity pattern is a temporal sequence g:
COI1 → COI2 → . . . → COIn , such that
(1) t1 < t2 < …< tn ,
(2) t1, t2, …tn belong to P,
(3) ti+1 − ti ≥ mintimegap i = 1, 2, . . ., n − 1 and
(4) tn − t1 ≤ maxtimegap.
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We quantitatively estimate the GAP relevance to the gener-
alized check-in and trip sequential datasets, respectively, using
the established support, confidence, and lift metrics [28].

Definition 3.7 (Support of a Generalized Activity Pattern.):
Let g:COI1 → COI2 → . . . → COIn be a generalized
activity pattern. The support sup(g,DB∗) of g in an arbitrary
sequential dataset DB∗ (either check-ins DBLBSN or trips
DBtr) is the fraction of input COI sequences in the dataset
that either exactly match or contain the corresponding POI
category sequence.

Definition 3.8 (Confidence of a Generalized Activity Pattern):
Let g: COI1 → COI2 → . . . → COIn be a generalized
activity pattern. The confidence conf(g,DB∗) of g in an
arbitrary generalized sequential dataset DB∗ (either DBLBSN or
DBtr) is defined as the conditional probability of occurrence
of the last set of POI categories COIn given the POI category
sub-sequence COI1 → COI2 → . . . → COIn−1. It is defined
as

sup(g,DB∗)
sup(COI1 → COI2 → . . . → COIn−1,DB∗)

.

Definition 3.9 (Lift of a Generalized Activity Pattern): Let
g: COI1 → COI2 → . . . → COIn be a generalized activity
pattern. The lift(g,DB∗) of g in an arbitrary generalized
sequential dataset DB∗ (either DBLBSN or DBtr) is defined as

sup(g,DB∗)
sup(COI1 → . . . → COIn−1,DB∗) × sup(COIn,DB∗)
Example: Let us consider the GAP g: Restau-

rant → Theater, sup(g,DBLBSN)=1%, lift(g,DBLBSN)=1.5,
conf(g,DBLBSN)=60% mined from LBSN data. It means that
1% of the users visit (i.e., check-in) a restaurant and then
a theater, and when users go to the restaurant then in 60%
of the cases the next destination is a theater. Since lift is
greater than one, this generalized activity pattern represents
a positive correlation, i.e., the likelihood to go to the theater
after going to the restaurant is higher than expected.

c) Pattern extraction: The unified pattern-based model
consists of a selection of GAPs extracted from either LBSN or
mobility data. The aim of the model is twofold: (1) Provide a
social view of urban activities by means of the GAPs extracted
from the explicit user check-ins. (2) Provide a mobility-level
implicit view of the urban activities by means of the GAPs
extracted from the traffic traces.

To obtain (1) we focus on the GAPs g whose
• check-in-related support is above a given threshold, i.e.,

sup(g,DBLBSN)>minsup
• check-in-related confidence is above a given threshold,

i.e., conf(g,DBLBSN)>minconf
• check-in-related lift indicates a positive correlation, i.e.,

lift(g,DBLBSN)>1
Similarly, to achieve (2) we consider the GAPs g whose
• trip-related support is above a given threshold, i.e.,

sup(g,DBtr)>minsup
• trip-related confidence is above a given threshold, i.e.,

conf(g,DBtr)>minconf
• trip-related lift indicates a positive correlation, i.e.,

lift(g,DBtr)>1

To extract the GAPs we apply an established sequence
mining algorithm, namely cSPADE [28], to both LBSN and
mobility data.3

IV. BIAS DETECTION AND EXPLANATION

AI-based models are known to be susceptible to the pres-
ence of bias in real-world data. Hence, an increasing research
effort has been devoted to proposing new bias detection and
mitigation techniques (e.g., [9], [29], [30]). They address bias
detection in classification models by comparing the model
predictions for a group with those in the ground truth. For
example, according to the Statistical Parity (SP) metric [9],
a binary classification model is unbiased if the members of
two groups are equally likely to be assigned to the positive
set, independently of their group membership.

Our purpose is to detect the presence of bias between the
GAPs mined from LBSN data (RL BS N ) and those extracted
from mobility data (Rtr ) within the same spatio-temporal con-
text, i.e., Goal (1). Firstly, we formulate the initial hypothesis
of unbiased model as follows:

P( Ŷ= 1|Rtr)=P( Ŷ= 1|RL BS N)

where P( Ŷ= 1|Rtr) is the probability of the GAPs in Rtr

to be assigned to the positive set while P( Ŷ= 1|RL BS N) is
the probability of the GAPs in RL BS N to be assigned to the
positive set.

Next, by assuming that a GAP is assigned to the positive set
if it is present in both sets, we compute the two probabilities
and we test the initial hypothesis.

P(Ŷ= 1|Rtr) = |Rtr ∩RL BSN |
|Rtr |

P(Ŷ= 1|RL BS N) = |Rtr ∩RL BSN |
|RL BSN |

The idea behind it to verify whether the most relevant user
activities are coherent to a large extent.4

If the initial hypothesis (i.e., unbiased model) is rejected,
then we leverage differences between GAPs to explain the
causes of bias. Specifically, we focus on the GAPs present
only in Rtr or RL BS N (but not in both sets), as potentially
represent user habits. GAPs are sorted by decreasing support
to highlight the most recurrent anomalies in citizens’ activities.

Since the aforesaid procedure can be influenced by the
number of considered GAPs, we run multiple tests by varying
the k value to identify the largest, unbiased top-k set of GAPs.

V. PATTERN ANALYSIS

We explore the unbiased sets of GAPs identified at the
previous step to highlight the main similarities and differences
between LBSN and mobility data. The purpose is to provide
domain experts with a deep characterization of the inter-
changeability and complementarity of the two data sources.

To allow a direct comparison, GAPs are first sorted as
follows.

3URL: https://github.com/zakimjz/cSPADE Latest access: March 2022
4Whenever not otherwise specified, we will set the minimum significance

level to 99%.
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• Social rank: GAPs are sorted by decreasing confidence
and lift values computed on LBSN data (DBLBSN) and
are stored in the ranked list RL BS N . We will refer to the
top-k GAPs in DBLBSN as RLBSN(k).

• Mobility rank: GAPs are sorted by decreasing confi-
dence and lift values computed on mobility data (DBtr)
and stored in the ranked list Rtr. We will refer to the top-k
GAPs in DBtr as Rtr(k).

Then, we use standard information retrieval metrics to
compare the produced rankings RL BS N and Rtr for different
k values. Specifically, P@k and R@k are commonly used
to compare a ranked list with a reference one (namely, the
ground truth) [31]. In our context, we apply them to verify
the accuracy of trip sequences to model activities observed in
LBSN data.

• Precision at k P@k: it is computed as the percentage of
GAPs in Rtr(k) that occur in RL BS N as well.

• Recall at k R@k: it is computed as the percentage of
GAPs in RL BS N that occur in Rtr(k).

Since the number k of selected GAPs is significantly lower
than the total number of mined patterns the R@k values are
typically rather small.

To get a more intuitive quality score version of R@k,
we compute the difference between the actual R@k values
and the corresponding best value achievable by setting the
same k value. We call this metric Differential R@k (DiffR@k).
DiffR@k ranges from 0 to 1. The smaller the value of
DiffR@k, more consistent the trip and LBSN data are.

VI. CASE STUDIES

We validate the effectiveness and usability of the proposed
methodology in two representative urban scenarios: New York
City, which is the most populous city in the United States,
and Portland, the Oregon’s largest city. They are examples
of complex urban environments characterized by a large
availability of open data about mobility service usage and
Foursquare check-ins. The city maps are annotated with a large
set of Points-of-Interests and the related categories. We study
two different types of on-demand mobility services, i.e., the
Yellow taxi service in New York City and the Free Floating
Car-Sharing (FFCS) service in Portland.

Table II summarizes the main characteristics of the analyzed
data. In both cases, the cardinality of mobility data is orders
of magnitude larger than those of LBSN data. Hence, the
integration of mobility data is particularly helpful to address
the lack of LBSN data.

A. Mobility Data

Historical data about taxi rides in New York City can be
retrieved from the open NYC - Taxi & Limousine Commission
source [32]. It reports for each taxi ride the geo-coordinates
of the trip origin and destination, and the starting and ending
timestamps. In New York City taxi services are very popular
due to the lack of available parkings. In accordance with
local privacy laws and standards, taxi identifiers are hidden.
Therefore, all user activities and interests can be derived only

TABLE II

LBSN DATA CHARACTERISTICS

in an indirect way. In the performed experiments, we focus
on the Manhattan district because of the extensive use of
taxi services, the widespread usage of LBSNs, and the high
population density. The taxi trips dataset for New York City
contains around 170 million trips over 14 months (from
January 2012 to February 2013), 8.5 million trips in the
Manhattan area.

The FFCS service usage dataset for Portland was obtained
from the car2go provider.5 In Free-Floating Car Shar-
ing (FFCS) services the rented vehicles can be taken and
left anywhere in the operative area. Preventive car reservation
is optional and users can verify car availability in real-time
through a GPS-based mobile application. The dataset consists
of 485000 trips of 316 cars spread over a time period of
19 months (i.e., from June 2012 to December 2013). The
raw FFCS data include the history of all car bookings. For
each booking the timestamp and the location of each reserved
vehicle are known. For our purposes, raw data are transformed
by applying the procedure described in [33]. Specifically,
it first identifies and early discards the cancelled car reserva-
tions by analyzing the travelled vehicle distance, the booking
time duration, and the fuel consumption associated with the
booking. Then, it generates the history of past trips.

B. LBSN Data

We collect LBSN data from the Foursquare social network
by tracing the user visits to specific geo-referenced locations.
Beyond the geographical position of the location, we collect
the descriptions of a set of POIs annotated by the user about
the geo-referenced venue.

For both New York City and Portland, check-in data are
retrieved from [34] by considering the same time period used
to collect the mobility data. For New York City we selected the
check-in data related to the Manhattan area, resulting in around
100,000 check-ins from approximately 1,000 users, with an
average number of check-ins per user equal to 93. For the
Portland dataset, we collected 1,700 check-ins by 480 users.
The social users in Portland are averagely less active than
to those in Manhattan, probably due to the lower number of
tourist attractions. The average number of check-ins per user
is approximately 3.54.

C. Points of Interest

We spatially stratify each urban area into a square grid
and annotate each cell with the set of POIs present in it.
POIs are then clustered into well-known categories (e.g.,
restaurant, museum, square), i.e., the Categories of Interest

5www.car2go.com latest access: March 2022
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(COIs), to provide end-users with high-level views of the
analyzed urban activities.

Both the New York City and Portland city maps are
annotated with POIs using the OpenStreetMap tool,6 which
leverages the Overpass API.7

COIs are extracted using the Google APIs .8 To map
each location to the most relevant POIs we first identify the
POIs present either in the same cell of the location or in its
surrounding cells. Then, we pick the nearest POIs among the
previously selected ones (see Definition 3.3).

The definition of the POI neighborhood depends on the ana-
lyzed mobility service. Specifically, for taxi rides we assume
that the trip origin and destination are relatively close to the
POI as passengers can be dropped in any place. For this reason,
we set the maximum neighborhood distance r to 100 meters.
Conversely, in FFCS the rented cars need to be parked. Hence,
the trip origin and destination are often farther. Thus, we set
r to 500 meters.

In the performed experiments we focus on a subset of most
popular COIs while neglecting those categories that are either
very rare or not relevant to the analyzed case study (e.g.,
room, route). The resulting datasets consists of about 18,000
POIs and 17 distinct COIs for the Manhattan area, and about
1,100 POIs and 18 distinct COIs for Portland. COIs are evenly
distributed over the analyzed datasets. For example, COIs such
as Food and Store/Shop frequently occur in both mobility
and LBSN data. Conversely, Health is the most frequent COI
in mobility data whereas rarely occurs in LBSN check-ins,
probably due to privacy concerns.

D. Spatial Contexts

We conduct a preliminary analysis of the spatial distribution
of the taxi rides in Manhattan and identify three geographical
areas characterized by high, moderate, and low frequency of
taxi rides, respectively. Specifically, they respectively cover the
86%, 12% and 2% of the overall number of taxi rides. In Fig-
ure 2 (a) the selected areas are depicted in orange, yellow, and
green, respectively. In the performed experiments, we mainly
focus on orange area, which approximately corresponds to the
Manhattan centre.

FFCS usage data in Portland shows a relatively homoge-
neous spatial distribution. Thus, we stratify the Portland urban
area in five regions (i.e., the city center and four other regions
corresponding to the cardinal point directions) independently
of the number of observed trips (see Figure 2 (b)). The city
center area is defined as a square with a side length of 3km.
The remaining four areas are defined by connecting the edges
of the city center area to the edges of the operating area.

E. Temporal Contexts

We extract GAPs at different temporal granularities to
capture a variety of different urban lifestyles.

6https://www.openstreetmap.org latest access: March 2022
7http://www.overpass-api.de latest access: March 2022
8https://developers.google.com/maps/documentation/places/web-

service/supported_types#table2 latest access: June 2021

Fig. 2. Reference spatial contexts in new york city (a) and Portland (b).

Due to the inherent characteristics of the original data
distribution, we choose different time granularities for the
mobility and LBSN services. Specifically, we separately ana-
lyze different monthly periods for the taxi service in New York
City and FFCS data in Portland whereas we aggregate LBSN
data acquired in consecutive months due to their sparsity (lack
of user data).

VII. EXPERIMENTAL RESULTS

We run the experiments were run on a multi-core 2.67 GHz
Intel(R) Xeon(R) workstation with 32 GB of RAM with
Ubuntu Linux 18.04 LTS.

A. Configuration Settings

To limit the computational complexity in our experiments
we enforce (1) a maximum sequence length n equal to 3, i.e.,
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we generate sequences no longer than 3 COI sets, and (2) a
maximum COI set size |COIi | equal to 3, i.e., each COI set
in the sequence contains no more than 3 COI categories.

To deepen the analysis of short-term urban movements
we extract the sequential patterns (GAPs) by enforcing the
mintimegap and maxtimegap to 15 and 60 minutes,
respectively. This implies the covered time span never exceeds
one hour and the temporal distance between consecutive events
is above 15 minutes.

The value of the support threshold (minsup) is adapted to
the cardinality and sparsity input data distribution. Specifically,
for New York City we set the support threshold to 50% for
the mobility dataset and to 1% for the LBSN dataset, whereas
for Portland we set it to 4% for the mobility dataset and to
0.06% for the LBSN dataset. The values of the confidence and
lift thresholds are set to 50% and 10, respectively.

B. Bias Detection and Explanation: Results Overview

We report here some examples of bias detection outcomes
relative to one representative month (May) in Manhattan
(New York City). The selected context is characterized by a
relatively high variability in the activity patterns. The results
are in line with those achieved in the other months.

Table III reports the distribution, in percentage, of the
COIs occurring in the sets of uncommon GAPs.9 COIs such
as Health, Bank, and Diplomacy are present only in the
GAPs mined from the mobility data. These exceptions are
likely due to privacy concerns, which prevent LBSN users
from disclosing such sensitive information. Conversely, GAPs
mined from mobility data include the aforesaid COIs, partially
compensating the lack of LBSN data. COI Theater is instead
present only in the LBSN GAPs. Theaters are popular venues
for entertainment activitie. They are frequently annotated by
LBSN users, whereas appear to be less common in mobility
data.

In Table III, we can notice two COIs occurring in both sets:
Food and Entertainment. This means that Food and Enter-
tainment frequently occur in the mined GAPs, independently
of the data source. However, they co-occur with different
COIs depending on the data source from which they have
been mined. For instance, GAP Diplomacy → Food is mined
only from mobility data, whereas Theater → Food is mined
only from LBSN data. By analyzing only the frequency of
single COIs in the data sources we cannot identify this type
of discrepancy and bias. GAPs, which identify correlations
between sets of COIs, is a valuable support to identify also
differences and bias due to combinations of events, which are
representative of different user habits.

The bias detection test applied to the whole set frequent and
reliable GAPs reject the initial hypothesis of unbiased model.
Conversely, by setting k to 65 or less, the top-k GAPs appear to
be not affected by bias. Therefore, hereafter we will consider
such a pattern shortlist to explore the similarities between the
GAPS mined from the two data sources.

9Note that the sum of the percentages do not sum to 100% because each
GAP contains many COIs.

TABLE III

PERCENTAGE OF GAPs MINED FROM THE MOBILITY/ LBSN DATA
INCLUDING A GIVEN COI

C. Pattern Analysis

We separately analyze the top-k GAPs (k ≤ 65) in terms of
P@k and DiffR@k to explore similarities and differences in
the user habits.

1) Precision@k: Figure 3 (a) plots the P@k value for
increasing values of k. The experimental results show that the
precision has its maximum value (P@k=1) when k ≤ 20.
Then, the precision decreases gradually up to k=50, but with
values of P@k greater than 0.55, and more significantly for
k > 50. Therefore, the top 20 GAPs and approximately 55%
of the top 50 GAPs in the mobility dataset are consistent with
LBSN data. The pattern-based methodology indicates that,
in practice, the user activities discovered in different domains
(Foursquare and taxi services) are strongly correlated with
each other while focusing on the top ranked patterns. Thanks
to their inherent interpretability, end-users can explore these
patterns to investigate the underlying motivations behind the
reported activities. A qualitative analysis of real-world GAPs
is reported in Section VII-D.

2) Differential Recall@k: Figure 3 (b) plots the DiffR@k
values achieved by setting various values of k between 1 and
50. When k ≤ 20 DiffR@k is equal to zero because all the
top ranked GAPs extracted from mobility data have an exact
correspondence with a GAP in the LBSN data. This supports
the hypothesis that the two data sources are fairly consistent
with each other. When k ≥ 20 the DiffR@k value increases,
but is always 0.18 until k = 50, meaning that the gap between
the best R@k value and the actual value is at most 18%.

D. Qualitative Analysis of the Discovered Patterns
a) User activities in common between mobility and LBSN

data: We analyze here a selection of representative GAPs that
are relevant to both LBSN and mobility data.

Example: Diplomacy → Restaurant is an example of GAP
in common between the analyzed data sources. The aforesaid
GAP has a confidence value equal to 100% in both data
sources (taxi and Foursquare). It represents a recurrent
connection between the visit to a diplomacy POI followed by
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Fig. 3. Comparative analysis. new york city. May 2012.

a lunch/dinner in a restaurant. By exploring the trip sequences
covered by the selected GAP we find the following trips:
Consulate general of the Philippines → Cuban restaurant on
the 8th avenue, Permanent Mission of the Plurinational State
of Bolivia to the United Nations → Mexican Restaurant Taco
Dumbo, and Consulate General of Japan in New York → Thai
restaurant on the 8th avenue. The extracted GAP, and the cor-
responding trips, describe an activity pattern, which consists
in having lunch/dinner after a diplomacy meeting to conclude
an event in an official venue. The extracted GAP highlights a
user habit that cannot be detected considering POIs instead
of COIs. Another example is given by the trips Courant
Institute of Mathematical Science → Times Square and NYU
Stern School of Business → The Bitter End that support the
GAP School/College → Entertainment, which characterizes
peculiar students’ activities. The municipality of Manhattan
could leverage these patterns to plan the most appropriate loca-
tion for new services to (i) increase the citizens’ experience,
(ii) reduce the average trip time, and (iii) reduce traffic and
pollution.

The heatmap in Figure 4 summarizes the coverage level
of the GAPs extracted from the mobility service over LBSN
data separately for each of the analyzed months. Specifically,
for each 60 GAP mined from the LBSN data it indicates
whether it is covered by any top ranked GAP extracted from
the mobility data (covered patterns are represented by blue
squares). On the x-axis, the GAPs in the ranked list RL BS N

are sorted by decreasing confidence value and lift value.
The plot shows that (1) the top ranked LBSN patterns are
covered by mobility data for most of the analyzed months.
(2) Some activities in common between LBSN and mobility
services are peculiar to specific months whereas other indepen-
dent of the analyzed monthly period. (3) As expected, August
is an outlier month as citizen activities significantly change.

The importance of the extracted activity patterns, measured
in terms of GAP confidence and lift values, varies over the
analyzed months. Focusing on the subset of GAPs relative to
a specific POI category, we can analyze the evolution of the
corresponding patterns’ rankings, and thus user activities, over
time.

Example: GAPs relative to Health and Theater are very
important in March, whereas the GAPs in the top-20 include

Fig. 4. Heatmap of the 60 check-in-related GAPs mined from new york city
matched by a trip-related GAP.

Fig. 5. Examples of check-in sequences associated with GAPs mined from
LBSN data.

the category Diplomacy services only in July and August. This
is probably due to the common need to retrieve the necessary
documents to travel in summertime. Categories School/College
and Entertainment have a greater significance in April, May
and October. This could be linked to the academic calendar
and the greater recreational activity during the spring/autumn
months favoured by more pleasant temperatures. Finally,
GAPs related to the category Bars/Cafes are fairly relevant
to most of the analyzed months.

b) User activities peculiar to the mobility service: We
seek the top ranked GAPs extracted from the mobility data that
are not equally relevant to the LBSN context. They represent
user habits that are related to either “sensitive” or less “social”
aspects.

Example: Categories Bank and Health are typical of the sub-
set of GAPs peculiar to the mobility service. They are related
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Fig. 6. Comparative analysis. Portland. May 2012.

to healthy conditions, work activities, or routine management
of personal business. The associated venues do not correspond
to the usual POIs for which users wish to show their presence
through check-ins. User movements between these kinds of
POIs can thus be captured through the analysis of the mobility
data but not through the analysis of the LBSN data.

c) User activities peculiar to the LBSN context: These
patterns represent user movements between rather close venues
(possibly coupled with a scarce availability in the area of the
considered mobility means). Users can make these movements
without having to use a mobility means like the taxi. Despite
users notify these movements through the LBSN service
they do not use any mobility means thus the corresponding
activities cannot be revealed by analyzing mobility data.

Example: Theater → Entertainment and Restau-
rant → Entertainment are examples of GAPs mined
from LBSN data only. Here we discuss three examples of
POI sequences matching the GAP Theater → Entertainment.
In all the cases, the sequence origin and destination are
located at a walking distance, i.e., 2 minutes, 9 minutes and
13/14 minutes on foot.10 Specifically, one of the three POI
sequences refers to a movement started from the Magnet
Theater and ended in the Greeley Square Park. The other
POI sequence started from David H. Koch Theater and ended
in the Ballfields Café located in Central Park. The third
POI sequence is from the Lyceum Theater to the Herald
Square Plaza. As an example, this latter sequence is shown
in Figure 5.

E. The Portland Case Study

We summarize here the main results achieved on the
Portland dataset (see the key statistics in Table II), which
comprises Foursquare check-ins and Free-Floating Car Sharing
service usage data. Despite in Portland the Foursquare social
service is quite popular users tend to check-in only few venues
located in the city center. The relatively limited number of
social user check-ins compared to the number of available car
trips (485,000 trips vs. 1,700 check-ins) and their imbalanced
spatial distribution make Portland as a particularly challenging
scenario in which domain experts could leverage the integra-
tion of mobility data.

10We estimated the walking distances by means of the GoogleMaps service
available at https://maps.google.com latest access: March 2022.

1) Comparison Between Mobility- and Check-in-Based
GAPs: We compute the P@k and DiffR@k values to evaluate
the similarities between the GAPs mined from the mobility
data and those extracted from Foursquare in Portland as well.
The LBSN-based patterns are again considered as the ground
truth. However, since the cardinality of LBSN data is rather
limited, the associated GAPs cannot be considered reliable
like those mined from New York City. Due to the inherent
sparsity of LBSN data, in Portland only 25 GAPs are mined
from Foursquare.11

We compare the GAPs mined from mobility data with the
25 extracted from LBSN data.12 The plots in Figure 6 show
the P@k and DiffR@k values by varying the number k of
selected GAPs. The precision and recall values are optimal
when k ≤ 3, i.e., the top 3 activity patterns are in common
between LBSN and FFCS usage data. Then, the performance
worsens but is still acceptance until k ≥ 10 (e.g., precision
above 45%). Notice that when there is a lack of LBSN data
the most valuable information is provided by the new activity
patterns not present in LBSN data, as mobility data are more
likely to represent reliable life-style patterns.

2) Effect of Spatio-Temporal Contexts: We also compare the
GAPs extracted from mobility data within different city areas
and time periods with those extracted from LBSN data.

Example: In Portland the GAP Restaurant → Shop
ranked first in the East area, probably due to the move-
ments of tourists beyond to those of local people. Conversely,
Restaurant → Restaurant ranked first in the north, as the
density of restaurants within that area is relatively high. The
central area is characterized by homogeneous activity trends:
the mined activity patterns all have similar quality measures
and include most of the GAPs that already appear in North
and the East areas.

We explore different time granularities beyond the monthly
periods. For example, in Portland a drill down on the temporal
dimension to the weekly granularity confirms the main results,
in terms of P@k and DiffR@k values, achieved with the
monthly periods. Furthermore, the majority of the GAPs
extracted at the monthly aggregation level are still relevant
at the weekly level as well.

11We set the minimum relative support to 0.06% for the check-in data.
12In the experiments we set the minimum support threshold to 0.06% to

extract the COI sequences that occur at least twice.
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VIII. DISCUSSION AND CONCLUSIONS

In this paper, we proposed to complement the analysis
of LBSN data using mobility data. The main purpose was
to characterize the activities of citizens in urban environ-
ments based on both the explicit annotations made through
the LBSN check-ins and the implicit feedback provided by
the geo-referenced trip data acquired by mobility service
providers.

The main stakeholders are city planners and urban design-
ers, e.g., municipality managers and city council delegates,
who are in charge of

• Shape urban areas to meet the citizens’ demand and
foreseen emerging urban areas. For example, GAPs such
as Food → Entertainment indicate a joint interest for culi-
nary and entertainment activities, whose related services
can be offered within the same urban district (at a short
distance). Entrepreneurs can also take advantage of these
targeted recommendations to plan business activities and
shape the existing services.

• Suggest to people having access to a service in a given
POI category (e.g., “Food”) the next possible POI cate-
gory of interest (E.g., “Entertainment”).

• Target specific customer needs by analyzing behavioral
data of specific customer segments (e.g., city tourists and
residents, young/middle age/old people). For example, the
proposed solution can be helpful to mobility managers
who are involved in the planning of transport services,
with particular attention to issues like accessibility (e.g.,
offer the access to both kinds of facilities to the disabled).

The takeaways of the research can be summarized as
follows.
Explicit vs. implicit tagging. So what? LBSN services
like Foursquare foster the user annotation of the published
check-ins. Hence, the user intentions are explicit. Conversely,
in mobility data the trip endpoints could approximately indi-
cate the POIs of interest thus providing implicit feedback
on users’ habits. The data-driven methodology presented in
this paper bridges the gap between explicit and implicit POI
tagging, providing domain experts with a quantitative strategy
to assess the coherence of the two data types. Implicit tags
are particularly relevant to complement explicit content when
there is a lack of User-Generated Content.
Are LBSN and mobility data actually complementary? At a
first glance, the whole set of patterns derived from the two data
sources show substantial differences (bias). However, based on
our empirical evidence, we can identify a shortlist of patterns
that are highly similar to each other (approximately 60 GAPs).
A detailed analysis of these common patterns revealed that
the corresponding user habits are coherent to a large extent.
Therefore, under the aforesaid conditions, the complementarity
and interchangeability of the two data sources are preserved.
How can we complement LBSN data with mobility data?
The experiments carried out on Foursquare data highlighted
specific time periods and spatial regions when the POI
sequences visited by the social users reflect the taxi rides or the
trips associated with car sharing services. This is particularly
helpful to overcome the lack of LBSN data for specific,

privacy-sensitive services (e.g., finance, healthcare, religion)
and for particular spatio-temporal contexts (e.g., when LBSN
services are temporarily out of order).

As a future work, we plan to extend the study to other
mobility services, such as shared scooter and bikes, and social
platforms, such as Instagram. We also aim at developing
an integrated context-aware platform, which automatically
discovers the underlying correlations between the data sources
and recommends to domain experts specific Key Performance
Indicators (KPIs).
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