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A B S T R A C T

Cryptocurrency trading has become more and more popular among private investors. According to recent
studies, the momentum effect influences the underlying market. Quantitative trading systems can leverage
momentum indicators to open and close trading positions. However, existing approaches that exploit the
momentum effect in cryptocurrency trading do not rely on machine learning. Since these systems are based
on human generated rules they are not suited to highly volatile market conditions, which are quite common
in cryptocurrency markets. This paper proposes to leverage machine learning approaches to automatically
detect the momentum effect in cryptocurrency market data. For each cryptocurrency it estimates the likelihood
of being affected by the momentum effect on the next trading day as well as the momentum direction. A
backtesting session, performed on three very popular cryptocurrencies, shows that the machine learning models
are able to predict, to a good approximation, short-term price volatility thus reducing the number of false
trading signals and increasing the return on investments compared to state-of-the-art approaches.
. Introduction

In recent years, cryptocurrencies have gained the attention of finan-
ial institutions, and, consequently, the speculative interest in Bitcoin,
thereum, and other cryptocurrencies has significantly increased (Fang
t al., 2020). Cryptocurrencies are assets characterized by peculiar
rice trends and exchange volumes. This is mainly due to the medium
f exchange and the ownership policies, which commonly yield a
ignificantly higher degree of price volatility compared to conventional
ssets (King & Koutmos, 2021). This poses the question of whether
he underlying market adheres to the predictive models that are com-
only applied to more traditional markets such as the stock and Forex

xchanges.
The models belonging to the traditional finance theory require

nvestors to be risk-averse and able to make rational choices. The
urpose is to maximize profits without being influenced by other factors
nd have complete access to all the information available in the market.
hese models also require an effective arbitrage mechanism, which
lays a critical role in determining the prices of the securities (Sinkala,
016). The arbitrage mechanism entails giving investors the opportu-
ity to earn by buying/selling the same asset at a lower/higher price
espectively, When an arbitrage opportunity arises, it is essential that
his opportunity is immediately exploited by investors. In this way the
arket will allow the prices to return to the right equilibrium imme-
iately, not allowing an asset to be overvalued or undervalued for too
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long periods. Notably, the aforesaid assumptions are partly unrealistic
for the cryptocurrency market (Fang et al., 2020). These reasons are the
origin of anomalous phenomena observed in cryptocurrency markets,
i.e., the momentum and reversal effects.

The momentum effect refers to the positive autocorrelation of prices
or to the tendency for rising asset prices to rise further and falling prices
to keep falling. Conversely, the reversal effect refers to the phenomenon
whereby asset prices show a negative autocorrelation, and therefore
only after a prolonged period of deviation they do revert and move
back to their fundamental values. In this paper, we exploit the aforesaid
effect to design a profitable cryptocurrency trading strategy.

Recent studies on cryptocurrency markets (Caporale & Plastun,
2020; Plastun et al., 2021) have empirically demonstrated that

• The intraday behavior of the cryptocurrency hourly returns is
different on overreaction days compared to normal days.

• There is a momentum effect on the days on which a sharp
change in the cryptocurrency prices (i.e., an overreaction day) is
observed.

• There is a momentum effect the day after an overreaction day.

The above-mentioned findings have provided the basis for new,
profitable cryptocurrency trading strategies based on the momentum
indicators. For example, Caporale and Plastun (2020) propose to open
a new trading position (i.e., buy or sell) on a cryptocurrency asset when
ttps://doi.org/10.1016/j.mlwa.2022.100310
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the momentum level exceeds a given user-specified cutoff threshold.
However, the equities produced by the aforesaid trading strategy tend
to have excessive volatility due to the inherent difficulties in detecting
the overreaction days in which the strategy must operate.

To counteract the negative effects of excessively volatile financial
markets, machine learning techniques have shown to be more robust
than traditional, rule-based trading systems under challenging market
conditions (Bustos & Pomares-Quimbaya, 2020). The main reason is
that, based on a deep data exploration, they are able to tailor the
trading strategies to the observed market conditions.

This paper proposes to advance existing cryptocurrency trading
models based on the momentum effect by leveraging machine learn-
ing techniques. Unlike any previous approaches to momentum-based
cryptocurrency trading it combines market forecasting with supervised
momentum analysis. Specifically, for each cryptocurrency it estimates
the likelihood of being affected by the momentum effect on the next
trading day as well as the momentum direction. It opens a new trading
position on a cryptocurrency asset only when the machine learning
model outcome is in agreement with the observed momentum-based
signal.

We run experiments on historical data relative to three of the most
representative cryptocurrencies. The results achieved by the machine
learning-based approach are superior to those of the heuristic approach
in terms of both F1-score of the classification model and return of
investment of the simulated trades. Therefore, machine learning seems
to be particularly effective in counteracting the negative effects of
cryptocurrency assets.

A summary of the main scientific contributions is given below.

1. It presents a new machine learning-based strategy to cryptocur-
rency trading based on recent evidence on price momentum (Ca-
porale & Plastun, 2020; Plastun et al., 2021). The purpose is to
more effectively manage conditions of excessive price volatility,
which are typical of cryptocurrency markets.

2. Unlike all existing approaches to cryptocurrency trading, it
leverages machine learning to automatically detect the mo-
mentum effect in cryptocurrency market data and not only to
perform market forecasting (Fang et al., 2020).

3. It achieves better performance than state-of-the-art approaches
(e.g., Caporale and Plastun (2020)) on real cryptocurrency mar-
ket data.

The rest of the paper is organized as follows. Section 2 discusses
the prior work. Section 3 briefly reviews the fundamentals of the
baseline approach presents by Caporale and Plastun (2020), whereas
Section 4 presents the model extension based on machine learning.
Finally, Sections 5 and 6 report the experimental results and draw the
conclusions and future research directions, respectively.

2. Related works

2.1. Machine learning-based approaches to cryptocurrency trading

Although the use of machine learning to forecast the stock market
is established (Bustos & Pomares-Quimbaya, 2020; Huang et al., 2019;
Ozbayoglu et al., 2020; Rundo & di Stallo, 2019), only few attempts
to adapt the current trading systems to the cryptocurrency market
have been made. Specifically, Attanasio et al. (2019) have investi-
gated the application of traditional classification techniques such as
Support Vector Machines and Decision Trees to forecast the next-day
cryptocurrency price, whereas in Lahmiri and Bekiros (2021), Livieris
et al. (2020a) the authors have explored the use of Deep Learning
techniques. A key aspect is the exploration of different data input types
such macro-financial indicators and blockchain information. Moreover,
social media data have been used to forecast cryptocurrencies prices
such as Twitter data (Kraaijeveld & De Smedt, 2020) or GitHub and
Reddit data (Glenski et al., 2019). Another line of works investigates
2

the use of ensemble methods, exploring the use of both standard shal-
low approaches, like Random Forests and Stochastic Gradient Boosting
Machine (Derbentsev et al., 2021), and the use of deep learning mod-
els as component learners (Livieris et al., 2020b). Sun et al. (2020)
combine daily price data of 42 cryptocurrencies with key economic
indicators acquired from the stock and Fiat markets to train a Gradient
Boosting Decision Tree algorithm. However, all the aforesaid features
are typically characterized by a high degree of noise thus making the
inference process complex and not easily explainable. To overcome
this issue, Zhang et al. (2021) propose to use an Attentive Memory
module that combines a Gated Recurrent Unit with a self-attention
component to establish attentive memory for each input sequence. The
results confirm that the raw sequence already incorporates most of
the relevant information whereas context information is hardly usable
to build accurate predictive models. Rather than addressing short-
term price forecasting as in Lahmiri and Bekiros (2021), Livieris et al.
(2020a), Zhang et al. (2021), this paper proposes a new machine
learning-based strategy aimed at predicting the overreaction effect.
Hence, it incorporates the underlying market properties highlighted
by recent empirical evidence (Caporale & Plastun, 2020) to leverage
the predictive power of machine learning models on historical prices.
To the best of our knowledge, this is the first attempt to use machine
learning to perform momentum-based cryptocurrency trading.

2.2. Applications of the momentum effect in the financial domain

The cryptocurrency market is a particularly new and relatively
unexplored case of market extremely vulnerable to overreactions, given
its high volatility compared to the traditional markets such as Forex,
commodity and stock etc. Recent studies (Bartos, 2015; Urquhart,
2016) have analyzed its efficiency, long-memory properties and persis-
tence in price (Bariviera, 2017), the existence of price bubbles (Corbet
et al., 2018), its competitiveness (Gandal & Halaburda, 2014), the
issue of price predictability (Plastun et al., 2021), and the presence of
anomalies (Kurihara & Fukushima, 2017).

The influence of the momentum effect on the cryptocurrency market
is due to its affinity with emerging markets: low regulation, trading
barriers, lack of information and asset complexity. Indeed, since large
financial institutions do not have the authorization or interest to oper-
ate on the cryptocurrency market, small investors often have to access
it directly, by creating a wallet and using an exchange. Although these
have developed a lot in recent years, becoming more user-friendly,
they still remain a strong obstacle to accessing the market. A second
huge problem is given by the type of asset being traded, the cryp-
tocurrency, which is much more complex to understand than traditional
assets, such as stocks, commodities and Forex. Therefore, investors are
generally small players or individuals, attracted by the high volatility
of the cryptocurrency market and by the possibility of speculation,
which make decisions often driven more by common sentiment, than
by reasoning based on pricing analysis.

A small number of studies have focused their attention on mo-
mentum and overreactions in the cryptocurrency market. For instance,
the research work by Chevapatrakul and Mascia (2019), based on the
quantile autoregressive model, reveals that days with deeply negative
returns are often followed by periods again characterized by negative
returns and that abnormal positive weekly returns will be followed by
an increase in prices. More specifically, investors seem to overreact
when daily returns are in the lower quantile of the distribution and
when weekly returns are in the upper quantile of the distribution.
A possible motivation is that investors are quick to exit the market
on days of negative feelings when prices drop. Otherwise for the
second finding, the results indicate an excessive reaction of investors to
favorable news, during the weeks of positive sentiment when prices are
rising. At the monthly frequency, no evidence of momentum was found,
thus suggesting that the cryptocurrency market has much faster mo-
mentum dynamics compared to traditional asset markets, such as the
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stocks market. Caporale and Plastun (2020) have shown the presence of
price patterns after overreactions. Also, they have analyzed the momen-
tum effect in the cryptocurrency market during the overreaction day
and the following day. They have observed that, after an overreaction,
the price movements are higher than in normal days and, for these rea-
sons, they claim that a trading strategy based on the momentum effect
after overreactions is likely to be profitable. The empirical results show
that hourly returns during day of positive (negative) overreactions are
significantly higher (lower) than the hourly returns achieved during
the average positive (negative) day. Moreover, anomalous days can be
recognized before the end of the day. In fact, the price trend is likely
to follow the direction of the overreaction until the end of the day.
As a drawback, applying a posteriori reaction entails yielding potential
losses due to the generation of false trading signals. To mitigate such
a negative effect, the objective of this work is to develop a machine
learning-based system that is able to identify both positive and negative
overreaction conditions in cryptocurrency price series.

3. The heuristic approach

The overreaction detection method recently proposed by Caporale
and Plastun (2020) is an heuristic method based on hourly inspection of
the cryptocurrency price series. The key behind it is to trigger trading
operations (buy or sell) only when the current price exceeds predefined
thresholds.

The thresholds adopted in the heuristic method are computed us-
ing the daily average return of the cryptocurrency and its standard
deviation. Daily returns (Ri) are computed as follows:

𝑅𝑖 = (𝐶𝑙𝑜𝑠𝑒𝑖∕𝑂𝑝𝑒𝑛𝑖 − 1) ∗ 100%

here:

• Ri: returns on the 𝑖th day in %
• Openi: open price on the 𝑖th day
• Closei: close price on the 𝑖th day

The returns calculated are divided into two data sets composed by
nly positive or negative returns in order to respectively define positive
nd negative thresholds separately for each trading day.

The 𝑖th day is characterized by a positive overreaction day if:

𝑖 > (𝑅𝑛 + 𝑘 ∗ 𝜎𝑛)

The 𝑖th day is characterized by a negative overreaction day if:

𝑖 < (𝑅𝑛 − 𝑘 ∗ 𝜎𝑛)

Where:

• Rn: average daily returns for period n
• 𝜎n: standard deviation for period n
• k: number of standard deviations

Average daily return and standard deviation of period n (days) are
computed as follows:

𝑅𝑛 =
𝑛
∑

𝑖=1

𝑅𝑖
𝑛

𝑛 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑅𝑖 − 𝑅𝑛)

2

The heuristic method compares the current price with the thresholds
n order to assign the current trading day to one of the following
ategories: positive overreaction, negative overreaction or normal day.
n order to do so, it monitors the hourly price series to detect if the
sset price is above any of the two thresholds. If the price has exceeded
given threshold then the current day is labeled with the overreaction

abel. A prediction is correct if the daily close price is still beyond the

hreshold level.

3

The trading system proposed by Caporale and Plastun (2020) lever-
ages the momentum effect to open/close trading positions. Specifically,
it opens a long-selling (short-selling) position when a positive (nega-
tive) overreaction is detected. Every trading position is closed at the
end of the day (i.e., intraday trading scenario with no stop loss).

4. The proposed method

We present a new machine learning-based approach to counteract-
ing the main drawbacks of the heuristic method, i.e., the generation of
false trading signals.

4.1. Problem statement

Let 𝑂𝑐 be an indicator function defined on trading day 𝑑𝑖 for
cryptocurrency 𝑐 as follows:

𝑂𝑐 (𝑑𝑖) =

⎧

⎪

⎨

⎪

⎩

1 𝑑𝑖 positive overreaction
−1 𝑑𝑖 negative overreaction
0 normal day

We model the relation between the presence of a overreaction
condition on the next trading day 𝑑𝑖+1 and the set of historical feature
values 𝑐 describing 𝑐 on the current trading day 𝑑𝑖 and the preceding
ones 𝑑𝑖−1, 𝑑𝑖−2, …, 𝑑𝑖−𝑊 +1 as an arbitrary classification function 𝑓𝑐 :

𝑂𝑐 (𝑑𝑖+1) = 𝑓𝑐 (𝑐 (𝑑𝑖),𝑐 (𝑑𝑖−1),…𝑐 (𝑑𝑖−𝑊 +1))

where 𝑓𝑐 (⋅) is the prediction function we want to find, 𝑊 is the size
of historical time window considered by the classification model, and
𝑂𝑐 (𝑑𝑖+1) is the value of the target variable.

4.2. Methodology

The main steps of the proposed methodology are summarized be-
low.

1. Data acquisition and preparation. This step consist in the
gathering of historical data related to one or more cryptocur-
rencies and performing feature engineering based on established
technical analysis indicators (Murphy, 1999) (see Section 4.2.1).

2. Dataset labeling. In this second step the dataset samples, each
one corresponding to a description of the cryptocurrency price
series on a specific trading day, are labeled using the indicator
function 𝑂𝑐 (see Section 4.2.2).

3. Classification. This step entails training and applying a classifi-
cation model to predict the presence and direction of an overre-
action condition on the next trading day (see Section 4.2.3).

4.2.1. Data acquisition and preparation
We first retrieve a sufficiently large amount of historical prices

relative to the cryptocurrencies under consideration. In our experi-
ments, we retrieved data related to three renowned cryptocurrencies,
namely Bitcoin (BTC), Ethereum (ETH) and Litecoin (LTC). Data are
downloaded from Crypto Data Download,1 which is a service gathering
cryptocurrency data from the main crypto exchanges. The collected
data are related to the Kraken2 exchange. Each of the three datasets
contains price and volume data at daily granularity. More specifically,
each sample is defined by:

• a timestamp;
• open, high, low and close prices;
• traded volume (in crypto and USD amounts).

1 www.cryptodatadownload.com (latest access: December 2021).
2 www.kraken.com.

http://www.cryptodatadownload.com
http://www.kraken.com
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Table 1
Technical indicators and their corresponding category.
Feature Description Category

Open Open price of the current day Candlestick
High Highest price of the current day
Low Lowest price of the current day
Close Close price of the current day
Volume Trading volume of the current day

SMA5–20 Relative difference between SMA(5) and SMA(20) Trend
SMA8–15 Relative difference between SMA(8) and SMA(15)
SMA20–50 Relative difference between SMA(20) and SMA(50)
EMA5–20 Relative difference between EMA(5) and EMA(20)
EMA8–15 Relative difference between EMA(8) and EMA(15)
EMA20–50 Relative difference between EMA(20) and EMA(50)
MACD Moving Average Convergence/Divergence
AO14 Aroon Oscillator (14 periods)
ADX14 Average Directional Index (14 periods)
WD14 Difference between Positive Directional Index (DI+)

and Negative Directional Index (DI-) (14 periods)

PPO12–26 Percentage Price Oscillator (12 and 26 periods) Volatility
RSI14 Relative Strength Index (14 periods)
MFI14 Money Flow Index (14 periods)
TSI True Strength Index
SO14 Stochastic Oscillator (14 periods)
CMO14 Chande Momentum Oscillator (14 periods)
ATRP14 Average True Range Percentage: ratio between

Average True Range and Close (14 periods)

PVO12–26 Percentage Volume Oscillator (14 and 26 periods) Volume
ADL Accumulation Distribution Line
OBV On Balance Volume
FI13 Force Index (13 periods)
FI50 Force Index (50 periods)
In compliance with Attanasio et al. (2020), we describe the daily
rice variations with a set of established technical indicators (Murphy,
999). The purpose is to summarize the status and trends of the
ryptocurrency. Specifically, they signal whether the cryptocurrency
rice is following a trend, assess the trend strength, and detect a
omentum trend is coming to an end due to underlying conditions due

o either over-bought or over-sold conditions of the underlying asset.
n compliance with Attanasio et al. (2020), in our experiments, we
ill hereafter consider the set of 22 technical indicators and oscillators

eported in Table 1.

.2.2. Dataset labeling
Since the goal is to exploit the momentum effect produced by

verreaction, we label each dataset sample using the indicator function
efined in Section 4.1. Analogously to Caporale and Plastun (2020),
e exploit the overreaction to selectively open trading positions on the
nalyzed cryptocurrency.

To determine k and W we follow the indications provided by Capo-
ale and Plastun (2020) and tested K values in the range [0, 2] and

values in the range [50, 360]. Notice that by setting k to 0 the
euristic method generates a high number of wrong trading signals,
hereas by setting k to 2 the number of overreaction days significantly
ecreases. We achieve the best performance by setting k to 1. Finally,
he size of the historical window cannot be lower than 50 to allow the
omputation of the technical indicators. Setting larger W values implies
onsidering also long-term price trends, which turn out to be harmful
or daily cryptocurrency trading.

.2.3. Classification
The machine learning module is in charge of accomplishing a 3-

lass classification task, where predicting either a positive or negative
verreaction condition entails generating the corresponding trading
ignal analogously to the rule-based model described in Caporale and
lastun (2020).
 m

4

5. Experiments

In this work, we consider the baseline approach proposed in Ca-
porale and Plastun (2020) and several machine learning classifiers to
produce trading decisions. We thoroughly test both classification and
trading performance via extensive back-testing experiments3.

5.1. Experimental environment

We run experiments in a single-node setting on a HPC facility. The
node runs Ubuntu 20.04.2 LTS, with a 8 CPU threads Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30 GHz and 40 GB of RAM. For the preliminary
LSTM tests we use a NVIDIA V100 GPU with 16 GB of VRAM.

For each machine learning model the training time is in the order
of seconds (in the worst cases) whereas the times required for running
a grid search are in the order of tens of minutes.

5.2. Experimental design

Our back-testing experiments entail the following steps. First, we
collect data available online for a given cryptocurrency. Data is col-
lected at both daily and minutely time granularity. Next, we divide
the data in training and back-test (evaluation) data. We then use the
training portion to learn the relationship between feature descriptors
and overreaction conditions using machine learning models. Finally,
we back-test on the remaining days. Note that, similar to Caporale and
Plastun (2020), the original heuristic detects overreaction conditions
based on hourly data prices, whereas machine learning models predict
the overreaction after being trained on daily data.

3 Data and code are available at https://anonymous.4open.science/r/
omentum-crypto-trading-3023/.

https://anonymous.4open.science/r/momentum-crypto-trading-3023/
https://anonymous.4open.science/r/momentum-crypto-trading-3023/
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Table 2
List of hyper-parameters used for validation. We report each hyper-parameter name and
values using SK-learn notation. The best configuration is highlighted in bold.
Model Hyper-parameter Grid values

RFC criterion ‘‘gini’’, ‘‘entropy’’
min_samples_split 0.01, 0.05
min_samples_leaf 0.005, 0.01
max_depth None, 5, 10, 20
class_weight ‘‘balanced’’, ‘‘balanced_subsample’’

KNN weights ‘‘uniform’’, ‘‘distance’’
n_neighbors 3, 5, 7
algorithm ‘‘ball_tree’’, ‘‘kd_tree’’

MLP hidden_layer_sizes (10,), (30,), (10, 10), (512), (512, 256)
activation ‘‘relu’’, ‘‘logistic’’, ‘‘tanh’’
solver ‘‘lbfgs’’, ‘‘sgd’’, ‘‘adam’’
learning_rate ‘‘constant’’, ‘‘invscaling’’
learning_rate_init 2e-5, 1e−4, 1e−5, 1e−2, 1e−1
tol 1e−4, 1e-5

SVC kernel ‘‘linear’’, ‘‘poly’’, ‘‘rbf’’
degree 3, 4, 5
C 0.001, 0.01, 1, 10, 50

MNB alpha 0.01, 0.1, 1, 10

LSTM n_layers 2, 3, 4, 5
bidirectional True, False
sequence length 3, 5, 7, 10

LG solver ‘‘newton-cg’’, ‘‘lbfgs’’, ‘‘liblinear’’, ‘‘sag’’,
‘‘saga’’

penalty ‘‘l1’’, ‘‘l2’’
C 1e−4, 1e−3, 1e−2, 1e−1, 1, 10
W
a

5

d
F
s
a
t
a
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5.3. Models

In our experiments, we leave the original heuristic approach (HE)
from Caporale and Plastun (2020) unchanged while extending the base-
line method by using the machine learning-based approach described
in Section 4. As discussed in Section 4.1, we frame our problem as a
three-class classification task with the goal of predicting positive or
negative overreaction situations or neutral days. To address the task,
we leverage renowned machine learning models (Tan et al., 2019).
Specifically, we test Support Vector Machine (SVM), Gaussian Naive-
Bayes (GNB), Multinomial Naive-Bayes (MNB), K-Nearest Neighbors
(KNN), Logistic Regressor (LG), Random Forest (RFC), Feed-forward
fully-connected Neural Network (MLP). For the traditional classifiers
we used the implementations available in the SK-Learn library (Buitinck
et al., 2013).

We also run a set preliminary tests using the Deep Learning-based
LSTM architecture available in the PyTorch library (Paszke et al.,
2019). Specifically, prior to running the empirical validation we verify
the presence of data overfitting in the training phase. However, since
cryptocurrencies are relatively new financial markets and we are ana-
lyzing daily cryptocurrency prices the available data collection appears
to be not suited to train Deep Learning models.

5.4. Feature design for ML models

We enrich the cryptocurrencies series using established technical
indicators. We use (i) simple and exponential moving averages, at
different time scales, to capture price movements, (ii) Moving Aver-
age Convergence Divergence, Aroon Oscillator and similar to express
trends, (iii) Relative Strength Index, True Strength Index, Stochastic
Oscillator and other similar oscillators to capture volatility in price, and
four different Volume indicators.

Table 1 reports the full list of features we used in our experiments.
Please refer to Murphy (1999) for a more extensive discussion of the

meaning and usefulness for predicting the future price movements. s

5

5.5. Back-testing setup

We test our approach on three different cryptocurrencies, namely
Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC). We experiment on
the time span between September 2, 2015 and December 31, 2020. We
use data from September 2, 2015 and December 31, 2019 as training
data for machine learning classifiers. We back-test every model on the
remaining year.

We optimize each model’s hyper-parameters via exhaustive grid-
search. We validate each configuration using time-aware k-fold cross-
validation, setting the number of folds equal to 54. We then use the
best performing configuration in terms of F1-measure weighted by class
frequency.

We test over-sampling for getting class balance in training sets
using SMOTE (Chawla et al., 2002) and ADASYN (He et al., 2008). No
classification model benefited from over-sampling.

Table 2 reports the remaining hyperparameters tested during valida-
tion. Concerning the heuristic method, we run manual grid-search over
two core parameters: the number of past days and standard deviations
used to compute the high and low thresholds. We test the number of
past days in [365, 50] and the number of standard deviations 𝑘 in [0, 1, 2].

e achieve best results with 50 past days as threshold definition period
nd 2 standard deviations.

.6. Classification results

Tables 3–5 report the classification performance in detecting one-
ay ahead overreaction conditions. We report the scores in terms of
1 measure weighted by class frequency, separately by number of
tandard deviations (𝑘). The first row reports the baseline heuristic
pproach by Caporale and Plastun (2020). It is evident from the results
hat almost any machine learning method outperform the heuristic
pproach in all circumstances. The K-NN model is on average the best
erformer. However, there is no a clear written over all the three
ryptocurrencies.

4 We use the scikit-learn Python implementation as found in
klearn.model_selection.TimeSeriesSplit.
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Table 3
BTC back-testing: F1 (weighted) scores for
each classification model and number of
classes. Best performers for each setup
are reported in bold. Baseline results are
italicized.
Model # of labels

3 2

HE 0.70 0.74
GNB 0.67 0.71
KNN 0.77 0.77
LG 0.71 0.68
MLP 0.70 0.74
MNB 0.77 0.77
RFC 0.75 0.75
SVC 0.73 0.75

We also evaluate the classification performance using a binary
lass (i.e., overreaction or normal day) instead of a 3-class (positive
verreaction, negative overreaction, normal day). Since the 2-class
lassification problem is inherently simpler than the 3-class one, the
1-measure is expected to be higher. However, based on the binary
lassification outcome we are unable to distinguish between positive
nd negative overreaction. Hence, opening directional trading positions
ould require additional actions (see Section 3).

.7. Trading results

In order to test further the applicability of the machine learning-
ased momentum detection methods, we carried out a set of trad-
ng simulations. Specifically, we performed an hourly inspection of
he prices using the heuristic-based trading strategy. When the price
eaches the positive (negative) threshold a corresponding long (short)
osition is opened. Conversely, the machine learning-based trading
trategy does not adopt hourly price monitoring. This second strategy
xploit the labels produced by the classifier in order to open a long
short) position if the label is positive (negative) at the beginning of
ach trading day. Both strategies close their positions at the end of each
rading day.

Tables 6–8 report the scores achieved by heuristic-based strategy
nd by the two machine learning-based best performer strategies in
erms of percentage of profitable trades, total return and average return
er single trade. The results show that the machine learning-based
trategies open less position than the heuristic strategy, with an higher
ercentage of profitable trade. These results confirm that the detection
ethod based on machine learning is more effective in preventing

xcessive signal generation. Furthermore, the total return obtained by
he machine learning strategies and the average return per trade are,
n average, higher. This is due to the fact that machine learning allows
o open a position at the beginning of each overreaction day, without
aiting for a match with the threshold level. Hence, it enters the market

rom a better spot compared to the heuristic trading strategy. The
NN model seems to be the most promising. Even if it is not the top
erformer for all the considered cryptocurrencies, KNN is always in the
est performing groups, with better results than HE. It also provides a
onsistent total return on BTC, which appears to be the asset over which
he momentum effect strategies are not particularly effective.

. Conclusions and future work

The paper investigated the use of machine learning techniques
o overcome the limitations of state-of-the-art momentum-based cryp-
ocurrency trading systems. Specifically, based on the empirical obser-
ation that the momentum effect is likely to influence the series of
ryptocurrency prices, we designed a methodology that predicts the
resence and direction of an overreaction condition. The takeaways of

he research are summarized below:

6

Table 4
ETH back-testing: F1 (weighted) scores for
each classification model and number of
classes. Best performers for each setup
are reported in bold. Baseline results are
italicized.
Model # of labels

3 2

HE 0.68 0.72
GNB 0.74 0.76
KNN 0.69 0.70
LG 0.74 0.76
MLP 0.68 0.68
MNB 0.74 0.74
RFC 0.71 0.76
SVC 0.73 0.76

Table 5
LTC back-testing: F1 (weighted) scores for
each classification model and number of
classes. Best performers for each setup
are reported in bold. Baseline results are
italicized.
Model # of labels

3 2

HE 0.69 0.73
GNB 0.73 0.77
KNN 0.77 0.78
LG 0.78 0.69
MLP 0.71 0.76
MNB 0.77 0.77
RFC 0.77 0.78
SVC 0.75 0.78

Table 6
BTC trading results. Best performers are reported in boldface. Baseline results are
italicized.

Model Trades Profitable Profitable Total Return
trades trades % return per trade

HE 40 19 47.50% 2.47% 0.06%
KNN 11 6 54.55% 8.63% 0.78%
SVC 48 26 54.17% 3.61% 0.08%

Table 7
ETH trading results. Best performers are reported in boldface. Baseline results are
italicized.

Model Trades Profitable Profitable Total Return
trades trades % return per trade

HE 84 45 53.57% 59.49% 0.71%
KNN 52 33 63.46% 97.44% 1.87%
LG 30 27 90.00% 126.23% 4.21%

Table 8
LTC trading results. Best performers are reported in bold. Baseline results are italicized

Model Trades Profitable Profitable Total Return
trades trades % return per trade

HE 83 33 39.40% 14.46% 0.17%
KNN 24 12 50.00% 36.36% 1.52%
SVC 39 24 61.54% 68.13% 1.75%

• The return per trade of the machine learning-based approach is
significantly better than those achieved by the heuristic approach
(e.g., on BTC KNN 0.78% vs. Heuristic approach 0.06%, on ETH
KNN 1.87% vs. Heuristic approach 0.71%).

• KNN is on average the most performing classifier on all the tested
cryptocurrencies and for all the considered settings.
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• The use of machine learning is beneficial for trading purposes
especially when the number of overreaction days available in the
historical data is significant (k = 1).

To balance the excessive reactivity of the heuristic approach and
the relatively low speculative predisposition of the machine learning
approach, as future work we plan to design an hybrid approach com-
bining heuristic rules based on technical analysis with machine learning
approaches.
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