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Handling Privacy-Sensitive Medical Data With
Federated Learning: Challenges

and Future Directions
Ons Aouedi , Student Member, IEEE, Alessio Sacco , Student Member, IEEE,

Kandaraj Piamrat , Member, IEEE, and Guido Marchetto , Senior Member, IEEE

Abstract—Recent medical applications are largely domi-
nated by the application of Machine Learning (ML) models
to assist expert decisions, leading to disruptive innova-
tions in radiology, pathology, genomics, and hence mod-
ern healthcare systems in general. Despite the profitable
usage of AI-based algorithms, these data-driven methods
are facing issues such as the scarcity and privacy of user
data, as well as the difficulty of institutions exchanging
medical information. With insufficient data, ML is prevented
from reaching its full potential, which is only possible if
the database consists of the full spectrum of possible
anatomies, pathologies, and input data types. To solve
these issues, Federated Learning (FL) appeared as a valu-
able approach in the medical field, allowing patient data
to stay where it is generated. Since an FL setting allows
many clients to collaboratively train a model while keeping
training data decentralized, it can protect privacy-sensitive
medical data. However, FL is still unable to deliver all its
promises and meets the more stringent requirements (e.g.,
latency, security) of a healthcare system based on multiple
Internet of Medical Things (IoMT). For example, although
no data are shared among the participants by definition
in FL systems, some security risks are still present and
can be considered as vulnerabilities from multiple aspects.
This paper sheds light upon the emerging deployment of
FL, provides a broad overview of current approaches and
existing challenges, and outlines several directions of fu-
ture work that are relevant to solving existing problems in
federated healthcare, with a particular focus on security
and privacy issues.

Index Terms—Federated learning, Internet of Medical
Things, healthcare, privacy.

I. INTRODUCTION

WHILE edge computing, leveraging the multitude of In-
ternet of Things (IoT) devices, is fast booming due to

its proficiency in various aspects (e.g., reducing the latency
and congestion of network), this emerging paradigm is also
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guiding new research fields. Among them, we can name smarter
healthcare infrastructures, which are favored by recent advances
in the Internet of Medical Things (IoMT), including wireless
sensors, medical devices, and mobile healthcare [1], [2]. IoMT
devices are particularly efficient in monitoring blood pressure,
glucose levels, heart rate, and body temperature, as well as
providing remote monitoring of patients in a real-time manner.
Behind these devices, a large amount of data is collected to be
analyzed for a real-time decision such as patient situation [3],
[4].

For these tasks, machine learning (ML) and deep learning
(DL) models can act in the background to improve the end-
user’s (e.g., patients) comfort and reduce the possible risks.
Concretely, ML and especially DL-based models have led to
disruptive innovations in the healthcare-based systems such as
chronic disease monitoring [3], cancer prediction [5], tumor
detection [6]. Modern DL models feature millions of parameters
that need to be learned from sufficiently large curated data sets
in order to achieve clinical-grade accuracy while being safe,
fair, and generalizing well to unseen data. However, opera-
tors face difficulty in obtaining a large amount of data, which
would become possible if hospitals were willing to share their
sensitive data. The need to protect electronic health records
is accentuated by several international regulatory policies, set
to restrict data access and protect medical data privacy. For
example, the Health Insurance Portability and Accountability
Act (HIPAA)1 in the USA and the General Data Protection
Regulation (GDPR) in European Union2 completely redefine
the data management policy. Consequently, valuable data are
often confined to individual hospitals and cannot be leveraged
for analysis, hindering the application of DL in the healthcare
context. Moreover, the increase in heterogeneity of data sources
could decrease the performance of the model, bottleneck the
whole network, and cause an extra computational cost for both
storage and processing.

To leverage the value of existing health datasets while pro-
tecting privacy-sensitive patients’ data, Federated Learning (FL)
appeared as a promising solution. With FL, a global model
is trained collaboratively by each agent of the system (e.g.,
hospitals, IoMTs, or health care centers) over the decentralized

1[Online]. Available: https://www.cdc.gov/phlp/publications/topic/hipaa.html
2[Online]. Available: https://gdpr-info.eu/issues/data-protection-officer/
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network. This is done via local updates, without exchanging
private data. FL replaces the sharing of medical data across
medical institutions, which is most of the time prohibited. With
the sharing of local trained model information (e.g., parameters
and gradients), it is possible to obtain sufficient knowledge
for model training. However, although FL implicitly offers a
certain degree of privacy since sensitive data is not exposed
and traffic may be encrypted [7], additional effort is needed
to ensure that the algorithm is proceeding optimally without
compromising security or patient privacy. For example, even if
data is anonymized, gathering just a few data attributes may
allow patient re-identification [8].

Moreover, FL aims to improve not only privacy but also
training efficiency as it uses the computation power and data
of potentially millions of IoMT devices/hospitals for training
in parallel. Extracting common knowledge from IoMT devices
helps to achieve a high-quality global model that guides the
automation process. Nevertheless, the increase in heterogeneity
of data sources could decrease the performance of the model,
bottleneck the whole network, and cause an extra cost for both
storage and processing. In this paper, we aim to provide crucial
information about the use of FL in healthcare while highlighting
unsolved technical questions.

A. Related Work

Driven by the importance of healthcare systems and IoMT,
several related reviews have been conducted. For example,
Vishnu et al. [1] present a brief overview of IoMT-based remote
monitoring systems, smart hospitals, mobile health, and how
they can be used to improve treatments for chronic diseases.
Also, Kagita et al. [11] present a short paper on the privacy
and security concerns with IoMT systems without discussing
possible FL-based solutions.

Recently, the use of DL/ML-based models for healthcare ap-
plications has received special attention because of their unique
features to improve the quality of services and solve complex
problems. In this context, Qayyum et al. [9] propose a com-
prehensive survey on different security challenges related to the
application of these data-driven algorithms in healthcare-based
systems. Similarly, Qadri et al. [13] present a survey on the use of
ML for Healthcare-IoT and other relevant technologies, includ-
ing edge computing, blockchain, Big Data, and software-defined
networks.

However, it appears that these solutions based on ML/DL
models are obstructed by the scarcity and privacy of user data
as well as the difficulty of collecting the data in a central entity.
This made FL a good alternative to enhance data confidentiality.
As a result, several review papers present the application of
FL in many existing domains, including healthcare. For ex-
ample, Liu et al. [22] introduce the application of FL to 6 G
networks, while [23] presents an FL approach to route pack-
ets in virtualized networks. Moreover, Brik et al. [24] present
the integration of FL and Unmanned Aerial Vehicles (UAVs)-
enabled wireless networks. Most importantly, Xu et al. [10]
present a concise review on the application of FL with Health-

care. Designed explicitly for IoMT scenarios, [25] presents
a cutting-edge FL system that, based on blockchain technol-
ogy, optimizes the consensus phase by dividing large clusters
of IoMT into multiple smaller clusters. Gadekallu et al. [20]
present a survey on the use of FL for Big Data services and
applications.

As for security aspects, Aledhari et al. [14] provide a review
of the FL architecture and framework, specific review papers
focus on the security, threats, and privacy issues related to FL.
For instance, Mothukuri et al. [12] present a comprehensive
survey on the security and privacy concerns with FL-based
solutions whereas Lyu et al. [26] study the threats to FL,
focusing specifically on the poisoning and inference attacks.
In the same direction, Agrawal et al. [16] provide a review
of FL-based approaches for intrusion detection systems along
with their challenges and vulnerabilities. Similarly, Ferrag et
al. [17] present a comprehensive survey, as well as an exper-
imental analysis of FL approaches for cyber security in the
Internet of Things (IoT) applications. Furthermore, Ghimire et
al. [18] present a detailed study on FL and its application in
cybersecurity and cybersecurity for FL. Li et al. [19] propose a
comprehensive survey on the integration of Blockchain and FL.
Last but not least, Ali et al. [21] presented an overview of the
integration of FL and blockchain for IoT applications. Table I
summarizes the contributions and limitations of the existing
survey.

B. Contribution

Although FL has been well studied in different domains, to
the best of our knowledge, no existing work extensively reviews
the use of FL in IoMT networks and applications. This motivates
us to investigate the integration of FL into healthcare systems
and to specifically consider and review the application of FL in
IoMT as well as the security and privacy concerns. In brief, the
key contributions and novelties of this paper can be summarized
as follows:

� Preliminary discussion of FL in IoMT: We present the
FL concept and discuss the motivations behind the appli-
cation of FL in IoMT, which include privacy and security
issues, latency, communication overhead, and scalability
of the healthcare system.

� FL for IoMT applications: We review the recent studies
on FL with IoMT such as Federated transfer learning, FL
with cloud-edge computing, as well as FL for COVID-19
identification.

� FL for security and privacy concerns: We describe how
FL preserves the privacy and security of the patient. We
also review the techniques combined with FL in order
to further improve the security and privacy of the IoMT
system, such as blockchain and encryption methods.

� Challenges and future directions on FL for IoMT: We
present issues and challenges suffered from FL in practice,
including single point of failure drawback, communication
bottleneck, straggler clients, model convergence with non-
independent and identically distributed (IID) data, and
limited capacity of IoMT devices.
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TABLE I
SUMMARY OF RELATED REVIEWS ON FEDERATED LEARNING AND DATA-DRIVEN METHODS FOR HEALTHCARE AND INTERNET OF MEDICAL THINGS

�, x, and * indicates that the topic is totally, not or partially covered respectively.

C. Paper Organization

The rest of the paper is organized as follows. In Section II, we
briefly describe the workflow of typical FL algorithms, while
Section III provides a comprehensive portfolio of current so-
lutions applying FL-based approaches in healthcare and IoMT.
Given the importance of privacy and security of patient data,
we overview current guarantees and limitations of FL privacy
preservation in Section IV. Then, Section V discusses open
challenges and issues in using FL for IoMT, showing future
research directions. Finally, Section VI concludes our paper.

II. FEDERATED LEARNING CONCEPTS

The need for a huge amount of data for ML/DL model training
in healthcare has spawned many initiatives aimed at bringing
together data from different institutions. However, medical and
patient data may have significant business value, making it less
likely that they will be freely shared among medical organiza-
tions or with cloud providers. Given the privacy concerns and
data governance challenges, FL tackles these issues by enabling
collaborative learning without centralizing data. It provides a
highly trained ML model without the risk of exposing training
data since they are kept where they are generated. While the
increasing amount of data has led to the striking success of
ML models, data management has also opened new problems
that FL can potentially solve. For example, along with the data
privacy and delocalization problems, FL also solves the problem
of having inadequate data by providing a trust factor between
heterogeneous domains. At the same time, this federated envi-
ronment comes with another benefit of having a model trained
on larger landscape data.

As depicted in Fig. 1, FL enables gaining insights collabora-
tively, e.g., in the form of a consensus model, without moving
patient data beyond the firewalls of the institutions in which

they reside. Unlike a traditional ML process, the learning phase
occurs locally at each participating institution, and only model
characteristics (e.g., parameters, weights, gradients) are trans-
ferred. While training without FL requires centralized training,
in which data acquiring sites donate their data to a central data
manager from which they and others are able to extract data
for local and independent training, FL is an iterative process,
wherein each communication round the model performance
can be improved. With FL, training can occur in two differ-
ent versions: centralized and decentralized. The former, which
corresponds to the typical FL workflow, is characterized by the
presence of an aggregation server. In this scenario, a federation
of training nodes works locally on the available data; each
node submits its partially trained model to a central server
intermittently for aggregation and then, using the received global
model, continues training on the consensus model returned by
the server. Conversely, in a decentralized or peer-to-peer FL, the
model aggregation does not require a central entity. Each training
node exchanges its partially trained models with some or all of its
peers, and each does its own aggregation. Independently of the
FL training strategy, a recent analysis for the medical field has
shown that a general FL-trained model can achieve performance
levels comparable to the ones trained on centrally hosted datasets
and superior to models that only see isolated single-institutional
data [27], [28].

As can be seen, the FL scenario consists of two main phases:
local update and global aggregation. While the local update
relies on common ML/DL models according to the designed
method (e.g., DNN, DRL, CNN), the aggregation phase is at
the heart of the FL process and aims to reduce the variance
of the weight updates affecting the prediction accuracy of the
model. Several aggregation mechanisms have been proposed
for FL and have shown to achieve acceptable performance:
(i) Federated-Averaging (FedAvg) [29], the most widely used
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Fig. 1. Typical FL workflows in comparison to a traditional learning based on a centralized data manager. (a) Centralized and (b) peer to peer FL
formulations allow private data to remain local to clients. (c) A general non-FL training workflow where data collection agents send their data to a
central entity.

algorithm, given its simplicity yet efficacy and robustness, (ii)
Adaptive Federated Averaging [30], designed to detect failures,
attacks, and bad updates provided by participants, (iii) Part-
Data-Sharing strategy [31], which addresses the statistical chal-
lenge of FL when local data is non-independent and identically
distributed (IID) (see Section V-D) by creating a small subset
of data, which is globally shared among all the edge devices,
(iv) FedProx [32], which extends FL to heterogeneous network
conditions by adding a proximal term to the objective that helps
improve the stability of the method, and (v) Qffedavg [33],
that, inspired by fair resource allocation in wireless networks,
encourages a fairer (i.e., more uniform) distribution of the model
performance across devices in a federated network.

Moreover, data distribution has a significant impact on the
FL deployment and the associated practical and technical chal-
lenges. In particular, there exist three types of federated learning:
horizontal federated learning, in which the data sets share the
same feature space but differ in the sampling space, vertical
federated learning, in which the data sets differ in the feature
space but share the same sampling space, and federated transfer
learning, in which the data sets has different feature space as
well as different sampling space.

III. FL FOR INTERNET OF MEDICAL THINGS

The privacy-preserving feature appears vital for medical data,
which are extremely sensitive to the patients and hospitals. Since
FL was introduced in order to keep the data where they are
generated (IoMT devices) and to preserve the data privacy [7],
several solutions have attempted to integrate FL into medical
IoT applications.

In the context of electronic health records, for example, FL
helps to represent and find clinically similar patients [34], as well
as predict hospitalizations due to cardiac events [35]. A novel
FL-based clinical decision support system can be found in [36],
in which the authors have integrated FL, Recurrent Neural
Networks (RNN)-based models, and attention mechanisms in

order to provide accurate solutions. The goal of this system
is to assist healthcare professionals in medical diagnosing and
overcome privacy concerns for sharing sensitive data. In another
work, Sozinov et al. [37] attempted to use FL for the activity
recognition tasks. Then, they study the trade-off between the
communication cost and the model accuracy, which indicates
that FL requires less communication and computational re-
sources while using less complex models but at the cost of lower
accuracy. Also, the authors showed that when the training data
is IID, the difference between FL and non-FL is within 3%. In
addition, the authors proposed an FL algorithm that identifies
and rejects erroneous clients while achieving an accuracy close
to FL without erroneous clients. Furthermore, Han et al. [38]
proposed a zero-watermarking scheme based on FL in order
to solve the privacy and security issues of the teledermatology
healthcare framework.

Recently, researchers have used FL with traditional ML-based
models, due to the complexity of some DL models as well
as the limited computation resources of most IoMT devices.
For example, Brisimi et al. [35] focused on the hospitalization
prediction for patients with heart-related diseases using elec-
tronic health records. To do so, the authors train a soft-margin
support vector machine (SVM) in a collaborative way by keeping
every participant’s data private. The theoretical and experimental
comparisons show that the proposed model converges faster and
with less communication overhead compared to an alternative
distributed algorithm.

In fact, as labeling data is often difficult and time-consuming,
researchers have started to reformulate the FL as a semi-
supervised model by combining both supervised learning (using
labeled data) and unsupervised learning (no label data) [39]. In
this context, Zhao et al. [40] proposed semi-supervised FL for
human activity recognition where the clients locally train an un-
supervised model using their unlabeled data and the server inte-
grates the resulting global unsupervised model into the pipeline
of the supervised learning process. Their experimental results
show that human activity recognition with semi-supervised FL
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is not affected by the non-IID data and can achieve comparable
accuracy to that of the supervised FL.

Another area of applicability for FL is within health industrial
and collaborative research for companies that even compete
with each other. One of the biggest initiatives in this context
is the Melloddy project, which aims to apply multi-task FL to
the datasets of 10 pharmaceutical companies [41]. By training
a predictive model that allows conclusions to be drawn about
how chemical compounds bind to proteins, the partners aim
to optimize the drug discovery process without revealing their
extremely valuable internal data.

Although the efficiency of FL application for healthcare
systems, the shared global model trained on the FL server
fails in personalization due to the different characteristics or
daily activity patterns of users; hence, it is important to have a
fine-grained or personalized model. One way to achieve this is
via Transfer Learning.

A. Federated Transfer Learning

Healthcare applications are often different but related to each
others, making knowledge transfer inter-domains possible and
leading to a more precise and personalized model. As a result,
the recent technique of transfer learning, which avoids learning
from scratch and solves the problem of insufficient training data,
can be effective in this scenario [42]. For instance, Chan et
al. [43] proposed a Federated Transfer Learning (FTL) frame-
work for remote healthcare monitoring, called FedHealth, which
is the first FTL framework for Human Activity Recognition.
At first, the model was aggregated using FL, and then the
transfer learning was applied to create personalized models for
each organization. Also, this framework uses a homomorphic
encryption algorithm to enable secure model sharing between
the organizations and the cloud (i.e., the FL server). To evaluate
the performance of their solution, the authors used a public
human activity recognition dataset called UCI Smartphone. The
experiment results demonstrate that FedHealth can improve
the classification performance compared to the non-federated
model and the traditional machine learning model. In a similar
work, Elayan et al. [44] proposed a TFL framework using IoMT
devices in order to detect skin diseases. The results demonstrate
that the FTL outperforms the non-TFL approach in terms of the
Area Under The Curve (AUC) metric and maintains the same
accuracy. It also shows that the TFL framework increases the
classification time. In addition, to tackle the heterogeneity in
IoT environments, Wu et al. [45] proposed a personalized FL
using transfer learning, called PerFit. The results show that the
accuracy of PerFit is 11.12% higher than that of classical FL.

B. FL With Cloud-Edge Architecture

Since the IoMT devices (e.g., smartwatches) are limited hard-
ware in terms of storage and computational capabilities, edge
computing has been proposed and gained popularity. It is an
efficient solution to address these issues and reduce the network
congestion and latency that occur with the cloud. As shown in
Fig. 2, edge computing helps to train the model closer to the end-
users and hence may conduct inference much faster than in the

Fig. 2. FL framework in edge computing system for healthcare ser-
vices. In this hierarchical and centralized setting, the edge cloud aggre-
gates data used for training the model, whose logic resides in the central
cloud.

cloud [46]. Note that the edge equipment in the healthcare sys-
tem can be computers or powerful devices installed in hospitals
for model training. In such a context, Hakak et al. [47] proposed
a general edge-based FL framework. This framework consists
of three modules: the cloud module, the edge module, and the
application module. The cloud module is managed by the model
owner and is used as the FL server, whereas the edge module
collects the data from the application module and updates the
local model. On the other hand, the application is responsible for
the sensor activity. It notifies the edge module when some activ-
ity is detected. Moreover, Wu et al. [46] proposed an FL-based
framework for in-home monitoring of health using a cloud-edge
architecture, called FedHome. Any user of an IoMT device in
FedHome can offload the local model training task to the home
edge. Then, the cloud collects the edge local model parameters
using the FedAvg algorithm. This framework takes advantage
of the feature extraction ability of convolutional neural net-
work (CNN), dimension reduction capability of autoencoder,
and oversampling strategy of synthetic minority over-sampling
technique (SMOTE) to cope with the imbalanced, non-IID, and
communication overhead issues. The experimental results on
human activity recognition demonstrate the effectiveness of the
FedHome framework in terms of accuracy, computation, and
communication overhead.

C. FL for COVID-19

The COVID-19 pandemic has caused an unprecedented
global crisis [48]. During the period of the COVID-19 pan-
demic, FL has recently been used to contain the virus spread,
given its ability to detect the positive case by training the
models of isolated medical institutions. For example, Yan et al.
[49] focused on COVID-19 chest X-ray images using differ-
ent non-federated/federated learning-based models including
MobileNet, ResNet-18, ResNeXt and COVID-Net. The experi-
mental results show that ResNet-18 has the best performance
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in training both with FL and without FL approaches, while
ResNeXt shows the highest efficiency on images with COVID-
19 labels. As a result, the work recommends using ResNet-18
and ResNeXt models for COVID-19 identification. In a similar
work, Feki et al. [50] used FL to classify X-ray images into
COVID-19 infected cases and non-COVID-19 ones. To do so,
they adopted two well-known CNN architectures, namely VGG-
16 and ResNet-50, in a collaborative way. Then, FL-VGG-16
and FL-ResNet-50 were studied under different settings such
as the training data size, the number of clients participating in
each round, IID/Non-IID, and balanced/unbalanced data. The
experimental results demonstrate that FL can achieve compara-
ble performance to the methods without FL under these settings
without sacrificing the privacy of the end-users. In the same
direction, Wang et al. [51] proposed a 5G-enabled architecture
for COVID-19 diagnosis. Specifically, multiple hospitals col-
laborate through FL with user privacy preservation. Qayyum et
al. [52] proposed a clustered FL framework in order to tackle the
convergence issues of the classical FL model due to the diverse
distribution of the data. Specifically, the proposed framework
trains a multi-modal ML model in a collaborative way using both
X-ray and Ultrasound imagery. Furthermore, since the non-IID
and the imbalanced data can decrease the performance of FL,
Nguyen et al. [53] proposed FedGAN in order to address dataset
limitation and imbalance data issues. FedGAN is a novel scheme
for COVID-19 detection obtained by enabling the joint design of
FL and a Generative Adversarial Network (GAN) in a federated
way. Specifically, FedGAN aims to achieve better COVID-19
image augmentation where each client trains the generator and
discriminator in order to compute the local gradients.

In summary, we list FL-IoMT approaches in Table II to
recapitulate the ML/DL models, the used datasets as well as
the key contributions and limitations of each approach.

D. Summary and Discussion

From the presented state-of-the-art on FL-IoMT, we can
notice that FL plays an important role in facilitating healthcare
services. It also improves patient privacy and reduces low latency
during the collaboration of multiple hospitals/entities [7]. It can
be learned from [37] that FL requires less communication over-
head, and hence it can replace traditional learning approaches
in IoMT applications. Moreover, recently FL has made a huge
contribution to the fight against COVID-19 without sharing
patient data. Also, based on [43], transferring the knowledge
in distributed healthcare system provides a high-quality person-
alized model. FL also requires computationally robust devices.
For this reason, some IoMT devices offload their model training
task to the edge gateways; therefore, helping the FL training
process to take advantage of the cloud and edge computing, and
using the IoMT devices as simple data collectors. Furthermore,
as shown in Table II, the majority of the works have considered
the CNN model and its variations, such as ResNet and VGG.
Since finding a suitable model is not an easy task, a comparative
analysis to preliminary evaluate the performance of other ML
models is one of the best practices for developing future FL
architecture.

IV. SECURITY AND PRIVACY CONCERNS

Since federated learning comes with a privacy-preserving
attribute, it can play a significant role in various industry domains
that involve sensitive personal data, such as IoMT for healthcare.
Medical data is highly sensitive and must be protected by means
of appropriate confidentiality procedures. For example, in a col-
laborative healthcare scenario, each hospital or medical research
center holds sensitive diagnostic data that cannot be shared
with others; however, they desire to learn from each other’s
data. Although FL is the enabling technology in this scenario
and provides a privacy-preservation capability by allowing the
clients to keep the data on local devices, there are still model
security and data leakage risks that would compromise the
security of the FL system and the data privacy of clients. In
the following subsections, some important issues are raised and
discussed.

A. How Insecure is Federated Learning?

Before describing various attacks leading to privacy leakage in
FL systems, we briefly summarize the characteristics of security
and privacy problems in the following.

Security problem (data and model manipulation): This
type of problem is primarily caused by curious or malicious
attackers targeting vulnerabilities of the FL system, which can
lead to significant performance drop and sometimes model
invalidation. Clearly, this process is extremely hazardous and
could negatively affect thousands of devices. In the context of
healthcare and IoMT scenarios, an attacker can directly manip-
ulate the model and data of a local affiliation, resulting in a
malicious update of the global model or mislabeled data.

Privacy problem: This type of problem, even more severe
than the security one, arises when vulnerabilities cause user data
leakage, as it weakens the basics of FL that are designed explic-
itly for privacy preservation across multi-device ML. For in-
stance, if messages carrying the global model and local gradient
updates exchanged between the central server and a local device
are intercepted, gradient-based reconstruction attack algorithms
can be applied to recover the raw data in the local device. In IoMT
applications, the intercepted data could be a patient’s personal or
healthcare information, which presents a severe ethical problem.
In particular, private data can be extracted indirectly even from
the shared information, by means of some emerging techniques,
such as model inversion of the model updates [56], gradients
themselves [57] and adversarial attacks [58]. FL, despite a dif-
ferent training process compared to traditional ML, still suffers
from information leakage issues and, having multiple parties,
extends the attack surface. An adversary can observe changes
over time, or specific model updates, i.e., updates of a single
agent, to reverse engineer and obtain some knowledge about
data. For instance, Carlini et al. [59] demonstrate that it can
be extracted sensitive text patterns, e.g., a specific credit card
number, from a recurrent neural network trained on users’ lan-
guage data. Besides, the model can be manipulated by attackers
inducing additional memorization through gradient-ascent-style
attacks.
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TABLE II
OVERVIEW OF RECENT STUDIES ON FEDERATED LEARNING WITH IOMT

Although some countermeasures exist, e.g., limiting the gran-
ularity of updates and adding noise [27], and ensuring adequate
differential privacy [60], the study of effective methods to im-
prove the security and privacy protection is still an active area of
research [61]. At the same time, it can be noted how some sophis-
ticated countermeasures can be avoided if all parties are deemed
trustworthy. For FL consortia in which all parties are bounded
by an enforceable collaboration agreement, we can disregard
some of the more nefarious motivations, such as deliberated
attempts to extract sensitive information or to intentionally
corrupt the model. This would lead to the mere principles of
standard collaborative research. However, operating FL systems
on a larger scale might be impractical to establish collaborative

agreements and it is more reasonable not to have trustworthiness
assumptions. Some clients, for example, may deliberately try to
extract information from other parties, degrade performance, or
bring the system down. Security strategies that mitigate these
risks can include advanced encryption of model submissions,
secure authentication of all parties, actions traceability, differ-
ential privacy, verification systems, execution integrity, model
confidentiality, and protection against adversarial attacks.

Beyond providing rigorous privacy guarantees, it is necessary
to develop methods that are computationally resource-effective,
communication efficient, and tolerant to dropped devices, with-
out overly compromising accuracy. Despite the variety of pri-
vacy definitions in FL, typically, they generally fall into two
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categories: global privacy and local privacy. The former requires
that the model updates generated at each round are private to all
untrusted third parties except the central server, while the latter
further requires that the updates are also private to the server.
In other words, in a global privacy-enhancing mechanism, the
global server is assumed trusted, while in local privacy, the
central server may be malicious.

Lastly, privacy problems are exacerbated in medical compa-
nies by strict laws and regulations designed to prevent the risk
of re-identification and data breaches. In fact, personal health
information is considered to be highly sensitive, containing
not only diagnostic and healthcare related information but also
identifiable details about individuals. Even from the consumer
perspective, data privacy is one of the public’s most important
concerns because data breaches can result in reduced public
trust. For these reasons, any FL-based data management system
must comply with these laws.

While standards are necessary for security and privacy pur-
poses, they can make sharing and using health data challenging.
A trivial example of possible applications that can be lim-
ited includes sharing of information between medical centers,
hospitals, and governments. In view of the above arguments,
precious data often remain confined to individual institutions
and are rarely leveraged for analysis, hindering the application
of deep learning algorithms in healthcare. If these standards
are respected, FL can foster the application of deep learning
in digital health and healthcare informatics, making it possible
the use of existing health datasets while protecting user privacy.

B. Existing Countermeasures and Solutions

Built upon previous classical cryptographic protocols, such as
secure multiparty computation, Bonawitz et al. [62] introduce
a secure aggregation protocol for protecting individual model
updates. In this solution, the central server is not able to see
any local updates, but it can still observe the exact aggregated
results at each round. The applied secure aggregation is a lossless
method that can retain the original accuracy with a very high
privacy guarantee. The main drawback of the resulting method,
however, is the significant extra communication cost. Other ap-
proaches are able to offer global privacy by applying differential
privacy to federated learning, as in [63]. This type of approach
comes with a considerable number of hyperparameters that
need to be carefully selected and that affect communication and
accuracy. For stronger privacy guarantees, Bhowmick et al. [64]
have proposed a relaxed version of local privacy by limiting the
power of potential adversaries. Providing stronger guarantees
than global privacy, it has better model performance than strict
local privacy. Li et al. [65] introduced locally differentially pri-
vate algorithms in the context of meta-learning while providing
provable learning guarantees in convex settings. Meta-learning
techniques are based on the sharing of knowledge gained from
individual learning tasks to catalyze the learning of similar
unseen tasks and can be applied to federated learning with
personalization. Moreover, differential privacy can be combined
with model-compression algorithms to reduce communication
and simultaneously obtain privacy benefits [66].

An initial attempt to enhance the innovation and creative
capability of health-related organizations, while guaranteeing
the fulfillment of specific medical laws, has been proposed
in [67]. The article presents an open innovation framework in
the healthcare industry, namely Open Health, by building a next-
generation collaborative framework with partner organizations
and the research community. Specifically designed for health-
care data, Hao et al. [68] have proposed a privacy-aware and
resource-saving collaborative learning protocol, called PRCL.
In this work, the authors have partitioned the model, i.e., neural
network, into three parts: the first and the last parts are trained
on the client-side, while the middle part, which is the heavy one,
is outsourced to be trained on the cloud servers. Before training
the model on the client-side, the training data are perturbed by
adding Gaussian noise, and packets are secured via homomor-
phic encryption to efficiently perform gradients aggregation in
the ciphertext context. The simulation results show that PRCL
reduces the local training overhead because outsourcing the
middle part to the cloud server while providing similar accuracy
to other state-of-the-art approaches. At the same time, confiden-
tiality is preserved since the cloud cannot access the plaintext
gradient and an attacker can only get the perturbed data due to the
added noise. Similar results have been achieved by EPPDA [69],
an efficient privacy-preserving data aggregation method for FL
that, based on secret sharing to resist the reverse attack, can
covertly aggregate user-trained models without disclosing the
user model.Adopting the homomorphisms of secret sharing, it
preserves user privacy and requires less computing and commu-
nication resources than alternatives as [62], and is able to provide
acceptable fault tolerance in the event of user disconnection. To
protect the model and data manipulation, Wang et al.proposed
a defensive strategy based on comparing the uploaded model’s
accuracy and size [70]. If lower the respective target values, the
lower the trust value of the client, and when such a trust value is
lower than 60%, the request from this client will be prohibited.

Another approach to establish data security and eliminate the
trust issues is the deployment of FL on blockchain technol-
ogy [71]–[73]. The main advantage brought is the replacement
of the central authority with a specially designed decentralized
privacy protocol. The blockchain architecture has a specially
designed distributed ledger structure that connects blocks in
chronological order, allowing to share and maintain saved data
in all nodes in a decentralized environment [74]. In addition,
the blockchain-based verification scheme can also improve the
reliability of the federated training process. Fig. 3 sketches the
main components of an FL architecture based on blockchain
and highlights the differences from a traditional FL setting.
Compared to a vanilla FL, a blockchain FL consists of devices
and miners, where the latter are either randomly selected devices
or separate nodes such as network edges that are relatively
free from energy constraints in the mining process. Once the
agent has computed and uploaded the local model update to
its associated miner in the blockchain network, miners verify
all the local updates and run the Proof-of-Work. When such
a Proof-of-Work is completed, the miner generates a block that
records the verified local model and this is added to a blockchain,
also known as a distributed ledger, then downloaded by devices.
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Fig. 3. Blockchained FL architecture vs. a vanilla centralized FL
system.

Each device is thus able to compute the global model update
from the new block. Such a solution offers several advantages
such as decentralization, non-tempering, open autonomy, and
anonymous traceability [75]. A blockchain-based FL, however,
should mitigate the overhead of frequent communications in
the blockchain consensus, which can cause excessive latency.
For example, [76] presents TrustFed, which uses Industrial IoT
devices as federated learning candidates and smart contract
technology over the Ethereum blockchain to maintain partici-
pants’ reputations. The solution can also identify and eliminate
outliers in the training distributions before combining the model
updates. Lu et al. [77] designed a new system, called DITEN,
that integrates blockchain and FL in edge networks and uses
Deep Neural Networks (DNN) as a strategy scheduler to ensure
the privacy of user data and enhance learning security.

Beside this architecture, other techniques can be considered.
For example, to prevent an arbitrary client from trying to recon-
struct the private data of another client by exploiting the global
model, client-level differential privacy can be achieved even in
the context of blockchain. In a general FL model, any single
client’s update can be hidden by adding random Gaussian noise
to the aggregated global model [63]. For blockchained systems,
each client could locally add a certain amount of Gaussian
noise after local gradient descent steps and submit the model
to the blockchain. To also protect the model from the public,
the aggregated global model on blockchain could be encrypted
with a decryption key held only by the participating clients.
To empower FL with this approach, Qu et al. [72] propose to
store only the pointer of the global updates on-chain, while a
distributed hash table is used to save the data. In such a way,
block generation efficiency is guaranteed, enabling decentral-
ized privacy protection while preventing single point failure. In
a similar way, Lu et al. [78] integrated federated learning into the
consensus algorithm of the blockchain to save the hash rate in
the context of industrial IoT, in which blockchain enables secure
data retrieval and ensures accurate model training. Rahman et
al. [79], with a lightweight hybrid blockchain-based FL frame-
work, propose to perform additive encryption in the edge nodes,
while multiplicative encryption in the blockchain aggregates the
updated model parameters.

C. Summary and Discussion

In conclusion, the features of FL make it uniquely suited
for sensitive data as in the context of IoMT systems, but the
architecture and model sharing must address further challenges
compared to other fields. For example, when designing an ar-
chitecture for FL, it is recommended to correctly identify the
vulnerabilities of the proposed FL system and prevent unautho-
rized access by curious or malicious attackers. Implementing
such prerequisites to defend against loopholes will help develop
a more secure system. Therefore, equipping the solution with
the mentioned solutions for backdoor and gradient attacks is
a mandatory step for an FL engineer to enhance security and
privacy defenses.

Some recent techniques can partially solve these privacy is-
sues [61], however, the more secure the techniques, the lower the
accuracy of the final model may be [80]. Thus, it appears crucial
to find a trade-off between performance and security guarantees.
Other recent methods aiming to enhance the privacy of federated
learning use tools such as secure multiparty computation or
differential privacy. These approaches often provide privacy at
the cost of reduced model performance or system efficiency [62].
Balancing these trade-offs, both theoretically and empirically,
is a considerable challenge in realizing private FL systems and
especially IoMT-based architectures.

V. CHALLENGES AND SOLUTIONS

As it can be seen, unremitting research activity on the use
of the FL concept for IoMT has produced many novel and
interesting solutions. However, in practice, these solutions suffer
from several issues and challenges that should be considered
when designing FL-based approaches for healthcare services.
In this section, we discuss the main challenges that should be
considered and the future directions of using the FL concept.

A. Central Server Failure & Robustness via
Decentralization

The presence of a centralized server in most existing FL
schemes increases the risk of data leakage, especially in dis-
tributed multi-parties applications. We can mention two main
obstacles: (i) a high volume of aggregated data from different
parties to be processed by the server; (ii) none of these parties
fully trust each others (including the server), thus fearing data
leakage. As an alternative, FL can operate in decentralized or
peer-to-peer topologies, where devices communicate only with
their neighbors, as shown in Section II. These decentralized
architectures, which remove the need for a central server, can
effectively improve the resilience of the training process by
eliminating a possible single-point-of-failure. However, while
this distributed approach can help to make the system highly
scalable, it also opens up some issues in gradient synchroniza-
tion. For example, some clients may take much longer to report
their output than other nodes, and these agents are often referred
to as stragglers.

Existing solutions. To mitigate the impact of stragglers in
a distributed system, recent work has proposed deadline-based
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approaches where all workers compute the local gradients using
a variable number of samples within a fixed global cycle [81].
Another line of work proposes asynchronous decentralized
SGD, in which the workers update their models based on the
last iterates received from their neighbors [82]. Although these
asynchronous methods are inherently robust to stragglers, they
may suffer from slow convergence due to the use of stale models.
Moreover, decentralizing can be combined with blockchain
technology, where a blockchain-based approach can jointly
solve the problem of single-point-of-failure and central trust.
While blockchain removes the need for a trusted curator and
connects each participant through multiparty data retrieval, it
also strengthens the data-sharing scheme and provides some
fault-tolerant guarantees [83].

With either solution, i.e., peer-to-peer or blockchain, the prob-
lem is converted to the pursuit of fault tolerance for the clients.
Such a property has been extensively studied by the systems
community and is a fundamental consideration of classical dis-
tributed systems, with some specific studies for ML workloads
in data center environments [84]. Given the importance of this
problem, specific solutions can be combined with the previous
approach, as mentioned in Section V-C.

B. Trade-Off Between Communication Overhead and
Accuracy

Despite the fact that data generated on each IoMT remain
local and raw data are not sent, the communication is a critical
bottleneck in FL networks [85]. Federated networks of IoMT can
indeed comprise a massive number of devices (e.g., sensors), and
communication in the network can be many orders of magnitude
slower than local computation due to limited resources, such as
bandwidth, energy, and power [86]. Therefore, a lightweight
model is desirable to reduce the communication overhead dur-
ing the training round as well as developing communication-
efficient methods that iteratively send small messages or model
updates as part of an affordable FL training process. Two key
aspects must be considered for an effective reduction of the
communication overhead: the total number of communication
rounds, and the size of messages transmitted in each round.
Recent solutions attempting to solve this communication bot-
tleneck can be categorized into three classes according to the
proposed approach: (i) local updating methods, (ii) compression
schemes, and (iii) decentralized training.

Local updating methods are recent approaches proposed to
improve communication efficiency in distributed settings by
allowing for a variable number of local updates to be applied
on each machine in parallel at each communication round,
contrary to simply performing mini-batch optimization locally
and then aggregating mini-batch updates centrally [87]. The
most commonly used method for FL, FedAvg [29], is based
on averaging local stochastic gradient descent (SGD) updates
for the primal problem. While FedAvg has been shown to work
well for non-convex problems, it does not exhibit convergence
guarantees and can diverge in practical settings when data are
heterogeneous [32] (see Section V-D for how to address this
problem).

Although a high number of local updating methods can ef-
fectively reduce the total number of communication rounds, it
can be convenient to reduce the size of messages exchanged at
each round via compression schemes model, e.g., sparsification,
subsampling, and quantization. While these methods found ap-
plicability in general distributed systems, recent studies have
provided practical strategies specific to FL, such as forcing the
updating models to be sparse and low rank [88], performing
quantization with structured random rotations [88], and using
lossy compression and dropout to reduce server-to-device com-
munication [89]. However, convergence guarantees still need
to be explored for low device participation and local updating
optimization methods.

Lastly, decentralized training is a potential alternative in FL to
reduce high communication costs on the central server. Although
some recent articles have investigated decentralized training
over heterogeneous data with local updating schemes, e.g., [90],
they are either restricted to linear models or assume full device
participation.

Existing solutions. Given the complexity brought by these
techniques, recent solutions have expanded these general ap-
proaches to further optimize the accuracy of the final model,
paving the way for enhanced FL-based healthcare architectures.
For instance, Sozinov et al. [37] studied and evaluated per-
formance as well as the communication costs in the case of
human activity recognition of both softmax regression and DNN
for different data distributions. Results confirm that using less
complex models, such as softmax regression, is a viable solution
for most real-world applications since user behavior phenomena
are often simple enough to be captured by relatively simple
models. However, for medical data collected by IoMT simple
models can be likely inaccurate. Konen et al. [88] proposed two
types of updating the local client’s model before communicating
it to a central server: structured and sketched updates. While
using a structured update, the client maps the original local
model to a lower-dimensional space, via a sketched update, the
client compresses it by using, for example, a probabilistic quan-
tization. The authors showed how using CNNs and LSTMs, the
communication costs can be reduced by two orders of magnitude
compared to the original federated learning algorithm.

Moreover, Jeong et al. [91] presented Federated Distillation
(FD), a distributed model training algorithm whose communi-
cation payload size is much smaller than that of a benchmark
FL scheme, particularly when the model size is large. On top
of conventional periodic communication of FL, the proposed
FD exchanges, not the model parameters but the model output,
so that large local models can be adopted on the ML device.
To further improve the transmission of model output, the ap-
proach is combined with Federated Augmentation (FAug), a data
augmentation scheme that can collectively learn the trade-off
between privacy leakage and communication overhead using a
Generative Adversarial Network (GAN).

In conclusion, the most valuable techniques will need to
demonstrate improvements at the Pareto frontier, i.e., they must
achieve higher accuracy than any other approach under the
same communication budget and, possibly, for a wide range
of communication/accuracy profiles. It is also still necessary
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to compare communication-reduction techniques for FL in a
meaningful way, as it has been studied for efficient inference in
neural networks [92].

C. Clients Synchronization and Fault Tolerance

When learning over multiple remote devices as in FL, fault
tolerance becomes a critical aspect as it is common for some
participating devices to drop out at some points before the
completion of the given training iteration [85]. IoMT devices
from remote areas may be proner to drop due to poor net-
work connectivity or battery failure and, therefore, the trained
federated model will be biased towards devices with favorable
network conditions. In addition, while a large number of clients
can increase the diversity of the local model across them, this
may degrade the performance of FL [93]. To preserve effective
participation of the clients in the FL process, there are several
approaches for fault tolerance and selecting clients when some
of them are slow to respond.

Existing solutions. Recent studies present a joint-
announcement protocol that can randomly select some devices/
clients from a large number of participants in a given training
round [85]. Such a joint-announcement protocol is useful to
alleviate the out-of-sync issue and tolerate the dropout of some
clients at some points before the completion of each training
iteration. Moreover, Nishio et al. [94] have proposed a new
protocol, called FedCS. Unlike the classical FL, with FedCS the
central server is not only used for the model aggregation task
but also collects resource information about the client, such as
wireless channel states, computational capacities, data size, and
amount of observation for each class. Using this information,
the FL server decides which client can participate in the train-
ing process. By selecting the devices with favorable resources,
FedCS provides high classification accuracy in a significantly
shorter time compared to the classical FL.

In a similar occurrence of device failure, one simple yet practi-
cal strategy is to simply ignore such a client, as in the widely used
FedAvg [85], which may introduce bias in the learning process.
However, while several recent studies have investigated con-
vergence guarantees of variants of FL methods [95]–[97], little
work has evaluated the impact of failures over the FL algorithm
or studied directly the effect of dropped devices. FedProx [32],
for instance, tolerates that any selected device to perform partial
work, in compliance with the underlying system’s constraints,
and can safely incorporate these partial updates via a proximal
term.

Another effective approach to tolerate device failures is named
coded computation, which implies algorithmic redundancy. Re-
cent work has explored the use of codes to speed up distributed
machine learning training, such as [98]–[101]. In the presence
of stragglers, gradient coding, and variants [98], [99], [102],
the replication of data blocks (or also the gradient computation
on those data blocks) across computing nodes leads either to
exact or inexact recovery of the true gradients. However, despite
being attractive for FL, these methodologies face fundamental
challenges in federated networks since sharing data/replication
across devices is often infeasible due to privacy constraints and

the scale of the network. Therefore, new schemes ensuring fault
tolerance would improve the deployment of FL in healthcare
where IoMT devices are likely to a fault, encounter challenging
network conditions, and exhaust their batteries.

D. Convergence Guarantees for Non-IID Data

Devices often generate and collect data that are not identically
distributed across the network, such as in medical devices col-
lecting varied user data related to biological information [53].
In addition to the variety of data, the number of data samples
can vary significantly from device to device, and there may be
an underlying statistical structure that captures the relationship
among devices and their associated distributions. This paradigm
of data generation violates the frequently-used assumptions of
independent and identically distributed (IID) data and may cause
problems in modeling, theoretical analysis, and empirical evalu-
ation of solutions. In [31], the authors experienced a significant
reduction in accuracy of up to 50% in the presence of highly
skewed non-IID data.

Existing solutions. To solve this issue, a possible solution
includes slightly changing the FL problem from the canonical
form (i.e., learning a single global model) to the alternative
of learning distinct local models simultaneously via multi-task
learning frameworks [103]. Alongside, most known approaches
in federated learning can be combined with meta-learning, i.e.,
machine learning algorithms that learn from the output of other
machine learning algorithms [65]. Both approaches (multi-task
and meta-learning) enable personalized or device-specific mod-
eling, which is considered a valuable attempt to handle the
statistical heterogeneity of the data.

Alternatively, another simple yet effective approach referred
to as Part-Data-Sharing has been presented in [31]. It addresses
the statistical challenge of FL when local data is non-IID by
distributing a small amount of globally shared data contain-
ing examples from each class. However, despite introducing a
trade-off between accuracy and centralization, this could lead
to significant communication overhead, especially for medical
data. To rectify the non-IID training dataset while addressing
the communication overhead, Jeong et al. [91] proposed FAug,
in which each device can generate the missing data samples
locally using a generative model, i.e., a conditional GAN. A
central server trains the generator, while each device detects
the labels missing in data samples and uploads a few seed data
samples of these target labels to the server. The server performs
oversampling of the uploaded seed data samples, e.g., via Google
image search for visual data, to train the GAN model. Once
the trained generator of the GAN is downloaded, each device
can replenish the target labels until an IID training dataset is
achieved

E. FL With Constrained IoMT Devices

The need to spread healthcare services over larger areas
may lead to the use of very small IoMT devices, often
referred to as nano-devices, whose size has a few hundred
nanometers [104]. Their utilization can make healthcare
services more personalized, and these applications can take
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place in unprecedented locations in non-invasive ways (e.g.,
intra-body). Some IoMT devices, even though not limited in
size, come with limitations in the available on-board resources.
Their limited power and computational resources make the
participation of such constrained IoMT devices in the FL
process almost impossible. For example, training CNN-based
models for COVID-19 detection (e.g., ResNet-50) requires
storage and memory resources that may not be available
on all devices. A possible solution in which edge computing
provides complementary resources in support of the local model
training [105], would require time-consuming data transmission
between the nano-devices and the edge nodes and could lead to
network congestion, especially given the huge amount of data
generated by these devices every second. In such a context,
efficient and fast local model training on the nano-devices is
needed, and interactive healthcare services also demand ex-
tremely low latency. To address these issues, the computational
operations need to be lowered, for example by utilizing some
lightweight ML/DL models that can run onboard nano-devices.

Existing solutions. Caldas et al. [89] introduce Federated
Dropout to reduce the computation load of local training. Specif-
ically, they have been zeroing out some fixed number of activa-
tion at each layer and hence get less complex model computation
costs. This solution was inspired by the well-known idea of
dropout [106]. Simulation results demonstrate the superior per-
formance of this solution by reducing the local computations by
1.7× without affecting the accuracy of the model. Similarly, Xu
et al. [107] proposed a resource-aware federated learning frame-
work, called ELFISH. With ELFISH, the neurons that have less
significant weight parameter updates will be randomly masked.
These neurons are masked in a single cycle and will recover
themselves in the subsequent cycles. In the same direction, Jiang
et al. [108] proposed a new FL paradigm called PruneFL in order
to minimize the model’s size. The experimental results show
that PruneFL always converges to similar accuracy achieved
by classical FL. Furthermore, Anh et al. [109] applied a Deep
Q-learning algorithm based on the Double Deep Q-Network
(DDQN) to optimize resource allocation for model training. At
each iteration, the FL server needs to decide how much data and
energy each mobile device uses to train the model to minimize
the total energy consumption and the training latency while
meeting the requirements of the training tasks. The simulation
results show that the proposed approach can minimize energy
consumption and improve the training latency. In addition, data
pre-processing is an important step to remove the redundancy in
the training set as well as to find the relevant features to be used
during the model training [110], [111].

VI. CONCLUSION

While machine learning approaches, and especially deep
learning, are becoming the de-facto knowledge discovery ap-
proach in digital healthcare, it appears that data-driven medicine
aiming to improve patient care globally requires federated ef-
forts. With the promise of powerful, accurate, safe, robust, and
unbiased models, federated learning can neatly protect sensitive
medical data while collaboratively training a learning model.
Already today, FL is improving medical image analysis by

providing clinicians with better diagnostic tools, helping find
similar patients for true precision medicine, and optimizing the
drug discovery process by reducing costs and time-to-market
for pharmaceutical companies. However, the current settings
of FL have not answered all the technical questions, and this
paper outlined the state-of-the-art approaches and the limitations
associated with them. Challenges raised in this paper range from
the privacy and security issues to the client synchronization and
the presence of non-IID datasets. As such, future FL systems
for medical data need to consider further optimizations and
network connectivity problems to define an efficient gradient
synchronization protocol that can run on limited devices, as often
are the IoMT.
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