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Abstract
Through a unified mathematical framework, the stochastic behavior of three celebrated low-order lumped models, previously 
proposed for paleoclimate simulations, is considered. Due to the coherence resonance mechanism, the feedbacks between 
noise and the dynamical system reproduce the hallmark of the Pleistocene climate, i.e. the 100 ky pulsation, in a range of 
the model parameters that is unexpectedly wide and far from the original modeling setting. In this way, the issue of arbitrary 
coefficient tuning of lumped approaches in paleoclimatology can be partially bypassed. A stability analysis of the considered 
dynamical systems allowed the parameter space to be exploited, in order to separate the deterministic-dominated region from 
the stochastic-dominated region. Noise intensity is varied and the closeness in the parameter space to Hopf bifurcations and/
or bistable conditions is investigated in order to understand what conditions make the models prone to coherence resonance 
with a 100-ky pulsation, with or without the forcing induced by varying astronomical parameters.

Keywords  Pleistocene · Stochastic modeling · 100-ky problem · Coherence resonance

1  Introduction

One of the most striking features of paleoclimatology is the 
replication of heavy glaciations at roughly 100-ky inter-
vals during the late Pleistocene (past 800 ky), performing a 
strongly nonlinear sawtooth pattern—i.e. slow buildup in the 
ice mass followed by rapid terminations—as firstly observed 
by Broecker and Van Donk (1970).

The so-called astronomical theory on ice ages, popular-
ized by the Serbian astronomer Milankovitch, states that the 
main cause of this fascinating pattern resides in the secular 
variation of solar radiation due to the wobbles in: (i) eccen-
tricity of the earth orbit (main periods at T = 100 ky, and T = 
400 ky); (ii) earth’s axial tilt (41 ky); (iii) precession (19–23 
ky). Yet, since the first direct paleoceanographic discoveries 
about succession and magnitude of ice ages coming from 
the analysis of fossil foraminifera (Emiliani 1955, 1966; 

Emiliani and Shackleton 1974), it emerged that, although 
the orbital forcing plays a role in phase locking (Hays et al. 
1976), the main causes of the oscillations are far to be elu-
cidated definitively. The current literature is in fact aware 
that the power spectrum of global ice mass, derived from 
�18O variations (Berger et al. 1994), shows a notable (linear) 
imprint of the 41-ky obliquity forcing (actually, dominant 
in the early Pleistocene) and a weaker imprint of the 19-to-
23-ky precession forcing (Imbrie et al. 1993). However, the 
wobbles in eccentricity are instead too weak to support an 
imprint in the ice mass oscillation at T = 100 ky as well. 
This is also stated as the 100-ky problem, further reinforced 
by the full missing of a 400-ky signature in the paleoclimatic 
records.

This conundrum has favored the quest for other mecha-
nisms, involving several feedbacks grounded in the climate 
functioning, such as: ice-albedo feedback, stochastic reso-
nance (Sutera 1981), role of the CO2 vertical mixing in 
ocean (Gildor and Tziperman 2001), isostatic adjustment 
under ice-sheets and calving catastrophe (Saltzman and 
Verbitsky 1992; Marshall and Clark 2002), nonlinear phase 
locking to Milankovitch forcing (Tziperman et al. 2006), the 
effect of the stripping of basal regolith on ice sheet thick-
ness and timescales (Clark and Pollard 1998), the role of the 
salty bottom waters on the continental Antarctic ice margin 
in storing carbon in the deep ocean (Adkins et al. 2002; 
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Paillard and Parrenin 2004), and silicate leak hypothesis 
(Brzezinski et al. 2002). Despite these numerous efforts, no 
single definitive theory is exhaustive in explaining the tim-
ing of the 80 ppm oscillation in the atmospheric CO2 con-
centration between ice ages and interglacial times (Archer 
2010). The picture is further complicated by the fact that the 
Pleistocene has seen just eight 100-ky cycles, too few to be 
considered a statistically robust pattern.

In this perspective, Saltzman (2002, p. 300) argued that 
the oscillations are so affected by an internal instability of 
the climate systems (probably in the carbon cycle), that the 
Earth-orbital variation is not a necessary condition for the 
occurrence of the ice ages. Arguments supporting relaxa-
tion-oscillation dynamics were also invoked by other authors 
(Crucifix 2011, 2012; Paillard 2015). The development of 
low-order dynamical or conceptual models have allowed 
to fairly reproduce a few leading modes that dominate the 
spatial-temporal dynamics of ice ages. These models are 
typically composed by a set of ordinary differential equa-
tions which describe the slow manifolds of climate dynamics 
in a lumped spatially-integrated manner. Typical candidates 
for the prognostic state variables are the global ice volume 
Vi or ice mass Mi and the antarctic ice area A. Other slow 
variables are atmospheric or oceanic concentration of car-
bon dioxide (C), and deep ocean temperature To . Dynamical 
models are constructed by following a truncation procedure 
of the partial differential equations of fluid dynamics and 
thermodynamics (Saltzman 2002), while conceptual mod-
els are proposed to test hypotheses based on observations 
(Crucifix 2012). Comprehensive reviews are reported in 
Fowler (2001), Paillard (2001), Cane et al. (2006) and Cru-
cifix (2012).

A caveat of this modelling approach is that both dynami-
cal and conceptual models often need to be tuned, in order 
to ensure realistic behaviors, through the calibration of the 
model coefficients. However, random variability of the cli-
matic system may play a role in making these models more 
robust than they were firstly expected. To this aim, random 
noise is conveniently added to dynamical and conceptual 
models, and noise-induced phenomena may occur, such as 
stochastic resonance or coherence resonance (Ridolfi et al. 
2011).

Stochastic resonance succeeded in reproducing millen-
nian Dansgaard–Oeschger oscillations (Alley et al. 2001; 
Ganopolski and Rahmstorf 2002). However, although it was 
initially introduced by Benzi et al. (1982) to explain the 100 
ky periodicity of glacial cycles, this phenomenon predicts 
symmetric ice ages (Matteucci 1989), so it is inconsistent 
with the observations of the late Pleistocene. On the con-
trary, coherence resonance allowed a single prototypical 
equation for atmospheric temperature (i.e., a fast variable) 
to accurately reconstruct the climate variability in the Vostok 
ice cores (Pelletier 2003). In this spirit, we will investigate 

the tuning effect of coherence resonance due to additive ran-
dom noise in the equations for prognostic slow variables. 
Unlike the more commonly known stochastic resonance, the 
coherence resonance phenomenon does not require an inter-
action with an external periodic forcing, but it is a process 
that entirely relies on the coexistance of random noise, bista-
bility of the internal dynamics and delay feedback (Tsimring 
and Pikovsky 2001). Basically, random noise in a dynamical 
system can accumulate a sequence of small jumps in the 
same direction so that the system shifts from an attraction 
basin to another one. Delay feedbacks and nonlinearity allow 
the pace of shifting to occur which produce a kind of perio-
dicity in the system behaviour.

The possible role of coherence resonance in the scale 
break of the frequency of glacial-interglacial cycles have 
been recently analysed by Ditlevsen et al. (2020), who used 
the FitzHugh-Nagumo prototypical model originally pro-
posed by Pikovsky and Kurths (1997) for excitable systems. 
In the present work, we expand and deepen the search of the 
coherence resonance mechanism in three physically-based 
low order models that were specifically designed for pale-
oclimatic purposes. Our aim is to show that they are more 
robust than generally expected and that a specific—some-
what arbitrary—setting of the parameter is not necessary to 
reproduce the 100 ky oscillations.

As clearly explained by Saltzman (2002), stochastic forc-
ing in low-order models rises from time averaging and the 
truncation procedure of the fundamental equations because 
of non-systematic random departures from the mean val-
ues and aperiodic components (Monin and Yaglom 1975). 
More importantly, the averaging period of interest in pale-
oclimatology ( ∼ 0.1 –1 ky) rises the necessity to add noise to 
indirectly consider the smaller-scale phenomena, as already 
envisioned by Sutera (1981). The separation of temporal 
scales, or the central limit theorem, are usually invoked to 
justify the use of white (i.e. non-correlated) Gaussian noise. 
They are useful hypotheses, but not quite well justifiable, 
since there are many good reasons to invoke much more 
complex stochastic forcings in climate sciences (e.g., Gra-
ham et al. 2015). However, white Gaussian noise remains 
a commonplace in these cases, since it is a convenient and 
practical hypothesis.

We will consider to add white Gaussian noise to three 
popular models, that were indicated as the most representa-
tive in the review by Crucifix (2012): (i) The three-dimen-
sional dynamical model by Saltzman and Maasch (1990; 
(ii) The three-dimensional conceptual model by Paillard and 
Parrenin (2004; iii) The two-dimensional conceptual model 
proposed in Crucifix (2012), based on a biased Van der Pol 
oscillator. Henceforth the three models will be referred to 
SM, PP and VdP, respectively. Although these three mod-
els address different aspects of the climatic dynamics (e.g., 
the first two involve the carbon cycle, but not the latter), 
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they are self-oscillatory models that commonly share the 
feature of relaxation oscillations, when properly set. In this 
perspective, we aim to address the dynamical structure of 
these internal oscillations, through the understanding of 
the unforced regime (i.e., without orbital forcing). We will 
instead disregard other remarkable comprehensive models 
that are non-self-oscillatory (e.g., Imbrie and Imbrie 1980; 
Verbitsky et al. 2018; Daruka and Ditlevsen 2015).

In what follows, we begin by providing an insight on the 
three lumped model herein considered (Sect. 2), and analyse 
their stability conditions, depending on the variability of the 
model parameters (Sect. 3.1). Secondly, we show how these 
models can give rise to coherence resonance once forced 
with a stochastic noise, depending on the values of the 
model parameters (Sect. 3.2), and even thought they are not 
subjected to the orbital forcing. Focusing on the peculiar 100 
ky pulsation, we investigate its occurrence and the depend-
ency on the optimal noise intensity in different regions of the 
parameter space (Sect. 3.3). Finally, we investigate how this 
noise-driven oscillation interacts with the radiative forcing 
imposed by the orbital variation of the Earth (Sect. 3.4). 
Conclusions are drawn in Sect. 4.

2 � Methods

Over the years, Saltzman and co-workers developed a series 
of different models for the Pleistocene oscillations, which 
are widely discussed in his book (Saltzman 2002). The 
model to which we refer here is the one initially presented 
by Saltzman and Maasch (1990), in what follows referred to 
as SM-model, that includes: i) an equation for the ice mass 
response ( MI ) to CO2 changes (greenhouse feedback), and 
the deep ocean temperature ( To ) as negative feedbacks; ii) an 
equation for the CO2 (C) dynamics with a cubic nonlinearity; 
iii) an equation for the Antarctic ice area (A) that accounts 
for the negative ice albedo feedback. In order to keep the 
model as simplest as possible, we avoid here to include a 
fourth equation related to the calving catastrophes discussed 
in Saltzman and Verbitsky (1992). In this framework, the 
non-linearity of the model is fully contained in the atmos-
pheric CO2 balance equation and implicitly simulates the 
feedbacks due to a variable stratification of the deep ocean, 
and their effect on the ability of the ocean to absorb and 
stock CO2 . A first technical investigation of the oscillations 
performed by this model, when forced by additive noise 
on the equation for the deep ocean temperature, has been 
recently presented in Alexandrov et al. (2020).

The feedbacks between the ocean dynamics and its strati-
fication were explicitly modelled by Paillard and Parrenin 
(2004), who included an oceanic switch forced by the “salty 

bottom waters formation efficiency” parameter (F). The 
leading idea of this latter work—henceforth referred to as 
the PP-model—is indeed that the enhanced stratification of 
the oceans depends on the formation of extremely dense 
bottom waters by brine rejection above continental margins 
of Antarctica, a process that would cease once that the ice 
mass reaches the continental shelves.

Finally, the Van der Pol toy model is a celebrated dynami-
cal systems of two coupled differential equations, that was 
firstly adopted in electronic circuit modeling. Its use in 
paleoclimatology has been proposed by Crucifix (2011) 
and Crucifix (2012), in the so-called biased variant,—hence-
forth simply referred to as the VdP-model—because of the 
presence of the constant bifurcation parameter � , where the 
response of an ice variable (say Vi ) is coupled with an ocean 
variable (say To).

We here represent the three above-mentioned models 
through a unified mathematical framework, under the form 
of a (3D- or 2D-) vector stochastic differential equation

where � is a vector containing the dimensionless form of the 
prognostic state variables ( �SM={Mi,C, To} , �PP={Vi,C,A} , 
�VdP={Vi, To} ), dot refers to time derivative, R65 is the 
orbital forcing considered in Berger et al. (1994), namely the 
insolation at 65◦  N the 21st June (where �SM={0.5, 0, 0}T , 
�PP={0.33, 0.3, 0}T , �VdP={1.5, 0, 0}T ). Following Saltzman 
and Maasch (1990), t has been made dimensionless with 
the time constant of ice-sheets ( ∼ 10 ky). The term �(t) is 
an array of white Gaussian processes with unitary standard 
deviation and ⟨�(t)�(t�)⟩=�(t − t�) , and � sets the noise inten-
sity (see later). The linear and nonlinear components of the 
deterministic part of equation (1) read, respectively,

(1)�̇ = �⋅� +N(�) − �R65(t) + 𝜎�(t),

(2)

�SM =
⎡

⎢

⎢

⎣

−1 − 1 − v
0 r − p
−q 0 − q

⎤

⎥

⎥

⎦

,

�PP =
⎡

⎢

⎢

⎣

−�−1v − x�−1v 0
−��−1c − �−1c 0
�−1a 0 − �−1a

⎤

⎥

⎥

⎦

,

�VdP = 1
�

[

0 − 1
� �

]

,

(3)

SM =
⎡

⎢

⎢

⎣

0
sC2 − C3

0

⎤

⎥

⎥

⎦

, PP =
⎡

⎢

⎢

⎣

z�−1v
��−1c + ��−1c [−F]

0

⎤

⎥

⎥

⎦

,

VdP = 1
�

[

�
− �

3
T3
o

]

.
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Quantities with lower case in the above equations refer to the 
coefficients appearing in the original papers (values reported 
in Table 1). The function H[−F] refers to the Heaviside 
function, whose argument reads F=aVi − bA − cR60 + d , R60 
being the daily insolation at 60◦ S the 21st February (South 
hemisphere summer). In the following, equation (1) will be 
integrated numerically, namely

where �(t) stands for the Wiener process, dt is the numeri-
cal time step, where the Euler-Maruyama method (Kloeden 

(4)�t+dt = �t +
[
�⋅�t +N(�t) − �R65(t)

]
dt + �d�(t),

and Platen 1992) allows to set d�(t) = �

�
0,
√
dt

�
 , being 

�(0, 1) the standard normal random vector.
Of course, there are infinite different combinations of 

noise intensities that could be added to the equations com-
posing each of the three models. For example, Alexandrov 
et al. (2020) forced only one of the three equations of the 
SM-model. Since the state variable are all properly made 
dimensionless, they are numerically comparable, so we 
opted for the simplest choice, namely the random additive 
terms—albeit statistically independent—share the same 
intensity �.

Table 1   Values of the model 
parameters as given by the 
reference settings for the three 
models, i.e. providing the 
periodograms presented in 
Fig. 1

1 These values have been varied in the stability and sensitivity analyses reported in Figs. 2 and 7

SM-model (Saltzman 2002) v = 0.2 r = 1.3
1 p = 1.0 q = 2.5 s = 0.6

1

PP-model (Paillard and Parrenin 2004) �
v
= 1.5 �

c
= 0.05 �a = 1.2

� = 0.3
1 � = 0.4 � = 0.5 x = 0.9

1 z = 0.8

a = 0.3 b = 0.7 c = 0.01 d = 0.27

VdP-model (Crucifix 2012) � = 30
1 � = 3.6 � = 0.75

1

-800 -700 -600 -500 -400 -300 -200 -100 0

-2

-1

0

1

2
Mi 18O
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(c)

 40 ky  20 ky

100 ky  40 ky  20 ky
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133 ky

103 ky

SM

PP

VdP

Fig. 1   Free and forced response of the three lumped models con-
sidered. a, b SM-model; c, d PP-model; e, f VdP-model. Left: time 
series of a proxy of mass/volume ice in normalized units (observa-
tional data of �18 O are reported in dashed-red, while the synthetic 
simulations of the deterministic response of the model due to the 
orbital forcing are reported in solid lines). Right: periodograms of 

real data (dashed-red), free response of the models (black solid lines), 
forced response of the model (blue solid lines). The temporal series 
of the prognostic variables reported in the left part have been normal-
ized with the standard deviation. The periodograms have been com-
puted through the Fast Fourier Transform
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3 � Results

3.1 � Free and forced deterministic response

Let us firstly consider the original settings of the models, 
as reported in the Table 1, without any external influence, 
i.e. no orbital forcing and no stochastic forcing ( �=�=0). 
This case refers to the free response of the model. The cor-
responding periodograms are reported in the right part of 
Fig. 1. For reference, the periodogram of the �18O paleocli-
matic record by Imbrie et al. (1984), a proxy for the ice 
mass, is overlapped on the computed ones (red line). We see 
that the original setting enables an autonomous dominant 
oscillation for all the models—not forced by external fac-
tors—that is equal to 105 ky, 133 ky and 103 ky, for SM, PP 
and VdP, respectively (black lines).

We also remark that harmonics (i.e., oscillations with 
shorter period than the dominant one) are also present in 
the spectra of the free response. For instance, it is notewor-
thy that the PP’s spectrum provides four other peaks, with 
decreasing intensity. When the orbital forcing is added (so-
called forced response, see blue solid lines in the left panels 
of Figure 1) the time series gain a more realistic pattern. As 
expected, in this case, the main components of the forcing 
(19-ky, 23-ky and 41-ky) appear in the corresponding peri-
odograms. For the PP model, the dominant mode of the free 
response is shifted and matches the 100-ky oscillation of 
the real data. For SM and VdP the dominant 100-ky mode 
is instead not particularly influenced by the orbital forcing.

The time series and the periodograms presented in Fig. 1 
illustrate how the three models are able to capture the main 
features of the Pleistocene climate, by combining an intrinsic 
instability of the system and its interaction with an external 
radiative forcing. The advantage of their simplicity however 
is overshadowed by the need of tuning several parameters, 

whose values can dramatically alter the model outcomes. To 
investigate this aspect we then explore the behavior of the 
three dynamical systems through a local stability analysis 
of the fixed points of the deterministic autonomous ODEs 
(Glendinning 1994). Accordingly, a generic fixed point �0 
is a solution of the equation �⋅� +N(�) = 0 , and the local 
stability of the system around �0 is provided by the solu-
tions � of the characteristic equation det[� − ��] = 0, where 
� = � +N

�(�0) is the Jacobian of equation (1) and dash 
refers to derivation with respect to � . The Hartman–Grob-
man theorem states that, if there are no eigenvalues with zero 
real parts, the dynamical system in a neighbourhood of the 
fixed point is topologically equivalent to the orbit structure 
of the linearized dynamical system. In particularly, the fixed 
or equilibrium point �0 is asymptotically stable if all the 
eigenvalues have negative real part. Otherwise, excursions 
in the phase space are expected, away from the fixed points.

We have applied these principles by restraining our atten-
tion to a two-dimensional parameter space. In doing this, we 
excluded from our analysis the parameters that have a clear 
physical meaning and we only considered the ones influ-
encing the stability of the equilibrium point. The analysis 
is made up of two features: (i) the linear stability analysis 
and ii) the numerical integration of the models, in order to 
identify the range of parameters in which oscillatory modes 
appear. For the SM model, we essentially summarized the 
analysis reported in Saltzman (2002, p. 285), adopting r and 
s as free parameters. As shown in Fig. 2a, the r–s space is 
divided into regions where the equilibrium points are all 
linearly stable, and where the model is linearly unstable, 
therefore exhibiting oscillatory behavior with varying char-
acteristic periods, depending on the values of the param-
eters. The same analysis has been replicated for the PP. In 
this case we chose x and � as free variables for two rea-
sons. Firstly, we excluded the parameters only appearing 
in the argument of the Heaviside function, in fact they do 
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Fig. 2   Description of the model response in the parameter space, by 
discriminating the domains where the fixed points �0 are linearly 
stable or unstable. The contour lines instead refer to the time period 
of the dominant oscillatory mode (i.e., the one corresponding to the 

highest peak in the periodograms) performed by the fully-nonlinear 
numerically-computed time series (from Eq. 4). a SM; b PP; c VdP. 
The black dots refer to the parameter setting adopted in Fig. 4.
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not affect the stability, since H�[�0]=�(F[�0])=0, for any 
value of a, b, c, d. Among the remaining parameters (see 
Table 1), and according to Paillard and Parrenin (2004), the 
three time-scales �v , �c , and �a may be also ruled out, since 
their relative variations have a very weak influence on the 
model behavior. The x–� parameter space is clearly divided 
into (linearly) stable and unstable regions (Fig. 2b). Across 
these two, there is a region within which the model exhib-
its an oscillatory behavior, that mainly extends within the 
linearly unstable region, albeit it is not fully included in it. 
Finally, concerning the VdP model, once the typical time 
scale � is excluded, the choice is straightforward. Again, 
the results show that the � − � plane is clearly divided into 
a stable and an unstable region, within which the model can 
oscillate with varying periods (Fig. 2c).

The sensitivity analysis in the parameter space reported 
above shows that the three models are able to perform a 
dominant oscillatory mode close to 100 ky, provided a 
particular setting of the characteristic parameters, for each 
model. Otherwise, the oscillatory mode may differ from 100 
ky significantly. Beside the criticism that might be raised 
about the arbitrariness of a specific setting of the parameters, 
if one supposes that these parameters are underlying some 

(unspecified) physical meaning, it is likely and reasonable 
that they should assume a relatively wide range of values. It 
follows that, due to the natural variability of the parameters, 
a deterministic description of the model response is not suf-
ficient to solve the 100-ky problem. In the following section 
we will see that, through the mechanism of coherence reso-
nance, a stochastic description may be instead functional to 
this aim.

3.2 � Stochastic response and coherence resonance

When adding a stochastic noise, the system gives rise to 
patterns that cannot be predicted a priori, and that depend 
on both the model setting and the intensity of the noise. To 
give an insight, we first consider the VdP model (Fig. 3), by 
choosing a parameter setting providing a (linearly) stable 
deterministic behaviour ( � = 30, � = 1.2, marked with a 
dot in Fig. 2c). If noise intensity is small (Fig. 3a), its effect 
shows up as a simple superposition of small scale fluctua-
tions, i.e. whose amplitude is similar to that of the additive 
noise added in the equation, whereas the system is otherwise 
stuck around its original equilibrium point. In the resulting 
spectrum, these oscillations are shown to be spread over a 
wide range of frequencies (Fig. 3b). When increasing the 
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Fig. 3   Effects of an increasing noise intensity on the VdP model results without the orbital forcing ( �=30, �=1.2). Left: time series of dimen-
sionless ice mass (blue) when forced by noise (black). Right: Periodograms after averaging the FFT of twenty-five 1 My-long simulations
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intensity however, the noise dramatically alters the system 
behaviour, due to a non-linear interaction between stochas-
ticity and system dynamics. In fact, the noise can bring the 
system away from its equilibrium point, and eventually shifts 
the state of the system towards a different basin of attraction.

Mathematically, this implies bistability in the autono-
mous dynamical system (namely the occurrence of two or 
more stable equilibrium points) or that the system is close to 
a Hopf bifurcation. The system can therefore wander around 
the phase space, sustained by the combined forcing of the 

noise, until shifting again to the original attraction basin 
and newly attaining its original equilibrium point. These 
trajectories in the phase space draw a typical temporal pat-
tern with a peculiar statistical behavior, characterised by the 
rising of oscillations with a well-defined (and repeatable) 
period, a phenomenon known as coherence resonance. In 
the case of the VdP model (Fig. 3c), this dynamics result in 
the occurrence of cycles with a saw-tooth behaviour, which, 
interestingly, are qualitatively similar to those observed in 
paleo-climatic records. As evidence by Fig. 3d, this typical 
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Fig. 4   Coherence resonance in the three models. Left panels: Simu-
lated time series obtained with equation (4), neglecting the orbital 
forcing, and using a parameter setting that provides linearly stable 
conditions (see dots in Fig.  2) with (blue line) and without (red-
dashed line) additive noise. Right panels: periodograms (computed by 

excluding the initial 10–300 ky) referring to the �18 O record of the 
last 800 ky (black-dashed lines), a single simulation lasting 800 ky 
(blue line), i.e. the blue time-series on the left panel, and 50 repeti-
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pattern gives rise to a low-frequency dominant oscillation 
that clearly show up in the spectral analysis. Notice however 
that this feature occurs just in a range of noise intensities 
(Fig. 3e). In fact, if noise is further increased, these cycles 
are disrupted and the system evolves as a kind of random 
walk, amplified by the system non-linearity. Qualitatively, 
the spectrum (Fig. 3f) recovers then the behaviour observed 
when forcing the system with low intensity noise (Fig. 3b).

All the three models considered herein actually exhibit 
coherence resonance. A global picture is reported in Fig. 4, 
where we plot the ice mass (or ice volume) variations as 
provided by the three lumped models including an additive 
white noise, but without orbital forcing. Of course, in this 
case, we avoided comparing the time series of the simu-
lated signal with �18 O record, since the presence of the noise 
makes the process non-deterministic and the search for the 
timing of the ice ages is not an issue anymore when using 
this approach. Left panels report the temporal paths of the 
three models, together with the steady solution provided 
by deterministic responses (i.e. with same model settings 
and without the noise), and the white noise intensity. The 
right panels of Fig. 4 show the periodograms of the sto-
chastic simulations, compared to the periodogram of the 
�18 O record. For each model, two spectra are computed. 
One is referring to a single signal computed over 800 ky 
(an approximate temporal extent of the duration of the 100 
ky glacial period in the Pleistocene). A second spectrum 
represents instead an ensemble average of 100 spectra, each 
of them referring to a 800 ky simulation.

Indeed, the comparison of the spectra of the modelled 
signal with those obtained by observational time-series rises 
the question about the repeatability of these time series. 
More specifically, given the small number of glacial cycles 
in the Pleistocene, we can wonder whether the 100 ky peaks 
in the real spectra is just a statistical artefact, due to the 

limited temporal extent of the sample, rather than an intrin-
sic time scale of the system dynamics. This is why we have 
performed an ensemble of 100 realisations.

As expected, results for the SM model (Fig. 4a, b) show 
that, when producing several realizations of 800 ky-long 
simulations, the dominant period induced by the coherence 
resonance (i.e. the one peaking in the spectra) differs from 
one iteration to another. Among all the results, the blue 
lines reported in Fig. 4a–c refer to the ones providing the 
best match with the 100 ky peak provided by �18O records. 
After averaging, the resulting periodogram (the green 
one) still exhibits the main 100 ky peak, whose intensity 
is slightly smoothed and slightly shifted to a lower fre-
quency, of approximately 120 ky. An insight of the resi-
dence time of the system in the phase space ( Mi,C, To ) is 
presented in Fig. 5a, illustrating the dichotomy in the sys-
tem behaviour, close to a stable equilibrium point, around 
which the system persists most of the time, and another 
unstable equilibrium.

The noise-induced dynamics in the PP model look dif-
ferent, since the resonance is induced by the capability 
of the trajectory to cross a specific threshold, which is 
given by the argument of the Heaviside function. Once 
‘activated’, the Heaviside function allows the trajectory 
to skip to another attraction basin and to seek for another 
equilibrium.

When this threshold is crossed, the system tends to 
approach a second (stable) equilibrium point, that, in 
order to be reached, requires however the threshold to be 
crossed again. The system is then led back to its original 
equilibrium. In this dynamics, the second equilibrium lays 
in a region of the phase space which is not experienced 
by the system during its oscillations (see Fig. 5b). Single 
realization over 800 ky of the PP model provide spectra 
with a peak around 100 ky (Fig. 4c, d), but with variations 

Fig. 5   Residence time observed in a typical noise-induced dynam-
ics performing stochastic coherence. a Residence time reported in 
the phase space of the SM-model. b Residence time reported in a 
two-dimensional projection of the PP-model phase space. Given the 

models setting, the deterministic response of the model would lead 
the system to a stable attraction point, as evidence by the trajectories 
identified by black curves
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that are wider than those observed for the SM model. As a 
consequence, when considering 100 different realizations 
of a 800 ky Pleistocene, the ensemble averaged spectrum 
presents a peak which is smoothed, shifted to lower fre-
quencies and less pronounced with respect to both the �18 O 
records and the results of the SM model.

Even for the VdP model (Fig. 4e-f) we observe the ris-
ing of a peak with a period around 100 ky, when con-
sidering a single 800 ky-long realization. The ensemble 
averaged spectrum is instead shifted to lower frequencies, 
with a peak around 150 ky whose magnitude is similar to 
that observed for the PP model (i.e., less pronounced than 
that for the SM model).

3.3 � Sensitivity analysis

Basically, the coherence resonance occurs when the refer-
ence state of the system is close to a Hopf bifurcation, which 
happens to be triggered by the effect of the noise on the 
system dynamics. A key question is therefore to understand 
how sensitive is the coherence resonance occurrence with 
respect to: (i) the distance of the system from the bifurcation 

in the parameter space and (ii) the noise intensity. To this 
aim, we performed a sensitivity analysis, based on an ensem-
ble of 1-My long simulations, by varying the noise intensity 
and the parameter setting, in order to cover the whole two-
dimensional parameter space considered in Fig. 2.

As a first step, we focus on the same case analysed in the 
previous paragraph. We therefore fix the models parameters 
(i.e. the same as those used in Fig. 4) and evaluate the sys-
tems response to different noise intensities. For each value 
of the latter, we performed 50 simulations and we recorded 
the period of the dominant pulsation resulting in the corre-
sponding spectrum. The results of this analysis are presented 
in Fig. 6, where we show, for each noise intensity, the sta-
tistics of the period of the main pulsation through a box plot 
representation. The margins of the box (± 3 times the stand-
ard deviation), as well as the number of outliers, provide a 
quantification of the variability of the model response to a 
varying noise. The SM model shows a very little variability 
compared to PP and VdP (Fig. 6). In fact, the SM model 
produces dominant oscillations that are essentially bordered 
in the range 100 ± 30 ky, for a wide extent of the noise inten-
sities. Essentially, with the exception of the case with noise 
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dominant oscillations, as returned by the models, for different noise 
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tions for each noise. The parameter setting is the same as in Fig. 4. 
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intensity smaller than 0.1, the SM model provides oscilla-
tions around 100 ky for the whole range of noise intensities 
investigated, with a variability that is lower than ±30 ky.

The response of PP and VdP is instead different. For the 
PP model, we can identify a range of noises in which the 
median lays in the range 100 ± 30 ky, but with only one 
intensity for which both the median and the whole box lay 
in that range. Outside the range 100 ± 30 ky, the PP model 
returns oscillations distributed at higher periods and span-
ning over a range of values which is considerably larger 
than the SM model. Finally, for the VdP model, the median 
is always larger than 130 ky, and the model variability is 
qualitatively similar to that of the PP model. Based on these 
considerations, we can therefore state that the SM model 
looks as the most robust one among the three in reproducing 
the 100 ky oscillation.

To push our analysis further, we have then repeated this 
kind of analysis by considering, for each model, the whole 
parameter spaces represented in Fig. 2. This implies per-
forming 50 simulations for (i) each noise intensities and (ii) 
for a couple of the parameters laying outside the regions 
referred to as ‘harmonic’ in Fig. 2. For each parameter set-
ting explored, we then identified the occurrence of an ‘opti-
mal’ noise, as the minimal noise triggering oscillations with 
a median in the range 100 ± 30 ky.

Notice that our definition of ‘optimal’ noise differs from 
that commonly adopted in the literature (e.g., Pikovsky and 
Kurths 1997; Ridolfi et al. 2011), and according to which 
the optimal noise intensity, associated to a characteristic 
frequency of the coherence resonance, is the one that max-
imises the regularity of stochastic oscillations. Our approach 
here has to be different, since our focus is on the dominant 
pulsations arising only in the range 100 ± 30 ky. Nonethe-
less, the two criteria might sometime overlap (see for exam-
ple, right panels of Fig. 3).

The results (Fig. 7) show that, for the whole part of the 
parameter space where the SM model is linearly stable, it 
gives rise to coherence resonance with a 100 ky pulsation. 

Close to the margins of the linearly unstable and harmonic 
region, the resonance is activated with a low noise intensity 
(around 1% of the large scale oscillations). By increasing 
the values of both parameters r and s, the noise intensity 
required to activate coherence resonance increases very little 
moving away from the boundary of the unstable harmonic 
region. For the PP model the picture is very different. The 
portion of the parameter space x − � providing the resonance 
is bounded to two regions bordering the unstable harmonic 
region, i.e. in a large part of the parameter space the reso-
nance is not activated, no matter how intense the stochastic 
forcing is. Notice also that the resonance is activated for 
noise intensities that are smaller than those required by the 
SM model, i.e. around 0.5 % of the amplitude of the large 
scale oscillations. The VdP-model provides the simplest pic-
ture. The resonance is activated for a minimal intensity (of 
the same order as for the PP-model) for equilibrium points 
bordering the unstable harmonic region, i.e. for � ≥ 1 . Mov-
ing further away from this border, for 1 ≤ � ≤ 1.25 , the noise 
intensity required for the resonance progressively increases 
monotonically. For � ≥ 1.25 , there is no evidence of a reso-
nance with a 100 ky period (see also Fig. 2).

To sum up, the SM model is able to give rise to coherence 
resonance for a wider parametric range than the PP and VdP 
models. It is also worth noticing that, for the SM model, the 
noise intensity activating the resonance is generally larger 
than the one that triggers oscillations for the PP and VdP 
models. In these two latter models indeed, the extent of the 
region of the parameters space that potentially induces the 
resonance shows negligible sensitivity to an increased noise 
intensity.

3.4 � Combining the orbital and stochastic forcing

A last feature that is worth discussing is the combined 
role of radiative forcing and noise on the system dynam-
ics. Notably, we can question how the model outcomes 
reported in Fig. 4 may be altered by the presence of a 

Fig. 7   Results of the sensitivity analysis. Contour plot the noise intensity triggering coherence resonance with a main oscillation period of 100 ± 
30 ky, for varying values of the model parameters
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periodic forcing, as induced by the Earth orbital varia-
tions. To that purpose, for each model, we compared the 
outcomes of three simulations: (i) including the orbital 
forcing and setting the pre-factor � in the model equation 
(1) as in the original publications (see Sect. 2), (ii) setting 
� equal to zero, i.e. neglecting the orbital forcing, as in 
case of the results presented in Fig. 4, and (iii) imposing 
a range of values for the forcing amplitude in between of 
the previous two conditions. As for the cases discussed in 
Fig. 4, the simulations were ran over a period of 1 My, by 
repeating 50 times each simulation. Results are presented 
in Fig. 8 and show that, in all the three models, the orbital 
forcing amplifies the oscillations associated to the peri-
ods that are typical of tilt variations (41 ky) and preces-
sion (19–23 ky), but has almost no influence on the 100 
ky pulsation. The overall periodogram is therefore com-
posed by oscillations with lower periods that represents a 

linear response of the model to the orbital forcing, and a 
dominant 100 ky oscillation as the product of a coherence 
resonance. Apart from the linear response triggered by the 
orbital forcing, the picture is therefore very similar to the 
ensemble average spectra reported by the green lines of 
Fig. 4, thus implying that the orbital forcing has a marginal 
effect on the 100-ky oscillation. At the same time, this 
also confirms that the three models maintain distinctive 
features, even when forced both stochastically and orbit-
ally. In particular, the SM-model is the one which exhibits 
a higher energy at the dominant oscillation, very close to 
the 100-ky period appearing in the �18 O record, which is 
fairly distinguishable from the other peaks. PP instead per-
forms a dominant oscillation which is less evident, since 
the spectral energy is more spread over a wide range of 
frequencies. In this picture, the performance of the VdP 
model can be instead considered in between SM and PP.

Fig. 8   Response in the peri-
odograms from the three model 
forced by both the noise and the 
orbital forcing, with different 
intensities: the bold dashed blue 
line refers to the case without 
orbital forcing, the bold blue 
continuous line to the case 
with ‘full’ orbital forcing, i.e. 
values of � given for Eq. (1). 
Light blue shaded lines repre-
sents varying orbital forcing 
in-between. Left ordinate axis 
refers to ensemble average of 
50 simulations, that are ran over 
1 My, right ordinate axis refers 
to the power density of the 
paleoclimatic records ( �18O), 
represented by a black dashed 
line on the graph. The param-
eters of the three models are the 
same as in Fig. 4
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4 � Discussion and conclusions

Climate simulations at the 1 My timescale can be success-
fully addressed with low-order lumped models, in which 
parameters and variables arise from long-term and global 
averaging and the number of equations are necessarily lim-
ited. It follows that just a few elements of the climate system 
can be accounted for, with a limited selection of possible 
interactions and feedbacks. The goodness and reliability of 
this approach is usually tested by comparing the determin-
istic response against observational records of paleoclimatic 
proxies, based on which the model parameters can be con-
veniently tuned. Since this kind of tuning is somewhat arbi-
trary, as far as the physical correspondence of the parameter 
variability is not completely clear, there is no interest in 
stating which of these is ‘the best model’ or which is the 
‘the best parameter setting’. We can instead ask ourselves 
how sensitive the response of the models are depending on 
the variability of the model settings, and eventually on the 
addition of a stochastic noise to their dynamics.

Indeed, in lumped models, due to the averaging process, 
spatial heterogeneity and small scale temporal fluctua-
tions are ruled out from the dynamics (Monin and Yaglom 
1975). The role of these fluctuations can be reintroduced 
by two additional features: (i) by considering the intrinsic 
variability of the model parameters; (ii) by adding a sto-
chastic forcing in the equations. We investigated the role of 
these two features on the response of lumped paleoclimatic 
models, and the robustness of three representative models 
in reproducing the hallmark of the Pleistocene climate, i.e. 
the occurrence of the 100 ky pulsation as a product of the 
feedback mechanism of the climate system. In doing this, we 
pushed the model parameters far from their optimal setting 
as identified by their relative authors, i.e. providing the best 
fit between model results and paleoclimatic records.

Our analysis shows that the interactions between additive 
Gaussian noise and the internal dynamics trigger a noise-
induced resonance mechanism in all the three models. This 
mechanism allows the models to reproduce realistic periodic 
oscillations (including the 100-ky) even though, given the 
parameter setting, their deterministic response would lead 
them to steady fixed points. The sensitivity of the models 
is different with respect to the range of variability of the 
parameters and noise intensity. The SM model turns out to 
be the most robust one and the most susceptible to coherence 
resonance, since a Pleistocene oscillation noise-induced 
response was obtained for a wide range of the parameters, 
with relatively low values of noise intensity (up to 10% of 
large scale oscillations).

Although coherence resonance was observed even in the 
PP model, this model is much less susceptible than SM, 
since the portion of the parameter space x − � providing 

the resonance was quite bounded, while in a large part of 
the parameter space the resonance was not activated. This 
model was conceived to express mathematically the idea 
that peculiar dynamics of the southern ocean would induce 
abrupt climate changes—known as terminations—as pro-
duced by the intimate link between (i) ocean stratifica-
tion, (ii) deep ocean–ocean mixed layer–atmosphere–CO2 
exchanges, (iii) greenhouse effect and temperature rise. 
Mathematically speaking, this abruptness is represented 
through an Heaviside function, encapsulating the whole 
nonlinearity of the model. Such a peculiarity makes the PP 
model less suited in producing large scale noise-induced 
oscillations. A lack of robustness in the PP-model is evi-
denced when considering ensemble average of many reali-
zations, with and without the orbital forcing (see Figs. 4 
and 8). In this framework, in fact, a well-defined peak 
around 100-ky is less evident.

Finally, the VdP model shows up as a good example of 
how a simple toy model can produce noise-induced saw-
tooth oscillation, mimicking Pleistocene climate dynam-
ics. However, when testing its response to model variabil-
ity this simplified approach reveals its shortcomings, since 
the portion of the parameter space providing the resonance 
is bounded to the range 1 ≤ � ≤ 1.25 . The averaging of 
spectra of ensemble of many simulations with and without 
orbital forcing has not cancelled out a fairly-visible peak, 
although it is located at a period a bit larger than 100 ky 
and less pronounced than the SM model.

For all the three models, the role of the orbital forc-
ing was confined to a linear triggering of the oscillations 
associated to tilt variations (41 ky) and precession (19–23 
ky), leaving the rest of the spectrum almost unaffected.

The above comparison evidences the larger robustness 
of SM, when forced with both stochastic and orbital forc-
ing. In our opinion, such a strength of the SM-model is 
apparently the effect of its internal mathematical structure, 
which was specifically designed to reproduce Hopf bifur-
cations and bistability, by operating through a particular 
choice of the nonlinear terms in the CO2-ocean feedback. 
The physical interpretation of this choice was questioned 
nevertheless by Crucifix (2012). It seems therefore that the 
Landau-Stuart imprint in the SM-model represents both its 
strength and weakness.

To conclude, the results herein presented suggest that 
lumped models can respond to stochastic forcing in a man-
ner that is far from their original conception, giving rise to 
interesting unexpected noise-induced behaviors. Notably, 
their predisposition to trigger coherence resonance in a 
wider range of parameters with respect to their ‘factory 
setting’ may open to new insights about the mechanisms 
underlying the occurrence of the 100-ky pulsation in the 
late Pleistocene.
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