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Summary

At the CERN Large Hadron Collider (LHC), the energies reached in heavy-ion collisions
are such that a state of the matter called Quark-Gluon Plasma (QGP) can form. The pro-
duction of the QGP is characterised by the large number of charged particles emerging
from the collision (dNch/ d𝜂 up to 2000 in Pb–Pb collisions at

√𝑠NN = 5.02TeV), rep-
resenting a major experimental challenge for the experiments operating in this high-
multiplicity environment.

The A Large Ion Collider Experiment (ALICE) is designed precisely to operate in
such conditions to study the properties of the QGP. Among themany particles produced
in the collisions, (anti)hypernuclei are of particular interest. The lightest hypernucleus,
the hypertriton, is a bound state of a neutron, a proton and a Λ baryon and is the subject
of this thesis.

(Anti)hypernuclei provide the access door to study the hyperon-nucleon interac-
tion, a crucial component of the nuclear force ruling the nuclear interactions. There-
fore, the study of (anti)hypernuclei could provide significant clues for the comprehen-
sion of the nuclear force, with implications that go far beyond the High Energy Nuclear
Physics. For example, determining the repulsive three-baryon interactions between nu-
cleons and hyperons could explain the observation of two-solar-masses neutron stars.

New measurements of the (anti)hypertriton lifetime and Λ-separation energy (BΛ),
performed in recent years, have questioned the widespread belief – based on measure-
ments from the late 60s and early 70s – that the (anti)hypertriton is a loosely bound
object with a mean lifetime close to that of a free Λ baryon. The measurement of sig-
nificantly higher BΛ and lower lifetime suggested that the (anti)hypertriton is a much
more bound and compact object than previously believed. However, the statistical and
systematic uncertainties of the measurements did not allow for a conclusion on the
(anti)hypertriton structure and lifetime.

The main goal of this thesis is to perform a new and more precise measurement of
the (anti)hypertriton lifetime and BΛ. Taking full advantage of the ALICE tracking and
particle identification capabilities and a new dataset with an unprecedented number
of detected collisions, the purpose was to obtain the most precise measurement ever
achieved.

Thanks to state-of-the-art machine learning solutions for the signal/background
discrimination and new approaches to the systematic uncertainty estimation designed

iii



explicitly for this analysis, it was possible to outperform any other measurement ob-
tained in modern experiments. This thesis’s findings strongly support the loosely-
bound nature of the hypertriton with a mean lifetime compatible with that of the Λ
baryon.
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Chapter 1

High Energy Nuclear Physics

The Universe, in its early stages, was extremely hot and dense according to modern
cosmological theories [1–4]. Hadrons could not form due to the extremely high energy
density, and the fundamental constituents of the matter were in a deconfined state.
After the first microseconds, the energy density decreased enough to allow a phase
transition, leading to the formation of ordinary matter.

High EnergyNuclear Physics (HENP) studies heavy-ion collisions at ultra-relativistic
energies to investigate the properties of hot and dense nuclear matter and its transition
to ordinary matter. Those studies are crucial to understanding the first moments of the
Universe life and the behaviour of the matter under extreme conditions.

1.1 QCD: the Theory of the Strong Interaction
Quantum Chromodynamics (QCD) [5] describes the Strong Interaction in terms of the
interaction between quarks and gluons. Quarks are the fundamental constituents of
matter, while gluons are the gauge bosons that mediate the strong interaction between
quarks. The formulation of this field theory poses its roots in the theory of Quantum
Electrodynamics (QED) [5] which provided a framework for all field theories on which
the Standard Model relies.

The QCD is a non-Abelian gauge field theory based on the SU(3) symmetry group.
According to this theory, the charge responsible for the Strong Interaction carried by
quarks and gluons comes in three different states. The charge is called colour and its
three states are named: red, blue and green. The colour interaction is then mediated
by eight massless gauge bosons – the gluons – arising from from the invariance of the
theory under local SU(3) transformations in the colour space [6]. The QCD Lagrangian
can be written as follow:

ℒQCD = ̄𝜓𝑖(𝑖𝛾𝜇(𝐷𝜇)𝑖𝑗 − 𝑚𝛿𝑖𝑗)𝜓𝑗 − 1
4

𝐺𝑎
𝜇𝜈𝐺𝜇𝜈

𝑎 . (1.1)

The first term of Equation (1.1) describes the quark field 𝜓𝑖(𝑥) with indices 𝑖 and
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𝑗 running from 1 to 3 and 𝛾𝜇 are the Dirac matrices. The symbol (𝐷𝜇)𝑖𝑗 denotes the
gauge covariant derivative that describes the coupling of the quark field 𝜓𝑖(𝑥) with the
gluon field 𝒜𝑎

𝜇(𝑥):
(𝐷𝜇)𝑖𝑗 = 𝜕𝜇𝛿𝑖𝑗 − 𝑖𝑔𝑠(𝑇𝑎)𝑖𝑗𝒜𝑎

𝜇. (1.2)

In Equation (1.2) 𝑔𝑠 is the coupling constant of the Strong Interaction and 𝑇𝑎 are the
infinitesimal generators of SU(3) in the fundamental representation. The Gell-Mann
matrices 𝜆𝑎 (𝑎 = 1, … , 8) can be used to provide and explicit representation of the
generators: 𝑇𝑎 = 𝜆𝑎/2. In the second term of Equation (1.1) 𝐺𝑎

𝜇𝜈 is the gauge invariant
gluon field strength tensor:

𝐺𝑎
𝜇𝜈 = 𝜕𝜇𝒜𝑎

𝜈 − 𝜕𝜈𝒜𝑎
𝜇 + 𝑔𝑠𝑓𝑎𝑏𝑐𝒜𝑏

𝜇𝒜𝑐
𝜈. (1.3)

Here, 𝒜𝑎
𝜇(𝑥) (𝑎, 𝑏 and 𝑐 = 1, … , 8) is the aforementioned gluon field and 𝑓𝑎𝑏𝑐 are the

SU(3) group structure constants.
The gluon–quark interaction described by the first term of the QCD Lagrangian de-

scribes a QED-like vertex, represented by the diagram shown in Figure 1.1. The second
term of theQCDLagrangian contains the non-Abelian part of the theory – 𝑔𝑠𝑓𝑎𝑏𝑐𝒜𝑏

𝜇𝒜𝑐
𝜈

– and allows for three gluons and four gluons vertices at the tree level. These vertices,
shown in Figure 1.2, lead to the gluons self-interaction that characterises the QCD the-
ory.

𝑎

𝑖

𝑗

= 𝑖𝑔𝑠𝜆𝑎
𝑖𝑗𝛾𝜇

Figure 1.1: The gluon-quark interaction vertex.

The presence of the gauge bosons’ self-interactions term in the QCD Lagrangian
has essential implications for the renormalisation of the theory. In the computation
of the gluon propagator, the gluon loops corrections and the quark loops corrections
contribute to the sum with opposite signs. The quark loop is responsible for a colour
charge screening effect – analogous to the electric charge screening characteristic of the
QED theory [7] – while gluon loops give rise to a colour charge anti-screening effect
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𝑎

𝑐

𝑏

= −𝑔𝑠
2

𝑓𝑎𝑏𝑐(𝜕𝜇𝒜𝜈
𝑎 − 𝜕𝜈𝒜𝜇

𝑎)𝒜𝑏
𝜇𝒜𝑐

𝜈

𝑎

𝑏

𝑑

𝑐

= −𝑔2
𝑠
4

𝑓𝑎𝑏𝑐𝑓𝑐𝑑𝑒𝒜𝑎𝜇𝒜𝑏𝜈𝒜𝜇
𝑐 𝒜𝜈

𝑑

Figure 1.2: Feynman diagrams for three and four gluons self interaction vertices at the
tree level.

characteristic of non-Abelian theories. As a result, the QCD coupling constant depends
on the transferred four-momentum of the considered process, as derived by Politzer [8]
and Gross [9] and confirmed by the experiments over the years – see Figure 1.3.

By defining 𝛼𝑠 = 𝑔2
𝑠/4𝜋, the strong coupling constant can be written as [4]:

𝛼𝑠(𝑄2) = 𝛼𝑠(𝜇2)
1 + 𝛼𝑠(𝜇2)(33 − 2𝑛𝑓) ln(𝑄2/𝜇2)

(1.4)

where 𝑛𝑓 is the number of quark flavours and 𝜇 is the renormalization scale of the the-
ory. From Equation (1.4) two different features of the QCD theory emerge, depending
on the energy scale 𝑄 of the process.

For high 𝑄2 processes – i.e. for small distances – the strong coupling constant 𝛼𝑠
goes to zero, and the QCD becomes a free theory. This condition where the screen-
ing effect entirely suppresses the colour charge is called asymptotic freedom. On the
other hand, for low 𝑄2 processes – i.e. for large distances – the strong coupling is ex-
traordinarily high, and the quarks are forced to form bound states. Even if there is no
analytic proof for this effect called confinement, it is very well established from the ex-
perimental evidence that free quarks are not observable. By fixing the energy scale, the
Equation (1.4) can be rewritten as:

𝛼𝑠(𝑄2) = 12𝜋
(33 − 2𝑛𝑓) ln(𝑄2/Λ𝑄𝐶𝐷)

(1.5)

where ΛQCD is the renormalization scale of the QCD theory, typically ΛQCD ≈ 200MeV.
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αs(MZ
2) = 0.1179 ± 0.0010
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Figure 1.3: Summary of the 𝛼𝑠 measurements as a function of the energy scale 𝑄 [4].

Because of the 𝑄2 dependence of 𝛼𝑠, it is possible to calculate the elements of the 𝑆-
matrix with a perturbative approach (pQCD) only for high 𝑄2 processes – 𝑄2 ≫ 𝜇2 –,
for which 𝛼𝑠 ≪ 1. In low transferred momentum processes, 𝛼𝑠 is of the order of unity,
and it is impossible to compute the elements of the 𝑆-matrix in terms of a power series
expansion of the strong coupling constant. In 1974Wilson [10] proposed a newmethod
to solve gauge theories calculations, suited for diverging coupling constant theories as
to the QCD. The idea is to evaluate Green’s functions of the QCD Lagrangian on a space-
time lattice with space 𝑎 and extrapolate the results to the continuum limit 𝑎 → 0,
making it possible to compare the calculations with the experiments. This method –
called lattice regularised QCD or LQCD – reached a remarkable success in determining
the proton mass with a precision of 2 % [11].

1.2 States of the Hadronic Matter
Describing the interactions between quarks and gluons, QCD predicts the possibility
of having different states of the hadronic matter. It is a fascinating consequence of the
running coupling constant of the strong interaction. In a system of interacting quarks
and gluons, the mean transferred energy of the interactions – that define the mean
value of 𝛼𝑠 – determines the state of the system. For low mean transferred momen-
tum systems, the high 𝛼𝑠 value forces the system to be in the confinement regime and
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quarks and gluons are precisely confined in bound states: the hadrons. Otherwise, for
systems characterised by a high mean transferred momentum, the asymptotic freedom
regime allows the formation of a plasma where quarks and gluons are essentially free.
This plasma, formed by free quarks and gluons, is called Quark-Gluon Plasma (QGP)
[12]. The study and characterisation of the QGP and the phase transitions between the
different states of the hadronic matter are among the HENP’s primary goals.

Figure 1.4: An experimental and theoretical exploration of the QCD phase diagram.
(Illustration: Swagato Mukherjee, Brookhaven National Laboratory.)

In a thermodynamical picture, it is possible to describe a system composed of hadronic
matter with finite dimensions using global variables like the temperature 𝑇 and the
baryon chemical potential 𝜇𝐵. In such a framework, 𝜇𝐵 represents the energy required
to create a baryon state. The 𝑇, 𝜇𝐵 diagram in Figure 1.4 shows the different phases of
the QCD derived from both experimental observations and theoretical predictions. The
origin – 𝑇 = 𝜇𝐵 = 0 GeV – corresponds to the QCD vacuum. Along the 𝜇𝐵 axis the
ordinary nuclear matter – composed by protons and neutrons – sits just below 𝜇𝐵 = 1
GeV that is, in fact, approximately the energy of a nucleon at 𝑇 = 0. At higher 𝜇𝐵
values, a phase transition between the ordinary matter and the colour-flavour locked
(CFL) phase – a state of the matter in which the flavour and the colour of the quarks
are correlated in a one-to-one correspondence – is expected [13]. The QCD coupling is
weak at these high densities; therefore, quarks of all three colours form a condensate of
Cooper pairs, showing both superconductivity and superfluidity [14]. The conditions
needed to reach this phase could occur in nature only in particular neutron stars where
a stable superconducting quark matter core can form [15]. Moving along the 𝑇 axis –
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where 𝜇𝐵 = 0 – a phase transition takes place when 𝑇 ≫ Λ𝑄𝐶𝐷. At this temperature,
the asymptotic freedom is reached due to the high average momentum exchanged be-
tween partons; hence they are no longer confined in colour singlets states. They form
the QGPmentioned above, a plasma of free quarks and gluons, similar to the primordial
Universe. At lower temperatures, the hadronic matter is in a hadron gas state.

The order of a phase transition describes how fast the system’s free energy varies
in a neighbourhood of the transition temperature. In particular, it determines whether
the time derivative of the system free energy is continuous or not. If the time derivative
is discontinuous, a first order transition takes place, and this implies that latent heat is
involved in the process. A second order transition, instead, takes place when the first
derivative with respect to the time is continuous while higher-order derivatives are not.
The particular transition that occurs when both the free energy of the system and its
derivatives with respect to the time are continuous is called crossover transition.

The QCD phase diagram shows a crossover transition between the QGP and the
hadronic matter phase for temperatures around 150MeV for 𝜇𝐵 close to 0, while in the
region of higher 𝜇𝐵 the transition is of a first order type. The precise determination of
the critical point of the QCD phase diagram, which separates the crossover region from
the first order transition line, is still an open question in the HENP field.

1.3 Heavy-Ion Collisions
An active sector of the nuclear theory community tries to derive the equation of state
(EoS) of the nuclear matter and its phase diagram from theories and models. Unfor-
tunately, with the current technology, predictions are difficult to test. The extremely
high density or high temperature – or both at the same time – necessary to explore the
whole phase diagram are impossible to be produced in the laboratory.

The astronomic observation of massive neutron stars provides access to the high
𝜇𝐵 region at 𝑇 ≈ 0GeV since these conditions should be present in their inner core.
Recently it has also been shown that a phase transition of the nuclear matter in the inner
core of neutron stars can be linked to the observation of particular oscillation modes in
gravitational waves [16], opening new frontiers for the exploration of the QCD phase
diagram.

In the laboratory, it is possible to explore the high 𝑇 and low 𝜇𝐵 region by colliding
ultra-relativistic heavy ions. If it is provided with enough energy, this type of collision
can create a fireball where the temperature is such that the phase transition to the QGP
takes place. The first experiments with heavy-ions collisions (HIC) occurred in the ’70s
at the Lawrence Berkeley National Laboratory (LBNL), giving way to High Energy Nu-
clear Physics. Over the years, incredible progress has been made in this field, passing
from the barely relativistic conditions at LBNL – collisions at ≈ 2GeV/nucleon – to
the extreme energies available nowadays at the CERN Large Hadron Collider (LHC) –
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where the centre-of-mass energy of the collisions is more than 5TeV for colliding nu-
cleon pair. Besides the LHC, there is another hadron collider that carries on aHENP pro-
gram with HIC and dedicated experiments: the Relativistic Heavy Ion Collider (RHIC)
at the Brookhaven National Laboratory (BNL) [17].

1.3.1 Glauber Model of Nucleus–Nucleus Collisions
The nuclei are systems with finite dimensions composed of nucleons, and it can be very
complex to describe their collision, especially at ultra-relativistic energies. The Glauber
model [18] addresses this problem by describing a nucleus–nucleus interaction in terms
of incoherent overlap of nucleon–nucleon (NN) interactions in a semi-classical picture.
The goal of the Glauber model is to connect distributions of experimental observable
to the distributions of geometric quantities of the collision.

The model requires some experimental data as inputs to calculate all the geometric
parameters of the collision. The most important ones are the inelastic nucleon–nucleon
cross-section as a function of the energy and the nuclear charge densities.

A Fermi distribution with three parameters – commonly known as Woods-Saxon –
is usually used to model the functional form of the nuclear density:

𝜌(𝑟) = 𝜌0
1 + 𝑤(𝑟/𝑅)2

1 + exp(𝑟−𝑅
𝑎 )

, (1.6)

where 𝜌0 is the nucleon density in the centre of the nucleus, 𝑅 is the radius of the
nucleus, 𝑎 corresponds to the skin depth, and 𝑤 is needed to describe non-spherical
nuclei.

The input nucleon–nucleon cross-section 𝜎𝑁𝑁
𝑖𝑛𝑒𝑙 is measured since it is impossible to

calculate it using perturbative QCD since the process involves low momentum interac-
tions.

Historically, two approaches have been developed to calculate geometry-related
quantities: the Optical Limit approximation and the Monte Carlo Glauber approach.

Optical Glauber Model

If the energy of the collision is sufficiently high – and this is, of course, the case at
modern hadron colliders like LHC and RHIC – it is possible to assume the optical limit
approximation. This implies that nucleons are not deflected in the collision since they
carry enoughmomentum; they travel in a straight line. It is also possible to consider the
independent motion of the nucleons inside the nucleus since the range of the nucleon–
nucleon force is minimal compared to the nucleus radius.

Figure 1.5 shows the geometry of two colliding nuclei at relativistic velocities. The
nuclei are Lorentz contracted in the motion direction – side view (a) – due to the rel-
ativistic momentum, so they are squeezed in that direction. Instead, their transverse
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Figure 1.5: Optical Glauber model geometry for the collision of a projectile nucleus
B with a target nucleus A – the distinction between the target and projectile nuclei is
a matter of convenience for colliding beam experiments – as described in [18]. The
vector, in the beam-line view, joining the centre of A and the centre of B is defined as
the impact parameter ⃗𝑏.

section is visible in the beam-line view (b). Following the notation introduced in the
figure, it is possible to define the thickness functions for nuclei 𝐴 and 𝐵:

𝑇𝐴( ⃗𝑠) = ∫ 𝜌( ⃗𝑠, 𝑧𝐴)𝑑𝑧𝐴 (1.7)

and
𝑇𝐵( ⃗𝑠, �⃗�) = ∫ 𝜌( ⃗𝑠 − �⃗�, 𝑧𝐵)𝑑𝑧𝐵. (1.8)

Since 𝜌( ⃗𝑠, 𝑧) represents the probability of finding a nucleon in the unit of volume lo-
cated at ⃗𝑠, 𝑇𝐴( ⃗𝑠) and 𝑇𝐵( ⃗𝑠, ⃗𝑏) represent the probability per unit of transverse area.
Thus, Equation (1.9) defines the nuclear overlap function for two colliding nuclei.

𝑇𝐴𝐵( ⃗𝑏) = ∫ 𝑇𝐴( ⃗𝑠)𝑇𝐵( ⃗𝑠 − ⃗𝑏)𝑑2𝑠 (1.9)

In the optical limit approximation, elastic interactions between nucleons are not consid-
ered since they have negligible effects. Furthermore, only binary interactions between
nucleons are considered and each nucleon can participate in more than one binary colli-
sion. Given that nucleus 𝐴 have 𝐴 nucleons and nucleus 𝐵 have 𝐵 nucleons and 𝜎𝑁𝑁

𝑖𝑛𝑒𝑙

8
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is the measured nucleon–nucleon inelastic cross-section, the probability of having 𝑛
binary nucleon–nucleon interactions is then given by Equation (1.10).

𝑃(𝑛, ⃗𝑏) = 𝐴𝐵!
𝑛!(𝐴𝐵 − 𝑛)!

[𝑇𝐴𝐵(�⃗�)𝜎𝑖𝑛𝑒𝑙]
𝑛[1 − 𝑇𝐴𝐵( ⃗𝑏)𝜎𝑁𝑁

𝑖𝑛𝑒𝑙]
𝐴𝐵−𝑛. (1.10)

The total inelastic cross-section as a function of the impact parameter is hence obtained
integrating the double differential cross-section for two colliding nuclei:

𝑑2𝜎𝐴𝐵
𝑖𝑛𝑒𝑙(�⃗�)
𝑑𝑏2 =

𝐴𝐵
∑
𝑛=1

𝑃(𝑛, ⃗𝑏) = 1 − [1 − 𝑇𝐴𝐵( ⃗𝑏)𝜎𝑁𝑁
𝑖𝑛𝑒𝑙]

𝐴𝐵
(1.11)

𝜎𝐴𝐵
𝑖𝑛𝑒𝑙(�⃗�) = ∫

∞

0
(1 − [1 − 𝑇𝐴𝐵( ⃗𝑏)𝜎𝑁𝑁

𝑖𝑛𝑒𝑙]
𝐴𝐵) 2𝜋𝑏𝑑𝑏. (1.12)

The number of nucleon–nucleon collisions 𝑁𝑐𝑜𝑙𝑙(𝑏) is then:

𝑁𝑐𝑜𝑙𝑙(𝑏) =
𝐴𝐵
∑
𝑛=1

𝑛𝑃(𝑛, 𝑏) = 𝐴𝐵 𝑇𝐴𝐵 𝜎𝑁𝑁
𝑖𝑛𝑒𝑙. (1.13)

The impact parameter vector ⃗𝑏 can be replaced by a scalar distance 𝑏 if the nuclei are
not polarised since, in this case, the colliding system has a cylindrical symmetry. The
number of participants nucleons – also known as the number of wounded nucleons – at
impact parameter 𝑏, 𝑁𝑝𝑎𝑟𝑡(𝑏) is given by:

𝑁𝑝𝑎𝑟𝑡(𝑏) = ∫ 𝑑2𝑠[𝐴𝑇𝐴( ⃗𝑠)[1 − (1 − 𝑇𝐵( ⃗𝑏 − ⃗𝑠)𝜎𝑖𝑛𝑒𝑙)
𝐵]

+𝐵𝑇𝐵( ⃗𝑏 − ⃗𝑠)[1 − (1 − 𝑇𝐴( ⃗𝑠)𝜎𝑖𝑛𝑒𝑙)
𝐴]].

(1.14)

So the optical limit approximation allows to express 𝑁𝑝𝑎𝑟𝑡 and 𝑁𝑐𝑜𝑙𝑙 as a function of
the impact parameter ⃗𝑏. Themain limitation of this approach is that themodel considers
continuous nucleon density distributions, while nucleons are discrete objects, and their
spatial position inside the nucleus can differ event by event.

Both 𝑁𝑝𝑎𝑟𝑡 and 𝑁𝑐𝑜𝑙𝑙, then, should be considered as average values over a high
number of collisions.

Monte Carlo Glauber Model

In the optical limit approximation, the colliding nuclei are described through a contin-
uous nuclear density distribution. In the Monte Carlo Glauber model, instead, nuclei
are modelled, generating a three-dimensional discrete distribution of 𝐴 nucleons for
the nucleus 𝐴 and 𝐵 nucleons for the nucleus 𝐵, according to their nuclear density
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function. Then the 𝐴 + 𝐵 collision with impact parameter 𝑏 is simulated with 𝑏 drawn
from the distribution 𝑑𝜎/𝑑𝑏 = 2𝜋𝑏.

The nucleus–nucleus collision is treated as the sum of 𝑁𝑐𝑜𝑙𝑙 independent binary
nucleon collisions with a nucleon–nucleon inelastic cross-section 𝜎𝑁𝑁

𝑖𝑛𝑒𝑙 assumed inde-
pendent from the number of collisions in which a nucleon participated. In addition,
the nucleons are considered to travel in a straight line, and elastic nucleon interactions
are neglected, just as in the case of the optical limit approximation. It is possible to
use different methods to determine if a nucleon–nucleon interaction occurs. The sim-
plest way is to consider the distance between the nucleons in the transverse plane with
respect to the beam axis 𝑑. In this case the collision takes place if:

𝑑 ≤ √𝜎𝑁𝑁
𝑖𝑛𝑒𝑙/𝜋. (1.15)

Then a large number 𝐴 + 𝐵 collisions are simulated and the experimental observable

Figure 1.6: (Left) The total cross-section, calculated in the optical approximation and
with a Glauber Monte Carlo (MC) – both with identical nuclear parameters – as a func-
tion of the inelastic nucleon–nucleon cross-section 𝜎𝑁𝑁

𝑖𝑛𝑒𝑙. (Right) 𝑁𝑐𝑜𝑙𝑙 and 𝑁𝑝𝑎𝑟𝑡 as
a function of the impact parameter, calculated in the optical approximation (lines) and
with a Glauber Monte Carlo (symbols).

– e.g. ⟨𝑁𝑐𝑜𝑙𝑙⟩ and ⟨𝑁𝑝𝑎𝑟𝑡⟩ – are computed as the average of the number of collisions.
The two approaches to the Glauber model give comparable results in the calculation

of the geometrical quantities as shown in Figure 1.6. The computed nucleus–nucleus
cross-sections converge to the same value (left plot) for small 𝜎𝑁𝑁

𝑖𝑛𝑒𝑙 cross-section. Minor
deviations are, instead, present for high 𝜎𝑁𝑁

𝑖𝑛𝑒𝑙 and this is, however, expected since, in
that case, the point-like approximation for the nucleons is not precise enough.
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1.3.2 Space-time Evolution of the Collision
The collision of two ultra-relativistic atomic nuclei creates a strongly interacting system
in the impact region, where it reaches extremely high hadron and energy densities.
This system, while evolving, passes through some crucial stages and may also occur
the phase transition to the QGP and ordinary matter again. Figure 1.7 summarises
the current view of the space-time evolution of this strongly interacting system. The
different stages – represented with different colours – are characterised by the time
range in which they occur:

1. 𝑡 < 0 fm/c : the two nuclei are travelling in the beamline at ultra-relativistic
energies. Because of their velocity, close to the speed of light, they are Lorentz
contracted in the motion direction – by a factor ∼2700 at the LHC.

2. 𝑡 = 0 fm/c : collision time. The Glauber model is usually used to describe the
geometry of the collision.

3. 0 < 𝑡 ≲ 𝜏0: the high transferred momentum interactions between colliding
partons characterises the early stages of the collision; it is called pre-equilibrium
phase. In the hard processes occurring in this phase, all the particles with high
mass or/and high momentum are produced. The partons, forming the colliding
nuclei, tend to escape from the collision region at forward rapidity (|𝑦| ≫ 0)
while losing their energy at mid-rapidity (𝑦 ≈ 0). If the collision energy is large
enough, the escaping partons bring the baryonic potential at forward rapidity,
leaving a null baryon chemical potential at mid-rapidity. The resulting system
at mid-rapidity is extremely hot and dense. The transition phase to the QGP is
expected if the energy density reached in this stage is large enough. In the event
for which the transition phase occurs, droplets of QGP are formed, and after a
parton rescattering phase, they reach the thermal equilibrium at a proper time 𝜏0
– in the collisions at the LHC energies 𝜏0 ∼ 0.2 fm/c.

4. 𝜏0 ≲ 𝑡 ≲ 10 fm/c : the QGP droplets reached the thermal equilibrium at 𝜏0.
They are now subject to thermal pressure gradients at the system boundaries, so
they collectively expand because of these pressures. The expansion of the QCD
matter is rapid and influences the system’s final state, which is what one can ex-
perimentally observe. It is then crucial to describe the dynamic of this expansion
to interpret the experimental data, which is typically done through relativistic
hydrodynamics models [19]. During the expansion, the system cools down, and
the energy density decreases until it meets the conditions for the transition phase
from the QGP to the ordinary hadronic matter. The system then returns to the
hadronic matter state with a crossover transition.

5. 10 ≲ 𝑡 ≲ 15 fm/c : the system is now at the critical temperature between the
QGP and the hadronic matter phase. In this time range, the hadronisation pro-
cess starts, and the system turns into an interacting hadron resonance gas while

11



High Energy Nuclear Physics

it continues to expand and cool down. Meanwhile, the hadrons interact with
each other both elastically and inelastically. The inelastic interactions led to a
continuous mixing of the particle species until the energy density decreases so
much that the system stops to interact inelastically. The relative abundances of
the particle species are fixed, and the temperature which characterises this in-
stant is called chemical freeze-out temperature 𝑇𝑐ℎ. Only elastic interactions are
allowed at this point of the system’s evolution, varying the particles’ momentum
spectra. The particles ’ momentum distribution is fixed when even the elastic in-
teractions can no longer occur due to the system expansion. The temperature at
which the particles produced in the collision are completely decoupled is called
kinetic freeze-out temperature 𝑇Kin.

6. 𝑡 ≳ 15 fm/c : hadrons are free to escape from the interaction region. This stage
is also called free hadron stream.

Figure 1.7: Sketch of the space-time evolution of the strongly interacting system cre-
ated in the mid-rapidity region of a central HIC.

After escaping from the interaction region, the particles produced in the collision
can be detected by the detectors installed in the collider experiments. The experimental
apparatus used to study the HIC surround the collider interaction point, covering a
specific rapidity region. They can detect the particles emerging from the collisions and
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measure the particle production spectra and their correlations; it is possible to infer
crucial information about the system produced in the collisions and the medium they
travelled.

1.4 Probing Quark-Gluon Plasma
The combined data coming from the seven experiments on CERN’s Heavy
Ion programme have given a clear picture of a new state of matter. This re-
sult verifies an important prediction of the present theory of fundamental
forces between quarks. It is also an important step forward in the under-
standing of the early evolution of the Universe. We now have evidence of
a new state of matter where quarks and gluons are not confined.

At that time, Professor Luciano Maiani, CERN Director General, announced the obser-
vation of a new state of the matter at the Super Proton Synchrotron (SPS) in a seminar
held on February 10, 2000. This announcement followed the publication of a review
[20] of the results achieved by the CERN’s Heavy Ion programme from 1994 to 2000.
This publication confirmed the existence of the QGP by multiple indirect experimental
evidence since a single, direct and incontrovertible proof is not available. It was a “proof
by circumstantial evidence”.

Even today, a single, direct and incontrovertible proof of the existence of the new
state of the matter is not available. However, multiple experimental measurements
corroborating the existence of the QGP through indirect evidence have been performed
since the ’90s. So there are no doubts about its existence anymore.

The following sections present the most significant experimental results that show
the evidence of the QGP and shed light on its features and properties.

1.4.1 Soft Probes
Hadrons Momentum Spectra

The low momentum hadrons represent the majority of the hadrons produced in a HIC
(≈99 %). Important insights about the status of the emitting source can be inferred
by studying the momentum spectra of these particles, often referred to as soft hadrons.
Since the elastic interactions between the particles emerging from the collision stopped
at the kinetic freeze-out, the momentum spectra of the identified particles provide an
indirect snapshot of the system.

The particle spectra for the 𝑖 species can be described by:

1
𝑚T

d2𝑁𝑖
d𝑚T d𝑦

∝ 𝑒−𝛽𝑚T , (1.16)
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where the 𝑚T is transverse mass defined as 𝑚T = √𝑚2 + 𝑝2
T and 𝑝T is the transverse

momentum. This relation relies on the assumption that the Boltzmann-Gibbs distribu-
tion describes the system at the kinetic freeze-out, and in this picture, all the particle
species are emitted at a common emission temperature 𝑇 = 1/𝛽. Thus, particle spectra
are expected to be the same for all the species – this behaviour is called 𝑚T scaling –
as observed in pp collisions at a low centre of mass energy of the collision (

√
𝑠).

In HIC, however, the 𝑚T scaling breaks down, and each particle species shows a
different slope – i.e. different temperature – in the measured spectra; in particular, the
slope of the particle spectra decreases with the mass of the specific species. The spectra
shift towards higher 𝑝T for higher mass particles, translating into a lower temperature
𝑇. This effect can be interpreted as the superimposition of a collective hydrodynamical
expansion of all the particles along the transverse plane – called radial flow – with the
thermal agitation of the system at the moment of the kinetic freeze-out. The tempera-
ture parameter for the 𝑖-th species, therefore, can be written as:

𝑇𝑖 = 𝑇Kin + 1
2

𝑚𝑖⟨𝑣⊥⟩2. (1.17)

The parameter 𝑇Kin is the temperature of the kinetic freeze-out while the other term
takes into account the hydrodynamical expansion which takes place with an average
transverse velocity ⟨𝑣⊥⟩. The result is a modification in the production spectra that are
pushed to higher values of the transverse momentum the higher is the particle mass.
This phenomenon is clearly visible in the pion, kaon and proton spectra in Figures 1.8a
and 1.8b where the pions spectrum exhibits a steeper slope (soft spectrum) while the
slope of the protons spectrum is reduced (hard spectrum). The slope of the measured
spectra depends also on the energy available in the collision as shown in Figure 1.8b.
At lower collision energy the measured 𝑝T spectra [22, 23] exhibit a softer profile with
respect to the ones measured at the LHC [24], where the

√𝑠NN is almost 14 times larger.
This phenomenon is interpreted in the hydrodynamical picture as the consequence of
stronger pressure gradients in the expanding medium, causing stronger radial flow, in
the collisions energy at the LHC.

The hydrodynamical models can reproduce the dynamics of the matter produced in
HIC and describe the slope modification of the production spectra. However, to obtain
an accurate description of the measured spectra over a wide momentum range, they
implement some corrections to take into account the bulk viscosity at the chemical
freeze-out – as done in the Krakow model [25] –, or a hybrid approach with a direct
description of the hadronic phase followed by a hydrodynamic expansion – as done in
the HKM model [26]. The agreement between hydrodynamical calculations and data
shown in Figures 1.8a and 1.8b is a good indication that the radial flow interpretation
captures some fundamental features of the medium generated in the collision.

The temperature of the kinetic freeze-out 𝑇Kin is usually extracted from a simulta-
neous fit of the measured spectra of pions, kaons and protons with a Blast Wave model
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(a) (b)

Figure 1.8: Pion, kaon and proton transversemomentum spectra in central (0–5 % cen-
trality class) Pb–Pb collisions at

√𝑠NN = 5.02TeV [21] (a), in central (0–5 % centrality
class) Au–Au collisions at

√𝑠NN = 200GeV at the RHIC [22, 23] and in central (0–5 %
centrality class) Pb–Pb collisions at

√𝑠NN = 2.76TeV at the LHC [24] (b).

[27]. Although it provides a simplified description of the hydrodynamics of the expan-
sion, this model provides an important tool to derive the 𝑇Kin parameter together with
the mean radial velocity ⟨𝛽⊥⟩ of the particles at the kinetic freeze-out. The comparison
of the results of these fits [24] highlights how both the kinetic freeze-out temperature
𝑇Kin and the radial flow velocity ⟨𝛽⊥⟩ are larger at LHC energies compared to those
obtained at the RHIC.

Anisotropic Flow

When two heavy ions collide, they usually overlap only partially; the collision with
impact parameter close to zero, are just a small fraction of all the possible events. The
overlap region takes the typical elliptic form as shown in Figure 1.9, causing geometrical
anisotropies in the nuclear matter generated in the collision. These anisotropies are
transferred to the momentum space by the pressure gradients, leading to azimuthal
anisotropies in the particle production spectra that can be measured with the following
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Figure 1.9: Schematic depiction of the transverse plane of a HI collision from [28].
The left nucleus (red nucleons) is emerging from the page and the right nucleus (green
nucleons) is going into the page, while in blue are represented the nucleons in the
overlap region.

Fourier expansion:
d𝑁
dΦ

∝ 1 + 2
∞

∑
𝑛=1

𝑣𝑛 cos[𝑛(Φ − Ψ𝑛)]. (1.18)

This effect provides another signature of the collective motions of the particles pro-
duced in HI collision. In Equation (1.18) the coefficients 𝑣𝑛 quantifies the magnitude of
the anisotropy with respect to the symmetry plane Ψ𝑛. In collisions with a significant
impact parameter, with an accentuated elliptic-shaped fireball, the pressure gradient
is parallel to the reaction plane defined by the impact parameter and the beam axis.
However, the reaction plane direction cannot be determined directly; therefore, the 𝑣1
coefficient of Equation (1.18) is not measured. Higher-order event planes contribute to
the calculation of the Fourier expansion in Equation (1.18), and each coefficient repre-
sents different components of the particle flow anisotropies. The 𝑣2 coefficient describes
the ellipticity of the particle flow – reflection of the almond-shaped overlap region and
the pressure gradients in the reaction plane – and is usually called elliptic flow. In-
stead, the higher-order Fourier coefficients describe more complex inhomogeneities in
the medium generated in the collision. However, the ability of the system to efficiently
propagate the initial conditions – and its inhomogeneities – through the evolution of
the fireball, manifesting final state effects translated in the 𝑣𝑛 coefficients, strongly de-
pends on the medium properties. The bulk viscosity over the medium entropy 𝜁/𝑠,
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its lifetime, and the shear viscosity over the medium entropy 𝜂/𝑠, affect the propaga-
tion efficiency. Therefore, it is crucial to compare the measured 𝑣𝑛 coefficients with
the available model predictions to understand the features of the medium. Although
it provides a simplified description of the hydrodynamic of the expansion, this model
provides an important tool to derive the 𝑇Kin parameter together with the mean radial
velocity ⟨𝛽⊥⟩ of the particles at the kinetic freeze-out. The comparison of the results of
these fits [24] highlights how both the temperature of kinetic freeze-out 𝑇Kin and the
radial flow velocity ⟨𝛽⊥⟩ are larger at LHC energies with respect to those obtained at
the RHIC. The ALICE experiment measured the 𝑣𝑛 coefficients up to the fourth-order

Figure 1.10: (a): Fourier coefficients 𝑣𝑛 up to the fourth order measured by the ALICE
experiment in Pb–Pb collisions at different energies [29], for low transverse momentum
particles (0.2 < 𝑝T < 5.0GeV/c) as a function of the event centrality. (b) and (c): ratios
of 𝑣2 (red and grey points), 𝑣3 (blue points) and 𝑣4 (green point) measured in Pb–Pb
collisions at

√𝑠NN = 5.02TeV and
√𝑠NN = 2.76TeV. The coloured areas represent the

ratios between the experimental data and the hydrodynamic model (see the references
in [29]), showing good agreement with calculations using a small 𝜂/𝑠 value.

in Pb–Pb collisions at different energies [29] and compared the results with a hydrody-
namical model that takes into account initial geometric anisotropies and the medium
response (Figure 1.10). This detailed study constitutes a positive test for the hydro-
dynamic picture ad allows stating that the medium created in HIC has a small shear
viscosity, according to the 𝑣𝑛 measurements.
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1.4.2 Hard Probes
High Momentum Particles and Heavy Flavours

The processes at high transferred momentum take place only in the early moments
of the collision, during the pre-equilibrium phase; therefore, high momentum quarks
and charm and beauty quarks (heavy flavour quarks) can be created only in this stage.
After their creation, they travel through the whole evolution of the system before being
detected – if they emerge from the fireball and hit the experimental apparatus – bringing
information about the medium in which they propagated and interacted. The study of
heavy-flavour hadrons and highmomentum hadrons – usually referred as hard particles
– is then crucial to investigate the mechanisms underlying the parton propagation and
energy loss in the QGP.

These types of processes – also called hard processes – are characterised by high
transferredmomentum and can therefore be treatedwith the perturbativeQCD (pQCD).
In addition, if the collision between two nuclei is considered as the superimposition of
independent nucleon–nucleon collisions, the production cross-section of hard particles
should be, in principle, equal to the pp cross-section multiplied for a scaling factor
𝑁coll i.e. the number of nucleon–nucleon interactions. It is therefore expected that the
nuclear modification factor, defined as

𝑅AA = 1
⟨𝑁coll⟩

d2𝑁AA/ d𝑝T d𝑦
d2𝑁/ d𝑝T d𝑦

(1.19)

is equal to unity for hard particles, since a HI collision is just the incoherent sum of
𝑁coll nucleon–nucleon collisions. Some phenomena, for instance the nuclear shadow-
ing [30] and the Cronin enhancement [31], can explain deviations of the 𝑅AA from
unity without considering the presence of the QGP. It is still possible to study p–Pb
collisions to isolate these cold matter effects obtaining the information about the QGP
by comparing the results with the Pb–Pb measurement. The CMS experiment, for in-
stance, has measured the nuclear modification factor in both p–Pb and Pb–Pb collisions
at

√𝑠NN = 5.02TeV as reported in Figure 1.11. As expected the 𝑅pA is close to unity
for the hard particles (𝑝T ≥ 3GeV/c) and it is even larger than one at very high 𝑝T. The
𝑅AA, conversely, shows that the production of hard particles is suppressed, suggesting
the presence of an hot and dense medium in which they propagated loosing energy.
At the highest values of the transverse momentum (𝑝T ≥ 100GeV/c) the 𝑅AA rises up
until it reaches unity. This behaviour, as interpreted by the models described in [32], is
due to the ability of the highest momentum partons to escape from the collision before
the formation of the medium because of their extremely high velocity.

Besides the study of generic high momentum particles, a significant interest in the
hard probes sector is prompted by the study of heavy-flavour production. Themeasure-
ment of the heavy-flavour hadrons allows us to tag the specific quark – either charm
or bottom – underlying the production of the hadron itself. Furthermore, it is possi-
ble to investigate the energy loss of the heavy quarks in detail. The observed hadron,

18



1.4 – Probing Quark-Gluon Plasma

Figure 1.11: Nuclear modification factors of charged particles measured by the CMS
Collaboration [32] in p–Pb and Pb–Pb collisions at

√𝑠NN = 5.02TeV. The statistical
uncertainties are represented by the vertical bars, while the coloured boxes refer to the
systematic uncertainties of the measurement.

in fact, inherits most of the momentum carried by the quark due to the fragmentation
functions. The energy loss of heavy-flavour quarks derives from two contributions: the
collisional energy loss – caused by the elastic scatterings with other partons – and the
radiative energy loss – resulting from inelastic scatterings. The ALICE experiment mea-
sured the 𝑅AA for the D mesons [33] finding out that models including both collisional
and radiative effects better describes the observed data (Figure 1.12).

Another subject of particular interest in the context of the hard processes in HIC is
the jet quenching. This is, once again, related to the modification of well-known phe-
nomena in the presence of a hot and dense medium, and it provides indirect proof of
the QGP formation in HIC. A jet is a cone-structure in the spatial distribution of the
particles – mainly hadrons – produced by the hadronisation of a quark or gluon gener-
ated in a scattering process. In pp collisions, hence in the vacuum and without energy
loss, the dijets is a physical phenomenon consisting of two jets of equal transverse mo-
mentum produced back-to-back. In a HI collision, a dijet can originate from the hard
scattering of two partons. However, in this case, the jets travel through the medium
losing energy and eventually changing their direction, resulting in a modification of
the dijet structure. The larger the distance travelled inside the medium, the larger the
energy loss and the probability of having a significant jet direction deviation. Thus,

19



High Energy Nuclear Physics

5 10 15 20 25 30 35 40 45 50
) c (GeV/

T
p 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

AA
R ALICE

 = 5.02 TeVNNs010% PbPb, 
|<0.5y|

Filled markers: pp rescaled reference
extrapolated reference

T
pOpen markers: pp 

+, D*+, D0Average D

TAMU

PHSD

POWLANG HTL

MC@sHQ+EPOS2

LBT
BAMPS el.+rad.
BAMPS el.

Figure 1.12: Nuclear modification factors for the D mesons as a function of trans-
verse momentum in Pb–Pb collisions at

√𝑠NN = 5.02TeV measured in small impact
parameter collisions by the ALICE Collaboration [33]. The vertical bars represent the
statistical uncertainties, while the boxes refer to the systematic uncertainties. The pre-
dictions from different models are reported with coloured lines.

when the jets emerging from the collision are detected, it can be observed that one jet
carries more energy – leading jet – than the other one – subleading jet. This is due to
the difference in the path length that each parton covers in the medium. Moreover, due
to the interactions with the dense medium, the two jets can show significant deviations
from the back-to-back configuration observed in pp collisions.

The CMS experiment measured [34] the jet shapes1 for back-to-back dijets in Pb–Pb
and pp collisions at

√𝑠NN = 5.02TeV, showing that the particle relative distance and
the momentum distributions around the jet axis are modified in Pb–Pb concerning pp
collisions. They also compared leading jet and subleading jet shapes as a function of
the dijet momentum imbalance – i.e. the ratio between the momentum carried by the
subleading jet and the one carried by the leading jet – showing that in highly imbalanced
events, the modifications are much more pronounced. These results confirm that the
presence of the QGP modifies the dijet structure, and the extent of the modifications is
related to path length followed by the hard partons inside the medium.

1the jet shape is the distribution of charged transverse momentum of the charged particles as a func-
tion of the distance from the jet axis Δ𝑟.
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Quarkonia

One of the most fundamental features of the QGP is that the elementary constituents
of matter – i.e. quarks – are deconfined, that is, the strong interaction no longer forces
them to form bound states. This phenomenon can be seen as a modification of the two
quarks’ interaction potential in the presence of the pressure and temperature condi-
tions required to have the deconfined state. The two quarks interaction potential in the
vacuum can be parametrised as a Cornell potential

𝑉 (𝑟) = −𝛼(𝑟)
𝑟

+ 𝑘𝑟, (1.20)

where 𝛼(𝑟) is the strong interaction coupling constant and 𝑘 is a parameter related to
the 𝑞 ̄𝑞 string tension due to the gluon self interaction. Inside the deconfined medium,
instead, the presence of free colour charges screens the quark–quark interaction modi-
fying the interaction potential, which then can be parametrised as a Yukawa potential:

𝑉 (𝑟) = −𝛼(𝑟)
𝑟

𝑒−𝑟/𝑟𝐷 . (1.21)

The potential in the medium is attenuated by the exponential with a characteristic
length 𝑟𝐷 called Debye radius that is closely linked to the temperature of the medium
𝑇 and the strong interaction coupling constant 𝑔𝑠

2: 𝑟𝐷 ∼ 1/(𝑔𝑠𝑇 ). This implies that
as a result of the colour charge screening in the deconfined medium, a 𝑞 ̄𝑞 pair cannot
bind together to form a hadron in the QGP if the hadron radius is larger than 𝑟𝐷. Fur-
thermore, the value of 𝑟𝐷 depends on the temperature of the medium. For this reason,
a suppression of heavy flavour quarkonia states – 𝑐 ̄𝑐 and 𝑏�̄� states – is expected in HIC,
and the study of these states provides access to the temperature of the QGP created
in the collisions. Specifically, it is possible to measure the relative suppression of a
particular 𝑞 ̄𝑞 state in HIC concerning pp collisions. This measurement indicates that
the temperature of the QGP is such that the Debye radius for the strong interaction is
smaller than the radius of the investigated 𝑞 ̄𝑞 state.

The most interesting and studied quarkonia states are charmonia and bottomonia,
𝑐 ̄𝑐 and 𝑏�̄� states, respectively. Since they are heavy, they are rarely produced; there-
fore, the probability of the recombination with another charm/bottom quark for a dis-
sociated charmonium/bottomonium state is very low. The ALICE Collaboration mea-
sured the J/Ψ nuclear modification factor in Pb–Pb collisions at

√𝑠NN = 5.02TeV
[35]. A suppression of the J/Ψ production in the high 𝑝T region was observed while
for 𝑝T < 3GeV/c the 𝑅AA is compatible with unity. These results are qualitatively
descried by different models as shown in Figure 1.13. In these models [36, 37] the dom-
inant contribution of generated and regenerated J/Ψ explains the increasing 𝑅AA value

2𝑔𝑠 is closely connected to 𝛼𝑠 by the relation 𝛼𝑠 = 𝑔2
𝑠

4𝜋 as already discussed in Section 1.1.
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Figure 1.13: Inclusive measurement of the J/Ψ nuclear modification factor at midra-
pidity in Pb–Pb collisions at

√𝑠NN = 5.02TeV as a function of 𝑝T compared with model
calculations [36, 37] in the centrality class 0–20 %.

towards low 𝑝T, while at higher 𝑝T the contribution from recombination drops leading
to the J/Ψ suppression. As pointed out in [35], this measurement indicates that low 𝑝T
charmonium is produced mainly via generation and regeneration in the late stages of
the collision. The high 𝑝T J/Ψ come from primordial production and feed-down con-
tribution from beauty decays thus explaining why they are widely suppressed.

The CMS Collaboration measured the nuclear modification factor also for bottomo-
nium states Υ(1S), Υ(2S) and Υ(3S) in Pb–Pb collisions at

√𝑠NN = 5.02TeV [38].
The significant suppression of all the three states is already visible from the invari-
ant mass spectra in Figure 1.14a where the pp and Pb–Pb measurements are com-
pared. Figure 1.14b also shows a sequential ordering of the suppression 𝑅AA(Υ(1S)) >
𝑅AA(Υ(2S)) > 𝑅AA(Υ(3S)) and the 𝑅AA(Υ(3S)) compatible with the non observation
of the Υ(3S) state. This sequential melting is what one would expect from the Debye
screening: the less bound states are the ones more suppressed. These results are a clear
indication of the heavy quark interaction with the medium and play a crucial role in
characterising the QGP state.

1.4.3 Electroweak Probes
The electroweak probes provide an essential tool to cross-check whether the strongly
interacting medium that originates from a HIC is a droplet of QGP. In the Standard
Model, leptons, Z and W± bosons are not coupled, at the tree level, with the strong
interaction. They do not interact with the QGP and bring information about the very
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Figure 1.14: (a) Invariant mass distribution of the muon pairs in Pb–Pb collisions. The
red dashed line represents the amplitude of the three Υ peaks found in the fit procedure
and scaled by the inverse 𝑅AA for the corresponding Υ state. (b) Nuclear modification
factors for Υ(1S), Υ(2S) and Υ(3S) states measured as a function of the transverse mo-
mentum. The statistical uncertainties are represented by the error bars while the boxes
represent the systematic uncertainties. The measurements are performed by the CMS
experiment as reported in [38].

first stages of the collision without any alterations. Excluding the effects caused by
the modification of the parton distribution inside the nucleon and the 𝑁𝑐𝑜𝑙𝑙 scaling, no
changes in the production spectra are expected for these particles.

The CMS Collaboration measured the Z boson yields and azimuthal anisotropy [39]
to test this prediction. According to Glauber model predictions, the Z boson yield scales
with the centrality, except for peripheral collisions for which deviations are found. This
suggests the existence of an effect due to the initial collision geometry, and themeasured
𝑣2 coefficient3 is found to be compatible with zero (Figure 1.15). These results confirm
that the Z bosons are insensitive to the presence of themedium produced in the collision
and do not undergo significant final state interactions.

The photons are not coupled with the interacting medium at the tree level. They
pass through the QGP leaving the fireball undisturbed, carrying information about the
system’s condition at the moment of its creation. Direct photons – for simplicity in
this work, all the photons not produced by hadron decay are considered direct pho-
tons – are created at every stage of the collision; thus, their spectrum represents the

3definition of the 𝑣2 coefficient in Section 1.4.1.
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Figure 1.15: (a) The 𝑇AA-normalised yields of Z bosons as a function of centrality,
compared with Glauber model calculations implemented in HG-PYTHIA [40]. (b) The
𝑣2 coefficient of Z bosons measured for various centrality bins. In both figures, the error
bars represent the statistical uncertainties and the error boxes represent the systematic
uncertainties.

whole evolution of the system. The high transverse momentum region of the spectrum
(𝑝T > 5GeV/c) is dominated by the hard parton scattering occurring in the initial stage
of the collision, carrying information about the parton distribution functions and the
dynamics of parton collisions. The low transverse momentum region (𝑝T ≲ 5GeV/c)
instead, is dominated by the thermal photons produced by the medium. They provide
precious information on the temperature and space-time evolution of the thermalised
QGP.

The ALICE experiment measured the direct photons yields in Pb–Pb collisions at√𝑠NN = 5.02TeV [41], showing (Figure 1.16) a clear direct photon signal whose spec-
trum at low 𝑝T follows the the calculations performed including QGP formation effects.
The high 𝑝T region instead is in good agreement with expectations from pQCD calcu-
lations for the pp system and scaled by 𝑁𝑐𝑜𝑙𝑙, confirming that this region of the spectra
is dominated by photons produced in hard scatterings.
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Figure 1.16: Direct photon spectra measured by ALICE in Pb–Pb collisions at
√𝑠NN =
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Chapter 2

The ALICE Experiment

The largest and most powerful particle collider in the world, reaching collision ener-
gies of the TeV scale, is the CERN Large Hadron Collider (LHC), located beneath the
France-Switzerland border near Geneva. With its 27 km ring of superconducting mag-
nets and accelerating structures, it is the final stage of the CERN’s accelerator complex
and provides the most energetic nucleus–nucleus collisions – tipically p–Pb and Pb–Pb,
but also Xe–Xe – ever reached in laboratory.

In such energetic nucleus–nucleus collisions, the formation of the QGP is expected,
so a significant part of the LHC physics programme is dedicated to the study of the QGP
and, more in general, to heavy-ion physics. Since the beginning of the LHC operations
in 2008, four major collaborations have been running experiments at the LHC. Among
them, the ALICE Collaboration – where ALICE stands for A Large Ion Collider Exper-
iment – is the one more focused on the investigation of the QGP physics and the soft
QCD observables.

2.1 The Large Hadron Collider
The LHC is the spearhead of the CERN’s accelerator complex, a succession of machines
that accelerate protons and nuclei to increasingly higher energies through the applica-
tion of electric and magnetic fields as shown in Figure 2.1. Each machine accelerates
a beam of particles, whether protons or nuclei, by boosting its energy before injecting
the beam into the next machine. The last element of this chain is the Large Hadron
Collider where the particle beams reached the record energy of 6.5TeV per beam.

The protons, taken from an ionised hydrogen tank, start their journey in the ac-
celerator complex in the linear accelerator LINAC2, where they are accelerated up to
50MeV. Into the Proton Synchrotron Booster (PSB), protons are boosted to 1.4GeV.
Then they are injected into the Proton Synchrotron (PS), where they reach the energy
of 25GeV, here they are structured in bunches. After this stages, the proton bunches
are sent to the Super Proton Synchrotron (SPS), where they are accelerated to 450GeV.
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Figure 2.1: Schematic view of the CERN accelerator complex and experiments [42].

Finally, they are injected into the LHC.
The lead ions are taken from an ionised lead vapour obtained by heating a sample

of highly isotopically pure 208Pb to 800 °C. The lead vapour contains many charge
states with a maximum around Pb29+. These ions are selected using an electric field and
accelerated up to an energy per nucleon of 4.2MeV/u, then a carbon foil strips other
electrons from the nuclei obtaining Pb59+ charge state. The Pb59+ ions are accumulated,
forming an ion beam. The beam is sent to the Low Energy Ion Ring (LEIR), where it
is accelerated to 72MeV/u, then it is transferred to the PS. Here the beam is further
accelerated to 5.9GeV/u and fully stripped to Pb82+ by passing into a second carbon
foil. The beam at this point is injected into the SPS and boosted to 177GeV/u before
being injected into the LHC, where it reaches the record energy of 5.02GeV/u.

Inside the LHC ring, the two counter-rotating beams – whether they are proton
or ion beams – are guided and focused by 1232 dipole magnets and 392 quadrupole
magnets in separate vacuum-filled pipes. When the beams are stable, they are made to
collide in the four interaction points (IP) along the ring inside the major LHC experi-
ments: ATLAS, ALICE, CMS and LHCb. The top centre of mass energy reached at the
LHC, which are worldwide records, is 13TeV for pp collisions and 5.02TeV per nucleon
pair for Pb–Pb collisions.

For the LHC experiments, besides the maximum collision energy, another crucial
parameter is the luminosity (ℒ) delivered to the experiments. The luminosity relates

28



2.1 – The Large Hadron Collider

the reaction rate 𝑅 for a given process with the cross-section of the process 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
through the relation:

𝑅 = ℒ 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠. (2.1)

The LHC has been designed to search for extremely rare processes; therefore the lumi-
nosity needs to be adequate.

The instantaneous luminosity is defined as:

ℒ = 𝑁𝑏𝑁2𝑓𝑟𝑒𝑣𝛾
4𝜋𝜖𝑛𝛽∗ 𝐹, (2.2)

where 𝑁𝑏 is the number of bunches running in the collider, 𝑁 is the number of charges
in each bunch, 𝑓𝑟𝑒𝑣 is the frequency of revolution of the beam, 𝛾 is the Lorentz factor,
𝜖𝑛 is the normalised emittance1, 𝛽∗ is the amplitude function2 evaluated in the interac-
tion point – where the luminosity is actually estimated – and 𝐹 is a geometrical factor.
Usually, the luminosity delivered by the collider is measured through a dedicated ex-
perimental procedure called van der Meer scan [43].

The two beams are not entirely parallel when they intersect each other in the IP in
order to avoid – or at least to reduce as much as possible – the long-range electromag-
netic interactions. The angle between the two beams is called crossing angle 𝜃𝑐 and it is
relatively small at the LHC, about 300 µrad. However, the non-zero crossing angle also
limits the instantaneous luminosity of the collider since it reduces the volume region
in which the beams cross each other, which is taken into account by the geometrical
factor. By defining the root mean square (RMS) of the transverse and longitudinal size
of the beam, namely 𝜎T and 𝜎𝑧 respectively, the geometrical factor is expressed as:

𝐹 = ⎡⎢
⎣

√1 + ( 𝜎𝑧
2𝜎T

𝜃𝑐)
2
⎤⎥
⎦

−1

. (2.3)

Each proton bunch at the LHC can contains up to 𝑁∼1011 protons so with a 25 ns
spacing the ring can store up to 2808 bunches [44, 45]. At the end of the acceleration,
when the beams are stable and ready for the collisions, the normalised emittance is
3.75 µm ⋅ rad while 𝛽∗ depends on the interaction point.

The peak luminosity in pp collisions required by the ATLAS and CMS experiments
to carry on their physics programme is ℒ = 1034 cm−2 s−1 while for the LHCb exper-
iment is ℒ = 4 × 1032 cm−2 s−1. The target for ALICE is, instead, a peak luminosity
of ℒ = 1027 cm−2 s−1 in Pb–Pb collisions. Figure 2.2a shows the luminosity for pp
collisions delivered by the LHC during different years, Figure 2.2b shows instead the
integrated luminosity collected by ALICE during the LHC Run 2 – from 2015 to 2018.

1The emittance 𝜖 is defined as the spread in the position-momentum phase space of the beam particles.
The normalised emittance then is defined as 𝜖𝑛 = 𝛽𝛾𝜖, where 𝛽 = 𝑣/𝑐 and 𝛾 it the usual Lorentz factor.

2The amplitude function 𝛽(𝑠) represent the amplitude of the particle trajectories in the beam. It is
used together with the emittance to define the transverse size of the beam: 𝜎T(𝑠) = √𝜖𝛽(𝑠).
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(a)
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(b)

Figure 2.2: (a) Overview of the LHC integrated luminosity. (b) Integrated luminosity
collected by ALICE for various triggers in Pb–Pb collisions during the LHC Run 2 data
taking period from 2015 to 2018.

Another critical parameter for the experiments operating at the LHC is the primary
vertex position, which is the position where the collision between the two beams takes
place. The nominal position of the primary vertex is represented by the origin of the
coordinate reference frame of the experiment. The position of the primary vertex fluc-
tuates around the nominal position due to the finite size of the beam. It is possible to
show that, assuming a gaussian shape in the three dimensions for the bunches, the RMS
of the vertex dispersion is:

𝜎𝑣𝑒𝑟𝑡𝑒𝑥
𝑥,𝑦,𝑧 =

𝜎𝑏𝑢𝑛𝑐ℎ
𝑥,𝑦,𝑧√

2
. (2.4)

𝜎𝑏𝑢𝑛𝑐ℎ
𝑥,𝑦,𝑧 is the RMS of the size of the bunch and it is related to the beam emittance 𝜖 and

the amplitude function at IP 𝛽∗ by:

𝜎𝑏𝑢𝑛𝑐ℎ
𝑥,𝑦,𝑧 = √𝜖𝑥,𝑦,𝑧 𝛽∗

√
𝜋

. (2.5)

In pp collisions the typical values at the IP2 – the interaction point where ALICE is
located – are 𝜎𝑣𝑒𝑟𝑡𝑒𝑥

𝑥,𝑦 ∼ 50 µm and 𝜎𝑣𝑒𝑟𝑡𝑒𝑥
𝑧 ∼ 5 cm.

2.2 ALICE Design
The whole experimental apparatus of ALICE has been designed and optimised to carry
on a general-purpose experimental programme [46, 47]. The main goal of the ALICE
Collaboration is the extensive study of the nuclear matter created in ultra-relativistic
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HIC. In order to reach this goal, the experiment must have a large acceptance and must
be able to track and identify all the charged particles emerging from the collisions, even
at very low momentum. Furthermore, the detector must operate in an environment
where the number of charged particles produced in each collision is extremely high. At
the time of the ALICE detectors design, the expected number of charged particles in Pb–
Pb collisions at the LHC energies ranged between 2000 and 8000 per pseudorapidity
unit [48]. The granularity of the detectors, while maintaining a low material budget,
was the reason for the adoption of relatively slow detectors such as the Silicon Drift
Detector and the Time Projection Chamber [46, 47].

Figure 2.3: The ALICE experimental setup. The big red structure is the L3 solenoid
magnet while in the top right inset a zoom view shows the details of the V0, T0, FMD
and the ITS detectors.

Figure 2.3 shows the layout of the ALICE experiment during the Run 2 data taking
period, started in 2015 and ended in 2018. The data used for this thesis have been
recorded in this period. The experiment is now in a commissioning phase after major
infrastructures and detectors upgrades to improve the performance in preparation for
LHC Run 3. Table 2.1 lists the sub-detectors with the details of the position and the
purpose of each one.

The ALICE coordinate system is, by convention, a right-handed orthogonal Carte-
sian system, and the origin is the nominal interaction point. The 𝑥 and 𝑦 axes lie in
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a plane orthogonal to the beam direction. The 𝑥 axis points to the centre of the LHC,
and the 𝑦 axis points upward. The beam determines the direction of the 𝑧 axes, and the
chirality of the coordinate system defines its positive direction. A cylindrical coordi-
nate system is also defined since it usually provides a more helpful description of the
ALICE apparatus and the physical quantities. The 𝑧 axis is the same as described above,
and the observer stands at positive 𝑧 and looks in the direction of the Compact Muon
Solenoid (CMS) experiment. The azimuthal angle 𝜑 then starts from the 𝑥 axis (𝜑 = 0)
and increases counter-clockwise. The polar angle 𝜗 finally increases from 𝑧 (𝜗 = 0) to
−𝑧 (𝜗 = 𝜋).

In this thesis and more in general in the ALICE papers, two other variables are
extensively used for a particle with four-momentum 𝑝 = (𝐸, ⃗𝑝): the rapidity

𝑦 = 1
2
ln(𝐸 + 𝑝𝑧

𝐸 − 𝑝𝑧
) (2.6)

and the pseudorapidity

𝜂 = 1
2
ln(|𝑝| + 𝑝𝑧

|𝑝| − 𝑝𝑧
) = − ln [tan(𝜃

2
)] . (2.7)

In the case of ultra-relativistic objects, 𝜂 numerically converges to 𝑦.

The ALICE apparatus can be ideally divided into three main parts: the central barrel,
the muon arm and the forward detectors.

Central Barrel

The central barrel consists of all the detectors covering the pseudorapidity region |𝜂| <
0.9. These detectors are immersed in a low solenoidal magnetic field – with respect to
the other LHC experiments – of 0.5T generated by a warm resistive magnet that was
previously used for the L3 experiment at LEP [50]. This soft magnetic field has been
adopted to extend the transverse momentum reach of the tracking detectors down to
80MeV/c [49].

The detectors of the central barrel used for the reconstruction of the tracks of the
charged particles – i.e. tracking – are the Inner Tracking System (ITS), the Time Pro-
jection Chamber (TPC) and the Transition Radiation Detector (TRD): they cover the
whole azimuthal angle in order to maximise the acceptance. These detectors also pro-
vide information for particle identification (PID), together with the TimeOf Flight (TOF)
detector and the High-Momentum Particle Identification (HMPID). The TOF and the
HMPID, in particular, are specifically designed to identify high momentum particles.
Inside the L3 magnet, the Electromagnetic Calorimeter (EMCal) and a Photon Spec-
trometer (PHOS) are installed to study high 𝑝T photons and jets physics. The ACORDE
detector, composed of 60 large scintillators used to study the high-energy cosmic air
showers, is finally located on top of the ALICE solenoid.
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Acceptance
Detector Polar Azimuthal Position Main purpose

SPD† layer 1 |𝜂| < 2.0 full r = 3.9 cm tracking, vertex

SPD† layer 2 |𝜂| < 1.4 full r = 7.6 cm tracking, vertex

SDD layer 3 |𝜂| < 0.9 full r = 15 cm tracking, PID

SDD layer 4 |𝜂| < 0.9 full r = 23.9 cm tracking, PID

SSD layer 5 |𝜂| < 1.0 full r = 38 cm tracking, PID

SSD layer 6 |𝜂| < 1.0 full r = 43 cm tracking, PID

TPC |𝜂| < 0.9 full 85 < r/cm < 247 tracking, PID

TRD† |𝜂| < 0.8 full 290 < r/cm < 368 tracking, e± id

TOF† |𝜂| < 0.9 full 370 < r/cm < 399 PID

PHOS† |𝜂| < 0.1 220∘<𝜙<320∘ 460 < r/cm < 478 photons

EMCal† |𝜂| < 0.7 80∘<𝜙<187∘ 460 < r/cm < 478 photons, jets

HMPID |𝜂| < 0.6 1∘<𝜙<59∘ r = 490 cm PID

ACORDE† |𝜂| < 1.3 30∘<𝜙<150∘ r = 850 cm cosmics

PMD 2.3 < 𝜂 < 3.9 full z = 367 cm photons

FMD 3.6 < 𝜂 < 5.0 full z = 320 cm ch. particles

1.7 < 𝜂 < 3.7 full z = 80 cm ch. particles

-3.4 < 𝜂 < -1.7 full z = -70 cm ch. particles

V0 A† 2.8 < 𝜂 < 5.1 full z = 329 cm ch. particles

V0 C† -3.7 < 𝜂 < -1.7 full z = -88 cm ch. particles

T0 A† 4.6 < 𝜂 < 4.9 full z = 370 cm time, vertex

T0 C† -3.3 < 𝜂 < -3.0 full z = -70 cm time, vertex

ZDC† |𝜂| > 8.8 full z = ±113 cm fwd neutrons

6.5 < 𝜂 < 7.5 |𝜙|<10∘ z = ±113 cm fwd protons

4.8 < 𝜂 < 5.7 |2𝜙|<32∘ z = ±113 cm photons

MCH -4.0 < 𝜂 < -2.5 full -14.2 < z/m < -5.4 muon tracking

MTR† -4.0 < 𝜂 < -2.5 full -17.1 < z/m < -16.1 muon trigger

Table 2.1: Geometrical details and main purposes of the ALICE sub-detectors. The AL-
ICE apparatus and its performances are described in details in [49], this table is taken
and adapted from there. The transverse (r) and longitudinal (𝑧) coordinates as well as
the acceptance (polar and azimuthal) are measured with respect to the ALICE coordi-
nate reference frame, described in the text. The azimuthal coverage for the detector is
2𝜋 when it is not specified. When the detector is composed by two or more parts more
than one position value is specified reporting the minimum and maximum distances
from the interaction point. A dagger (†) marks the detectors used also for triggering.
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Muon Spectrometer

The muon spectrometer covers the pseudorapidity region −4 < 𝜂 < −2.5, and it is
designed to measure the spectrum of vector-mesons resonances originating from heavy
quarks. It is composed of the front absorber, the tracking system, the trigger system
and a dipole magnet.

The front absorber is made of a wall with small atomic number 𝑍 – carbon and con-
crete mainly – and it suppresses the hadronic background coming from the interaction
vertex and limiting at the same time the multiple scattering and the energy loss of the
muons. For the background coming from small angles, the protection is given by the
inner beam shield made of tungsten, lead and stainless steel.

The tracking system is made of 5 stations of pad/strips chambers, 2 for each station.
The chambers are made of composite materials in order to have the lowmaterial budget
needed to reach the spatial resolution of 100mm.

The target of the muon spectrometer is the heavy quark resonance decay. The trig-
ger system is designed to operate a selection on the transverse momentum of two in-
dividual muons coming from the same collision. It is made of 4 planes Resistive Plate
Chambers (RPCs) disposed into two stations, and they are employed to measure the 𝑝T
of each muon. A dedicated front-end electronics allows to obtain a time resolution bet-
ter than 2 ns, that is needed to discriminate different bunch crossings, while the spatial
resolution is around 1 cm.

The dipole magnet is one of the biggest warm dipoles in the world, and it is located
about 7m from the interaction point. It provides a magnetic field of 0.7T, and the mass
resolution requirement drives this value.

Forward Detectors

Contrary to what the name suggests, the forward detectors are located in both forward
and backward pseudorapidity regions. They include the Forward Multiplicity Detec-
tor (FMD), the Photon Multiplicity Detector (PMD) and the Zero Degree Calorimeters
(ZDC). In addition, there is also the V0 detector made of scintillators and the T0 detector
made of Cherenkov counters, which are used for triggering.

2.3 The ALICE Detectors
The following sections provide a more detailed discussion on the detector used to mea-
sure the hypertriton lifetime and Λ-separation energy.

2.3.1 Inner Tracking System
The Inner Tracking System (ITS) is the closest detector to the interaction point, and its
purpose is to determine the position of the primary and the secondary vertices with
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high spatial resolution. As already mentioned, it also plays a crucial role in the track
reconstruction, particularly for lowmomentum particles. It consists of six layers of sili-
con detectors with a cylindrical shape and with variable length and radius, surrounding
the beam pipe – a Beryllium pipe 800 µm thick – and the interaction point.

The ITS consists of three sub-detector, each composed of two layers, according to
the different technologies used for the realisation of the sensors (Figure 2.4). The in-
nermost detector is the Silicon Pixel Detector (SPD) which is surrounded by the Silicon
Drift Detector (SDD), which is in turn surrounded by the Silicon Strip Detector (SSD).

Figure 2.4: Layout of the Inner Tracking System and its sub-detectors.

The ITS is able to determine the position of the vertices with a resolution better
than 100 µm. At the same time, it allows extending the tracking capabilities of the
whole apparatus down to 𝑝T = 80MeV/c. These outstanding performances are made
possible by three factors: the ITS position very close to the interaction point, each
detector layer’s low material budget, and the high spatial resolution achieved by each
sub-detector. However, the global material budget of the ITS is greater than the sum of
its parts. In fact, due to detector operation constraints, the sub-detectors are separated
by thermal shields that inevitably increase the material budget. Taking into account
the detector layers, the support structures and the thermal shields, the total material
budget of the ITS corresponds to 7.18 % 𝑋/𝑋0 for particles in the rapidity region 𝑦 ≈ 0
– including also the air the 𝑋/𝑋0 ratio goes to 7.26 %.

Table 2.2 provides details about the material budget and the spatial resolution of the
ITS sub-detectors.

The SDD and the SSD detectors, besides the spatial position of the track, can also
measure the amplitude of the electric charge cluster generated in their sensitive volume
by the passage of the charged particle. This information is related to the specific energy
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Parameter SPD SDD SSD

Total number of modules 240 260 1770
Number of readout channels per module 240 2 × 256 2 × 768
Radius (cm) 3.9 - 7.6 15.0 - 32.9 38.0 - 43.0
Material budget per layer (%𝑋0) 1.14 - 1.14 1.13 - 1.26 0.83 - 0.86
Spatial resolution 𝑟𝜙 (𝜇m) 12 35 20
Spatial resolution 𝑧 (𝜇m) 100 25 830
Two track resolution 𝑟𝜙 (𝜇m) 100 200 300
Two track resolution 𝑧 (𝜇m) 850 600 2400
Active cell size (𝜇m2) 50× 425 202 × 294 95 × 40000
Number of readout channels (k) 9835 133 2603

Table 2.2: Details about the material budget (for each layer) and the spatial resolution
of the ITS sub-detectors [48].

loss of the particle in the detectormaterial, and it is exploited to identify lowmomentum
particles in the transverse momentum region below 200MeV/c.

The SPD is crucial in the primary vertex reconstruction since it is the closest detector
to the interaction region. In particular, it provides a local Fast–OR information that is
used in the Level 0 trigger as shown in Section 2.4.

2.3.2 Time Projection Chamber
Themain ALICE tracking detector is the Time Projection Chamber (TPC). The TPC also
measures the specific energy loss of the tracked particles that pass through its volume.
Therefore, it is also one of the main detectors for particle identification.

The layout of the TPC is presented in Figure 2.5. The detector has a cylindrical
shape with an active volume of 88m3 filled with gas: the inner radius of the cylinder is
85 cm, the outer radius is 247 cm, and total length is 500 cm along the beam direction.
It is divided into two drift regions by the central cathode – located at its axial centre,
dividing the detector into two halves – and it is closed off at each end by the end-plates.
The gas used for the LHC Run 2 (2015–2018) is a mixture of Ar and CO2 while a mixture
of Ne and CO2 was used during the Run 1.

The central cathode together with the end-plates generate in each half an highly
uniform electric field of 400V/m. The passage of charged particles in the detector’s
sensitive volume causes the localised ionisation of the detector’s gas in the form of elec-
tron clouds. The electric field drives the electron clouds towards the readout chambers
located in the end-plates. The end-plates host the readout detectors and are divided
into 18 azimuthal sectors. Each sector, in turn, is partitioned into pads organised in
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Figure 2.5: Schematic representation of the Time Projection Chamber.

rows orthogonal to the radial direction. The readout chambers consist of multi-wire
proportional chambers (MWPC), and the readout is located in the cathode pad. Smaller
pads (4 × 7.5mm2) are used for the inner readout chambers (IROC) and larger pads
(6 × 15mm2) for the outer readout chambers (OROC). This segmentation schema has
been designed to improve the tracking performance in the high multiplicity environ-
ment expected for the ALICE operations.

The readout chambers provide the 3-dimensional space position of the charged par-
ticle generating the electric cloud using the information from the activated pads (𝑥 and
𝑦 coordinates) and the drift time of the cloud (𝑧 coordinates). The determination of the
charged particle track relies on these spatial position measurements (up to 159 for each
particle). The energy loss of the track is also measured. It provides crucial information
for the PID, as discussed in Section 2.6.1.

The tracking and PID performances of the TPC are excellent, but these perfor-
mances are achieved at the expense of the data acquisition rate (1 kHz) that is limited
by the drift time (88 µs).

The pseudorapidity range spanned by the TPC is |𝜂| < 0.9. The azimuthal angle is
fully covered except for the edges between the different sectors that are inactive, which
represent dead zones for the acceptance of the detector. Nevertheless, they are small
with respect to the active regions.

2.3.3 VZERO
The V0 detector is composed by two sub-detectors (V0A3 and V0C4) each of which con-
sists in 64 scintillator counters segmented in 8 concentric rings. The two sub-detectors
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are located in line with the beam axis on the opposite sides of the interaction point
covering the high pseudorapidity region (Table 2.1).

Together with the SPD detector, the V0 defines the minimum bias trigger selection
for ALICE, the logical or between the signals of V0A, V0C and SPD. The V0 alsomeasure
the time difference between the V0A and the V0C signal, helping to reject the beam-
gas interactions. It also plays a role in the definition of the centrality of the collision in
Pb–Pb and p–Pb events (See Section 2.7).

2.3.4 TZERO
The detector is composed by two arrays (T0A3 and T0C4) of Cherenkov counters (geo-
metrical informations in Table 2.1). The primary purpose of the T0 is the measurement
of the event time with a resolution below 50 ps.

The event time is determined independently from the vertex position determination
and the track reconstruction that involves other detectors. The T0 can also provide an
independent measurement of the 𝑧 coordinate of the vertex position with a precision of
1.5 cm and gives the first level trigger (L0) when this position falls within the expected
range.

2.3.5 Zero Degree Calorimeter
The Zero-Degree Calorimeter (ZDC) measures the energy of the spectator nucleons
emerging from the interaction point to determine the collision’s geometrical properties.
It consists of six calorimeters: two electromagnetic calorimeters, two proton calorime-
ters and two neutron calorimeters (see Table 2.1 for the position and the geometrical
details).

The electromagnetic modules (ZEM) are located relatively close to the interaction
point (∼7m on both sides), and theymeasure the energy deposited by photons and neu-
tral pions produced at forward rapidity. This measure allows distinguishing between
peripheral and central collisions.

The proton modules (ZP) and the neutron modules (ZN) instead are located far from
the interaction point (∼115m on both sides). Themeasurement of the energy carried by
the spectator nucleons is crucial for the determination of the centrality of the collision
(see Section 2.7) related to the impact parameter and the event plane orientation. The
ZDC also provides a veto on the parasitic beam–beam background interactions.

3A = ATLAS: it is located on the side of the beam line towards the ATLAS experiment.
4C = CMS: it is located on the side of the beam line towards the CMS experiment.
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2.4 Data Acquisition and Trigger
The complexity of the ALICE apparatus requires a system able to handle the differ-
ent readout times and latencies of the many detectors installed in ALICE. The adopted
system relies on three trigger levels managed by the Central Trigger Processor (CTP).
The role of the CTP is to grab the trigger signals coming from the various detectors
and check if some of the trigger conditions are satisfied, also keeping into account the
information on the LHC filling scheme.

The Level 0 (L0) trigger decision is based on the individual triggers provided by the
fast detectors: SPD, V0, T0, the Muon Trigger, and the electromagnetic calorimeters. It
is the first and most basic trigger selection in ALICE, and the CPT takes ∼0.9 µs from
the bunch crossing to elaborate this decision. After ∼ 6.5 𝜇s the CPT provides the Level
1 (L1) trigger. The Level 2 (L2) trigger is instead slower – ∼100 µs – since it uses the
information of the TPC; it is necessary to wait for the drift of the electron clouds in the
detector gas.

Only the events that pass the L2 selection are forwarded to the Data Acquisition
(DAQ) system [51], and to the High-Level Trigger (HLT) [52] to be further processed.

Once the L2 trigger signal is given, the raw data are sent from the detectors to the
Local Data Concentrators (LDCs) through the Detector Data Links (DDLs) optical con-
nections. Each detector is connected to one or more LDCs depending on the workload
involved in reconstructing its raw data. The LDCs are computer nodes that check and
process the raw data and, for each sub-detector, reconstruct a fragment of the entire
event called sub-event.

The HLT, at the same time, perform a fast reconstruction of the data and apply
further selections on the reconstructed data that was not doable at the hardware level.
If the HLT selection is passed, the TPC data are compressed – the data coming from the
TPC represent the 90 % of the total size of the event – and passed to the Global Data
Collectors (GDCs).

The GDCs collect and aggregate the sub-events produced by the LDCs and the data
arriving from the HLT – managing a data rate up to 20GB/s – to build the full event.
The reconstructed events are then stored in a local disk pool that serves as a buffer for
the data waiting to be moved to the CERN computing centre, where they are finally
registered on tape.

2.5 ALICE Offline Framework
In this section, the ALICE experiment’s simulation framework and analysis operations
will be briefly introduced. Usually, these operations are referred to as offline since they
do not involve the acquisition data flow and are done independently.
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2.5.1 Monte Carlo Simulations
Modern High Energy Physics experiments make extensive use of Monte Carlo simu-
lations. Monte Carlo simulations are used for different purposes: from the detector
design to the data analysis optimisation for the search for new Physics, from the sim-
ulation of particle interactions with the detector’s material to the development of very
complex algorithms for signal extraction. In ALICE, all these aspects are handled by
a simulation framework that aggregates the two crucial parts of the simulations: the
event generation and the transport code.

In the event generation step, the interactions involved in the LHC collisions are
simulated, obtaining a set of particles – accompained by their kinematic parameters –
generated in the collisions. These interaction simulations can be based on first princi-
ples or on parametrisations of the collision physics depending on the particular event
generator used. Strong decays is also handled at this stage since they happen in the
same spatial region.

At this point, the transport code comes into play. It propagates the kinematic pa-
rameters of all the particles emerging from the event – produced either in the collision
itself or in the strong decays – through a detailed geometrical and physical representa-
tion of the ALICE apparatus integrated into the simulation framework. The transport
code provides information about the particles-detector interaction and the energy loss
in the detector sensitive volume, including also the secondary particles generation. The
secondary particles may originate from the interaction with the detector’s material and
the decay of unstable particles. The transport code describes both phenomena. In the
ALICE simulation framework three different transport codes are available: GEANT3
[53], GEANT4[54–56] and FLUKA[57–59].

The simulation of the impact points with the related energy deposited in the de-
tectors is stored in objects called hits. The electronic response of each detector to the
hits is then simulated, obtaining the corresponding signals. These signals are then pro-
cessed and stored in the same raw-data format used during the data taking and can be
analysed using the same software.

2.5.2 Event Reconstruction
The raw data, regardless of the fact that they are generated via Monte Carlo simulations
or are collected during the experiment run, are reconstructed with the same procedure,
following the reconstruction flow shown in Figure 2.6.

The reconstruction starts from the conversion of the raw data into recpoints or clus-
ters: objects containing the information of the spacetime coordinates of the interaction
between the particles and the detectors’ active volume. This task is undertaken by al-
gorithms that reconstruct the raw data for each detector separately. For the detectors
used for the PID, other information is attached to the clusters, like the time of flight,
the Cherenkov angle, or the energy lost in the detectors’ active volume. This additional
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Figure 2.6: Event reconstruction flow in ALICE. Reprinted from [49].

information is crucial for the identification of the particles.
The second step is the preliminary estimation of the primary vertex of the collision.

The best estimation of the primary vertex – in terms of resolution, precision and accu-
racy of the measurement – is obtained by using all the reconstructed tracks, maximising
the information used in the estimate. However, the track reconstruction is extremely
time-consuming and can be sped up by using the primary vertex position – it helps to
discriminate roughly between valid track candidates and the noise. Then a preliminary
and extremely fast estimate of the primary vertex position is obtained using the two
innermost layers of the ITS, the SPD.

The algorithm that carries on this task starts connecting the cluster on the SPD
Layer 0 with those on the SPD Layer 1, falling within a defined azimuthal acceptance
window. Thus a set of proto-tracks called tracklets is obtained. The preliminary primary
vertex – also called SPD vertex – is estimated by a routine that looks for the space
point which minimises the distance between all the tracklets and excludes the outliers.
This method operates with at least two tracklets. However, in pp collisions, it is not
uncommon to have just one tracklet. In this situation, the algorithm uses the beamline
position in the transverse plane to compute the 𝑧 position of the primary vertex.

At this point, the track reconstruction can start and benefit from the primary vertex
estimate, resulting in a much faster process. The complete tracking procedure used in
ALICE during the Run 2 is extensively illustrated in [49], and it is summarised in the
following.

First, the algorithm builds the track seeds that are pairs of clusters in the outer part
of the TPC with the additional constraint that they must point to the SPD vertex – they
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are track hypotheses. Then each track is extended inward, looking for compatible clus-
ters in subsequent steps, building a helicoidal parametrisation of the track. Whenever
the algorithm finds a compatible cluster at some step of the track propagation, a Kalman
Filter [60] updates the track parameters. This procedure is applied to each track seed.
It is relatively frequent, using this procedure, that one or more track candidates have
some common clusters. A dedicated routine prune the track candidates that share a sub-
stantial fraction of clusters – the threshold on the fraction of shared clusters is between
25 % and 50 % – leaving just the track candidate with the best track parameters quality.
Two further checks help to reject low-quality tracks. One rejects the track candidates
built with less than 20 clusters – on up to 159. The other rejects the tracks with a ratio
of the number of clusters over the crossed rows smaller than 0.5. Figure 2.7 shows the
track reconstruction efficiency at this stage, using only the TPC information. The drop
in the efficiency observed for low 𝑝T tracks is due to the energy loss in the detector. The
interactions with the material cause a deviation from the helicoidal trajectory, and this
effect is much more pronounced for low momentum tracks. At higher 𝑝T, the efficiency
trend is due to the dead zone of the detector involving the loss of some clusters.

Figure 2.7: TPC single track reconstruction efficiency in pp collisions at
√

𝑠 = 8TeV
(green line) and for central (red dots) and peripheral (blue open square) Pb–Pb collisions
at

√𝑠NN = 2.76TeV respectively [48]. It is can be noted that the track reconstruction
efficiency does not depend on the detector occupancy.

Once the algorithm completes the track reconstruction in the TPC, it is possible to
associate the first hypothesis about the particle specie to each track candidate based on
the energy loss and the momentum measurement. This is important to consider the
particle’s energy loss when the track candidate is propagated toward the ITS.
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The track reconstruction goes on then, including the ITS clusters. The process is the
same as in TPC: the track candidate is prolonged toward the next ITS layer, and if one
or more compatible clusters are found, the track candidate parameters are updated with
the Kalman Filter, including the information of the new clusters. A cluster is considered
compatible if it lies in the proximity5 of the expected intersection between the track
prolongation and the considered ITS layer. In the event forwhich no compatible clusters
are found on a layer, the track candidate is penalised by adding a penalty factor to its
𝜒2 parameter. This process produces a set of ITS track hypotheses for each TPC track
candidate. The ITS track with the best quality parameters is associated with the TPC
track candidate, thus forming an ITS+TPC track stored in the reconstructed event. The
other track hypotheses are discarded.

If the track of a particle is not long enough for the main reconstruction algorithm, it
is treated differently. This is the case of very lowmomentumparticles (𝑝T < 200MeV/c).
An ITS standalone algorithm was developed for these particles, analogous to that ded-
icated to the TPC. The ITS standalone reconstruction starts building the track seeds
from the clusters – at least two – in the three innermost ITS layers. The track seeds
are constrained to the SPD vertex. Then the track seeds are propagated outward using
the Kalman Filter to update the track’s parameters when compatible clusters are found
in the other layers. This procedure is repeated a few times with different tolerances
of the proximity criterion for the cluster compatibility to improve the efficiency at the
lowest 𝑝T. Finally, only ITS tracks satisfying specific quality criteria are stored in the
reconstructed event.

In parallel to the ITS standalone reconstruction, the ITS+TPC tracks are refitted us-
ing the Kalman Filter, this time starting from the inner wall of the TPC and proceeding
outward to the outer radius of the TPC. In this phase, the tracks are processed to obtain
additional information crucial for particle identification with the Time Of Flight (TOF)
detector. The expected time of flight for the different particle species is computed to-
gether with the integrated length. These pieces of information are also attached to the
track.

The track is further propagated to the Transition RadiationDetector (TRD)when the
refit is complete. Here the TRD tracklets, based on the clusters, are built independently.
The reconstruction algorithm tries to match the track propagated from the TPC with
the TRD tracklets. The algorithm updates the track parameters with the TRD tracklet
information when the matching succeeds. The track is then extrapolated to the TOF
regardless if matches or not in the TRD. Once again, the algorithm looks for possible
matches with the TOF clusters. The track parameters are updated by including the TOF
information for those events having a compatible cluster.

The track is then extrapolated up to the external detectors (HMPID, EMCAL and

5the criterion of the spatial proximity selection depends on many factors, and it is optimised in order
to maximise the track reconstruction efficiency, still keeping into account the computing time of the task.
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PHOS), looking for some match with the detectors’ hits. All the tracks are finally re-
fitted for the third time with the Kalman Filter. The final refit starts from the external
detectors and goes toward the innermost ITS layers, including the information of all
the clusters attached to the tracks.

Figure 2.8: Resolution on 1/𝑝T in p-Pb collisions for TPC tracks with (red dots) and
without (black squares) vertex constraint and for ITS+TPC tracks with (green square)
and without (blue square) vertex constraint. It is quoted for 1/𝑝T because this can be
extracted directly from the covariance matrix of the Kalman Filter fit.

Figure 2.8 shows the track resolution on 1/𝑝T which is connected to the 𝑝T resolu-
tion by the relation:

𝜎𝑝T

𝑝T
=

𝜎1/𝑝T

1/𝑝T
. (2.8)

The figure shows that themomentum resolution for trackswithmomentum in the range
0.1–100GeV/c is within 1 and 10 % . Nonetheless, it should be noted that these perfor-
mances are obtained considering mainly primary tracks – i.e. tracks originating from
the primary vertex, as distinct from secondary tracks that are not originating from the
primary vertex. A dedicated algorithm performs a tracking procedure for the secondary
tracks without the constraint on the primary vertex position in the track seeds building.

Once all the primary tracks are reconstructed, it is finally possible to proceed with
the primary vertex estimation using the complete information of the tracks. By propa-
gating all the tracks to the nominal beamline position, it is possible to reject the outlier
tracks – tracks with distance with respect to the beamline exceeding 𝒪(100 µm) – that
are not used for the computation. The starting point for vertexing is set to the point
of closest approach to the set of reconstructed tracks. Figure 2.9 shows, as an example
of the ALICE vertexing performances, the resolution on the primary vertex position
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for both full tracks vertex and SPD vertex as a function of the charged particle mul-
tiplicity; these results are obtained in pp collisions at

√
𝑠 = 7TeV. Then the precise

determination of the primary vertex is done through a fit procedure described in [61].

Figure 2.9: Primary vertex resolution on the 𝑥 and 𝑦 direction (transverse plane) using
the SPD and the track algorithms as a function of the charged particle multiplicity of
the event in pp collisions at

√
𝑠 = 7TeV [48].

The case of pile-up events is treated with dedicated strategies and solutions. Refer-
ence [49] provides more details on this point.

The final steps of the event reconstruction are dedicated to the reconstruction of the
secondary vertex and cascades structures. These parts of the event reconstruction in-
volve searching topological features of sets of tracks that characterise the decay of some
particle species produced in the collision using dedicated algorithms. Since it plays a
crucial role in the analyses presented in this work, the secondary vertex reconstruction
must be looked in more depth.

The reconstruction of the secondary vertices is used to reconstruct the decay of a
neutral particle – called mother particle or mother track – into two charged particles
– called daughter particles or daughter tracks – forming the V-shaped topology. The
algorithm dedicated to this task is often referred to as theV0-finder. In the ALICE offline
framework two V0-finder algorithms are available: the on-the-fly V0 and the offline V0.
Both the algorithms are based on the search of all the track pairs whose tracks are
close enough in space to suppose that they come from a common mother particle –
displaced from the primary vertex. So all the possible track pairs with opposite charges
are considered, and then the distance of closest approach is computed. If the track
pair fulfils a defined set of selection criteria based on the topological structure of the
decay and the quality of the tracks, the track pair is stored as a V0-candidate, and the
momentum of the mother particle is computed.

45



The ALICE Experiment

The on-the-fly V0-finder operates during the track fitting and reconstructs the V0

topology using the full cluster information. First, the V0-finder looks for tracks match-
ing the primary vertex whose 𝜒2 is above e certain threshold. If the condition occurs,
the track is assumed to be produced in a secondary vertex. All the secondary tracks
satisfying the selection criteria and close in space are stored together in a list. Then all
the possible track pairs passing the selections are refitted, assuming that they originate
from the secondary vertex. Further quality cuts are applied before they are stored as
V0-candidates.

The principle of the offline V0-finder is similar to the on-the-fly algorithm, but it
is based on the reconstructed tracks and does not take into account the cluster infor-
mation. Furthermore, it is part of the ALICE offline framework that the analysers can
execute when they run offline the analysis tasks. It is typically used to apply different
selection criteria to the V0 topology since it can be re-run offline multiple times.

The advantage of the on-the-fly is the usage of the cluster information which allows
having the local description of the helix representation of the track. This means that,
in the refit, an accurate correction of the momentum of the daughter tracks is possible,
taking correctly into account the material budget and the dead zones of the detector.
The on-the-fly V0-finder ensures a better resolution of the mother particle momentum.

A complete description of the algorithms and the selection criteria is provided in
[49]. However, it is important to provide more details about the selections applied by
the V0-finder since they will be widely discussed in this work. The main selections are:

• the Distance of Closest Approach (DCA) of the single track to the primary vertex;

• the distance between the tracks at the secondary vertex;

• the Cosine of the Pointing Angle (cos 𝜃𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔).

A representation of a V0 decay is given in Figure 2.10 highlighting the topological fea-
tures used for the selections.

It is also possible to apply the so-called causality cut to reduce the combinatorial
background. This selection requires not having clusters for the daughter tracks when
prolonged before the secondary vertex position. The on-the-fly algorithm applies this
cut as a default. The offline algorithm, instead, executes a modified version of the cut.

These two algorithms have been developed to reconstruct the V0 topology that
strictly describes a neutral particle’s decay into two charged particles. The V0-finder
algorithms can also look for charged particles decays; this requires minor modification
in the procedure and the selection criteria, as in the case of the hypertriton.

2.5.3 ALICE Analysis Framework
High Energy Physics experiments produce a massive amount of data – in the order of
tens of petabytes every year of data taking – that requires a dedicated infrastructure to

46



2.5 – ALICE Offline Framework

Figure 2.10: Example of the reconstruction of the secondary vertex for theK0
S (in black)

and the Ξ− (in green) using the V0 topology. The daughter tracks are represented with
solid lines indicating that they are actually reconstructed, while the mother tracks are
represented with dashed lines indicating that they are extrapolated to the primary ver-
tex (red dot).

be stored and analysed. This infrastructure is the analysis framework and provides a
complete set of tools intended to store, process and analyse the reconstructed events.

The advent of the LHC required the realisation of the Worldwide LHC Computing
Grid (WLCG), a collaboration of computing centres whose purpose is to provide com-
puting resources to manage the LHC experiments data flow. The WLCG was designed
as four layers – or tiers – structure, and each tier provides a specific set of services to
distribute and analyse ∼50–70 PB of data per year of operations. Tier 0 is the CERN
computing centre; it hosts a copy of the raw data and takes care of the first reconstruc-
tion of the raw data, which is then distributed to the Tiers 1 centres. Tiers 1 are thirteen
large computer centres storing a second replica of the data, distributed with a propor-
tional share of raw and reconstructed data. It also takes care of large-scale reprocessing
and distributing the data to Tier 2. Finally, Tier 2 are the centres dedicated to running
Monte Carlo simulations and analysis processing. Individual users (scientists) access
these infrastructures through the initialisation of a local resource – namely the Tier 3,
that do not have any formal engagement with the WLCG – that can be an individual
laptop or a local cluster, to deploy the analysis task to the WLCG.

The ALICE data, both raw and reconstructed, are stored using the ROOT [62] frame-
work data format. ROOT is also the core of the ALICE software: AliRoot and AliPhysics,
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a collection of libraries and routines that enclose almost all the software used in the AL-
ICE Collaboration. The raw data are represented in the form of Event Summary Data
(ESD), a low-level object mainly used for the calibration and performance study of the
detector. The analysis code run by the users mainly involves the Analysis Object Data
(AOD), which is a more basic version of the ESD. In the AODs, the low-level information
– that usually are not used in the final analysis – is dropped, leaving the relevant signif-
icant information at the analysis level – i.e. the track parameters and some connected
physical quantities.

The support for the analysis task developed by the users is provided by the ALICE
Environment (Alien) grid middleware. Alien links the request of the users with the
WLCG infrastructures allowing them to access the globally distributed data and Monte
Carlo simulations and to run the analysis task on this data. ALICE also developed a
tool to organise different analysis tasks that work on the same data. This tool defines
a default data flow that uses an access pattern called analysis train to optimise the run
of different tasks from different users in the same job.

2.6 Particle Identification
The Particle Identification in ALICE uses the ITS, TPC, TOF and HMPID detectors with
different techniques. The PID, in TPC and ITS, relies on the energy loss measurement
attached to the clusters. The TOF, instead, employs the measurement of the particle
time of flight, while the HMPID uses the Cherenkov angle.

This information, combined with the momentum measurement, allows us to iden-
tify the particle species over a wide momentum range. In this thesis, the PID is per-
formedwith the TPC detector. Therefore the following section provides detailed insight
into the techniques used to identify the charged particles with the TPC in this thesis.

2.6.1 TPC Particle Identification
The charged particles traversing the active volume of the TPC release part of their en-
ergy in the detector gas, generating electron clouds that drift toward the readout pads.
The pads measure the amplitude of the signal generated by the electron clouds, and this
signal is related to the specific energy loss of the charged particle in the detector gas.
Since the relation between the energy loss and the momentum characterises a defined
particle specie, it is possible to identify a particle using the energy loss and momentum
measurements through the relation

𝑓(𝛽𝛾) = 𝑃1
𝛽𝑃4

[𝑃2 − 𝛽𝑃4 − ln(𝑃3 + 1
(𝛽𝛾)𝑃5

)] . (2.9)

Equation (2.9) – where 𝛽 and 𝛾 are the usual Loerntz factors and 𝑃1−5 denote five free
parameters – is a Bethe–Bloch parametrization of the energy loss of the light hadrons
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as a function of the particle momentum derived by the ALEPH collaboration [63]. It can
be used to describe the energy loss/momentum relation for any given particle specie,
by fitting this function to the data. In ALICE, a data-driven spline parametrisation
provides the energy loss/momentum relation. These splines are integrated into the
central analysis framework. Figure 2.11 shows the d𝐸/ d𝑥 measured by ALICE in the
Pb–Pb collisions collected during 2018 for a large sample of particles with the related
splines overlaid.

Figure 2.11: Specific energy loss of particles traversing the TPC volume as a function
of the particle rigidity 𝑝/𝑧 in Pb–Pb collisions at

√𝑠NN = 5.02TeV. The dashed lines
represent the splines used in ALICE to parametrise the expected energy loss for the
considered species.

In the lowmomentum region (𝑝 < 1GeV/c) the d𝐸/ d𝑥 dependsmainly on the 1/𝛽2

factor. This allows selecting the particle belonging to the species under consideration
track-by-track by picking the tracks whose energy loss lies in a fiducial range around
the expected value. Usually, the number of 𝜎 – where 𝜎 is the TPC resolution on the
d𝐸/ d𝑥 for the considered track – defines the extension of the fiducial region. The
expected relative resolution on the d𝐸/ d𝑥 for the TPC is 5.2 % in pp collisions and
6 % in Pb–Pb collisions. A clear separation of the different species is not possible for
higher momentum particles using the TPC standalone. However, it is still possible to
derive the relative weight of the different particle species via the statistical unfolding
of the d𝐸/ d𝑥 distributions. Nevertheless, by integrating the information provided by
other detectors – mainly the TOF, if available for the considered track – it is possible to
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extend the momentum region where a clear identification of particles is possible.
A separate discussion should be done for the particles with electric charge 𝑧 > 1.

For these particles, the distribution of the expected d𝐸/ d𝑥 is entirely separate from the
distributions of the 𝑧 = 1 particles, as clearly visible in Figure 2.11 in the case of the
(anti)helium and the (anti)helium-3. The TPC standalone particle identification allows
clear identification of these species over a wide momentum range.

2.7 Centrality Determination in Pb–Pb Collisions
In High Energy Nuclear Physics, it is customary to classify the nucleus–nucleus colli-
sions based on the degree of overlap of the colliding nuclei since many physical quanti-
ties correlate in a meaningful way to this parameter. The degree of overlap represents
the scalar impact parameter 𝑏; however, this quantity can not be directly derived using
the Glauber model as discussed in Section 1.3.1.

Other experimental strategies are used to derive the impact parameter, exploiting
the correlations between the impact parameter of the collision and other physical quan-
tities that are measured directly by the detectors, such as the energy deposited in the
ZDCs or the number of charged particles produced in the collision – usually called
charged particle multiplicity.

In the literature, the collisions are categorised in centrality classes matching the
percentiles of the total hadronic cross-section of the colliding nuclei:

𝑐(𝑏) = 1
𝜎𝐴𝐴

∫
𝑏

0

d𝜎
d𝑏′ d𝑏′ where 𝜎𝐴𝐴 = ∫

∞

0

d𝜎
d𝑏′ d𝑏′.

Assuming a monotonic dependence of the energy deposited at zero degrees and the
charged particle multiplicity on the impact parameter, the centrality can be written as:

𝑐 ≈ 1
𝜎𝐴𝐴

∫
∞

𝑁𝑐ℎ

d𝜎
d𝑁 ′

𝑐ℎ
d𝑁 ′

𝑐ℎ ≈ 1
𝜎𝐴𝐴

∫
𝐸𝑍𝐷𝐶

0

d𝜎
d𝐸′

𝑍𝐷𝐶
d𝐸′

𝑍𝐷𝐶.

The total hadronic interaction cross-section of the colliding nuclei 𝜎𝐴𝐴 can be replaced
by the number of considered collisions – or events – corrected for the background and
the trigger efficiency:

𝑐 ≈ 1
𝑁𝑒𝑣

∫
∞

𝑁𝑐ℎ

d𝜎
d𝑁 ′

𝑐ℎ
d𝑁 ′

𝑐ℎ ≈ 1
𝑁𝑒𝑣

∫
𝐸𝑍𝐷𝐶

0

d𝜎
d𝐸′

𝑍𝐷𝐶
d𝐸′

𝑍𝐷𝐶.

In peripheral collisions – i.e. for 𝑐 > 50 % – some nuclear fragments can be deflected
outside the ZDC acceptance by the LHC magnets reducing the energy deposit in the
detector. This effect can mimic the energy deposition of the most central collisions,
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Figure 2.12: ZDC energy deposit as a function of the ZEM energy deposit (a). The solid
lines represent the cut-off lines for the different centrality classes determined with the
ZDC while the different colours represent the centrality classes obtained with the V0.
(b) The distribution of the sum of the V0 amplitudes used to determine the centrality
classes with the V0 amplitude percentiles method and the fit of the NBD-Glauber model
(red line) is shown.

breaking the monotonic decrease of the energy deposit as a function of the event cen-
trality. The ambiguous events can be discriminated by exploiting the correlation with
the energy deposit in the ZEM as shown in Figure 2.12a.

In Figure 2.12b the distribution of the sum of the signals measured by the V0 de-
tector – i.e. the sum of the two individual distributions related to the V0A and the V0C
detectors – is reported. It is used to determine the centrality in Pb–Pb collisions as de-
scribed in the following. This distribution is fitted with a parametric function based on
the Negative Binomial Distribution and the Glauber Monte Carlo model (NBD–Glauber
fit), connecting the measured V0 amplitude with the impact parameter of the collision.
In particular, the number of participant nucleons 𝑁𝑝𝑎𝑟𝑡 and the number of binary col-
lisions 𝑁𝑐𝑜𝑙𝑙 are generated using the Monte Carlo Glauber model. The multiplicity of
particles produced per nucleon–nucleon collision is then described with the NBD dis-
tribution

𝑃𝜇,𝑘(𝑛) = Γ(𝑛 + 𝑘)
Γ(𝑛 + 1) Γ(𝑘)

⋅ (𝜇/𝑘)𝑛

(𝜇/𝑘 + 1)𝑛+𝑘

with parameters 𝜇 and 𝑘.
The distribution of the number of tracks in the TPC and the number of clusters in

the SPD Layer 2 are two other distributions that can be fitted with the NBD–Glauber
function to obtain the impact parameter of the collision. However, it has been shown
that the centrality resolution depends on the width of the pseudo-rapidity region cov-
ered by the detector used for the NBD–Glauber fit. The best choice falls on the sum
of the V0 distributions under the 4.3 pseudo-rapidity units covered by V0A and V0C
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combined. The resolution on the centrality estimated with the V0 ranges from 0.5 %
for the most central collisions up to 2 % for the most peripheral.

The collision centrality can also be estimated by exploiting the following relation
between the energy deposited in the ZDC detector (𝐸𝑍𝐷𝐶) and 𝑁𝑝𝑎𝑟𝑡:

𝑁𝑝𝑎𝑟𝑡 = 2𝐴 − 𝐸𝑍𝐷𝐶/𝐸𝐴,

where 2𝐴 is the sum of the atomic numbers of the colliding nuclei and 𝐸𝐴 is the en-
ergy they brought in the collision. The 𝑁𝑝𝑎𝑟𝑡 and 𝐸𝑍𝐷𝐶 relation is not monotonic
due to the nuclear fragments escaping the ZDC acceptance in peripheral collisions, as
mentioned above. The centrality classes then can be defined by selecting with straight
lines regions of the ZEM amplitude versus ZDC energy deposit plane, as shown in Fig-
ure 2.12a. In Figure 2.12b instead the centrality classes obtained with the percentiles of
the V0 amplitude method – reliable for 𝑐 < 30 % – are shown.
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Chapter 3

(Anti)(Hyper)Nuclei in Heavy-Ion
Collisions

This chapter focuses on the hypernuclei, particularly on the hypertriton ( 3ΛH), the main
character of this thesis. Special attention is given to highlighting the importance of
measuring the hypertriton lifetime and its Λ-separation energy (BΛ). These measure-
ments provide crucial information for understanding the hypertriton structure with
significant implications in many fields ranging from the knowledge of the nuclei pro-
duction mechanism in HIC to the hyperon–nucleon interaction and the study of the
nuclear matter equation of state in the neutron stars core.

3.1 (Anti)Hypernuclei
An ordinary nucleus is a bound state of nucleons that are protons and neutrons. A
hypernucleus, instead, is a nucleus in which hyperons replace one or more nucleons,
where the hyperons (Y1) are baryons containing at least one strange quark but no charm,
bottom or top quarks (Section 3.1).

The first hypernucleus was observed by Danysz and Pniewski in 1953 [64] exposing
photographic emulsions to cosmic radiation at an altitude of about 26 km. Starting from
their discovery, the hypernuclei have been extensively studied in cosmic rays experi-
ments first and in accelerators experiments later. These studies provided observations
on the production yields, structure and decay rates of about 40 single-Y and double-Y
hypernuclei [65].

The hypernuclei play a crucial role in understanding the nuclear force that rules the
nuclear matter and holds nuclei together. For this reason, they stimulate a lively debate
in the nuclear physics community.

1The letter Y usually refers to a generic hyperon, a baryon that carries strangeness, without specifying
the particle specie.
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Figure 3.1: Schematic representation of an ordinary nucleus and an hypernucleus with
their constituents (Figure from [66]).

The nuclear force results from the fundamental interactions among nucleons as a
first approximation. Two-body and three-body interactions between nucleons – NN
and NNN interactions – have been studied in detail through many different nuclear
reactions obtained with nuclear beams in particle accelerators. These studies allowed
us to understand the fundamental nature of the nuclear force, especially at medium and
long distances.

However, a more profound comprehension of the nuclear force is necessary to un-
derstand the nuclear matter behaviour in extreme conditions such as in the inner core
of neutron stars and the strongly interacting medium generated in an ultra-relativistic
heavy-ion collision. In this respect, it is crucial to increase the degrees of freedom of the
nuclear system by adding one or more strange quarks and investigating the hyperonic
component of the nuclear force.

Two-body and three-body interactions between hyperons and nucleons and be-
tween hyperons themselves – YN, YNN, YY, YYN and YYY interactions – are pivotal
for the nuclear force. A prime example is the cold nuclear matter equation of state
used to describe the neutron star interiors, where the presence of strange quarks seems
inevitable. It is thought that hyperons, together with neutrons [67, 68], are major in-
gredients of the neutron stars’ inner core. However, the equation of state of the nuclear
matter with neutron–hyperon mixing is unable to reproduce the mass of the observed
two-solar-masses neutron star [69–71].

One of the possible solutions to conciliate the neutron star masses with the presence
of hyperonic matter in their interiors is to consider a repulsive three-baryon interaction
that works universally for the YNN, YYN, YYY and NNN components [72]. However,
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the behaviour of the three-baryon component of the nuclear interaction in a neutron-
rich environment involving hyperons still needs to be investigated. The properties of
these interactions could be studied in very neutron-rich hypernuclei, which, unfortu-
nately, are extremely hard to produce. Moreover, the interactions involving multiple
hyperons are not yet clear since the experimental identification of double-Y hypernu-
clei is limited to just a few observations [73–76].

Observing extremely massive neutron stars has renewed interest in the hypernu-
clear physics sector from both the theoretical and the experimental side. A theoretical
effort to describe the hyperonic component of the nuclear interaction is ongoing, but
more inputs from the experiments are necessary. The hypernuclei represent a micro-
laboratory for investigating the nuclear interaction between hyperons and nucleons.
Therefore, several experimental programmes are ongoing, and others are planned to be
carried on in many accelerator facilities, aiming to understand the nature of the hyper-
nuclei in more detail [66].

3.1.1 Weak Decay of Hypernuclei
A single-Λ hypernucleus in the ground state decays to non-strange nuclear matter
through two weak processes: the non-mesonic weak decay (NMWD) and the mesonic
weak decay (MWD).

The NMWD converts the Λ inside in the hypernucleus into a nucleon through a
Λ → 𝜋N process involving a virtual 𝜋. The nuclear medium absorbs the virtual pion;
hence it is not emitted in the final state, resulting in a non-mesonic decay. Examples of
these types of processes are the one-nucleon induced decays:

Λn → nn, Λp → np

and the two-nucleon induced decays:

ΛNN → nNN.

The MWD follows the mesonic decay modes of a free Λ baryon:

Λ → p + 𝜋−, (3.1)

Λ → n + 𝜋0, (3.2)

converting the Λ inside the nucleus into a nucleon without involving the other con-
stituents of the nucleus. Light-𝐴 andmedium-𝐴 are thus converted into non-hyperonic
nuclei through the reactions:

𝐴
Λ𝑍 →𝐴 (𝑍 + 1) + 𝜋− (3.3)

𝐴
Λ𝑍 →𝐴 𝑍 + 𝜋0. (3.4)
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where the final states are not necessarily stable.
The total decay amplitude of a Λ-hypernucleus Γ(𝐴

Λ𝑍) is the sum of the amplitudes
of the mesonic and the non-mesonic decay channels:

Γ = ΓNMWD + ΓMWD .

The first term ΓNMWD is the sum of all the one-nucleon and two-nucleon induced decay
amplitudes, while the second term ΓMWD represents the contribution of the processes
described in Equations (3.3) and (3.4).

The lifetime of the hypernuclei is related to the total decay amplitude by the relation:

𝜏(𝐴
Λ𝑍) = ℏ/Γ(𝐴

Λ𝑍)

where ℏ is the reduced Plank constant whose value is 1.054 571 817 × 10−34 J s.
The weak decay of a Λ via non-mesonic channels – i.e. ΛN → NN – would provide

direct access to the study of the hyperon-nucleon interaction. However, a free Λ decays
only through the mesonic processes described in Equations (3.1) and (3.2). In the hy-
pernuclei, the Λ is embedded into the nuclear medium, making the emission of virtual
pion possible, leading to a non-mesonic decay. This is the reason why the decay of the
hypernuclei is so interesting.

The experimental investigation of the lifetime of the hypernuclei and its mass de-
pendence have been investigated in many experiments carried out with different ex-
perimental techniques and analysis methods [77]. The lifetime of light hypernuclei is
generally expected to be close to that of the free Λ, while it is believed that it shortens
quickly when the mass of the hypernucleus increases. This is due to the increasing
weight of the non-mesonic channel in the total decay amplitude. The lifetime instead
is expected to settle to a saturated value with increasing masses of the hypernuclei due
to the short-range nature of the ΛN interactions. Two recent theoretical works [78,
79] calculated the expected lifetime for the whole mass range of the hypernuclei up to
𝐴 = 209, predicting a saturation value around 200 ps.

3.2 Hypertriton: the Lightest Known Hypernucleus
The first observations of hypernuclei – already mentioned in Section 3.1 – were per-
formed by using glass-backed emulsion plates, and dates back to 1953. The thickness of
the plates, which was only 400–600 µm, did not allow to completely record the event
preventing the determination of the identity of the hypernucleus.

The following year Bonetti et al. reported the detection of a complete event thanks
to the innovative use of a stack of stripped emulsion pellicles [80]. It was the first
observation of the “.. ejection of a meson-active triton from a nuclear disintegration”
[80, p. 208], confirming that the nucleus was bound to a Λ baryon. That was actually
the first observation of the hypertriton and Figure 3.2 shows the portion of the emulsion
with which Bonetti et al. made their discovery.
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Figure 3.2: The first observation of the decay of a hypertriton.

After the first observations in cosmic ray reactions, the experimental study of hy-
pernuclei moved to particle accelerators in the late fifties. Thanks to the availability
of K− beams, the accelerators allowed an abundant production of hypernuclei and, in
particular, of hypertritons. In the following years, the production and the detection
techniques continually improved to the present days, allowing the first observation of
an antimatter hypertriton ( 3ΛH) in 2010 by the STAR Collaboration at RHIC [81].

The hypertriton is the lightest known Λ-hypernucleus, and it is a bound state of a
proton, a neutron and a Λ hyperon. It can be interpreted as a d− Λ halo system, with a
deuteron core loosely bound to a Λ. In fact, the most accepted value of the Λ-separation
energy – that is the binding energy of the Λ to the nucleons core2 – is just:

BΛ = 0.13 ± 0.05 (stat.) ± 0.04 (syst.)MeV (3.5)

as reported by [82]. Due to the low BΛ, the Λ wave function is expected to be only
slightly modified by the interaction with the nucleons. The hypertriton lifetime then
is expected to be extremely close or slightly below the free Λ lifetime whose value –
reported by the PDG [4] – is:

𝜏(Λ) = 263.2 ± 2.0 ps. (3.6)

2In nuclear physics, the term separation energy refers to the energy needed to remove a nucleon – or
another specified constituent particle – from a nucleus [83]. The term nuclear binding energy, instead,
refers to the energy needed to disassemble the whole nucleus in its constituent particles [83]. Usually,
the term binding energy is more general, and it can mean separation energy or nuclear binding energy –
or other meanings – depending on the context. In this thesis, the binding energy is always intended as
separation energy without ambiguity since nuclear binding energy is not addressed.
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The 3
ΛH decays weakly, essentially into the mesonic channels (MWD). Table 3.1 re-

ports the partial and total mesonic and non-mesonic decay amplitudes as calculated by
Kamada et al. in the most comprehensive work on the 3

ΛH decay [84]. The value of
the amplitudes led to a branching ratio (BR) of 25 % for the two-body charged decay
( 3ΛH → 3He + 𝜋−) and 40 % for the three-body charged decay ( 3ΛH → d + p + 𝜋−).

Channel Γ (s−1)

Mesonic

3He + 𝜋−
0.146 × 1010

3H + 𝜋0

d + p + 𝜋−
0.235 × 1010

d + n + 𝜋0

p + p + n + 𝜋−
0.368 × 1010

p + n + n + 𝜋0

Non mesonic

d + n 0.67 × 107

p + n + n 0.57 × 108

All channels 0.391 × 1010

Table 3.1: Total and partial mesonic and non mesonic decay rates of the 3
ΛH.

3.2.1 The Hypertriton Puzzle
The hypertriton and its properties were extensively investigated until the 1970s using
bubble chambers, and nuclear emulsions [65]. As already mentioned in the previous
section (Section 3.2), those experiments determined the Λ-separation energy with high
precision BΛ = 0.13 ± 0.05 (stat.)MeV [82, 85]. The interpretation of the hypertriton
as a deuteron core very weakly bound to a Λ hyperon arose from those results, and
the value of the BΛ became a benchmark for any theoretical calculations concerning
hypernuclei.

There have also been attempts to measure the hypertriton lifetime [86–94] with
visualising techniques in He bubble chambers and nuclear emulsions experiments. In
these experiments, the number of detected hypertriton was very small, leading to sig-
nificant statistical uncertainties. Back then, the technologies employed in these exper-
iments induced significant systematic uncertainties. Therefore, it was impossible to
obtain a solid and agreed result due to measurement inaccuracy.
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Figure 3.3: Chronological synopsis of the experimental values obtained for the 3
ΛH

lifetime. Purple points are results from He bubble chambers, blue points from photo-
graphic emulsions and red points from digital readout experiments which include the
STAR and the ALICE experiments. The free Λ baryon lifetime is also reported as a ref-
erence.

The hypertriton lifetime was thus assumed very close to the lifetime of a free Λ
hyperon (Equation (3.6)), relying on its very small binding energy. This assumption
comes from a simple argument. Because of the very small binding energy, the binding
with the deuteron core has little influence on the Λ wave function. It follows that the
Λ decay is not significantly affected by the interactions with the deuteron core.

However, new experiments in recent years have found surprising and conflicting
results measuring significantly shorter lifetime than the assumed value. The HypHI
experiment at GSI in 2013 derived a lifetime of 183+42

−32 (stat.) ± 37 (syst.) ps [97] using
6Li+ 12C reactions at 2𝐴GeV. Since the 2010s, ultra-relativistic heavy-ion collision have
also proven to be a powerful tool to investigate the hypertriton properties. The STAR
collaboration at RHIC measured the production of 3

ΛH and – for the first time ever –
3
ΛH in Au+Au collisions at

√𝑠NN = 200GeV. By combining the observations of the 3
ΛH

and the 3
ΛH they measured a lifetime of 182+89

−45 (stat.) ± 27 (syst.) ps [81]. This value
is compatible with the free Λ lifetime within 1𝜎 having large uncertainties. Later, in
2018, STAR measured the hypertriton lifetime in both the 2-body ( 3ΛH → 3He + 𝜋−)
and the 3-body ( 3ΛH → d + p + 𝜋−) decay channels and found a significantly smaller
value of 142+24

−21 (stat.) ± 29 (syst.) ps [99]. The lifetime of the hypertriton has been
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measured also at the LHC by the ALICE Collaboration in 2016 in Pb–Pb collisions at√𝑠NN = 2.76TeV finding a value of 181+54
−38 (stat.) ± 33 (syst.) ps [98]. In 2019 ALICE

updated the measurement using a larger sample of data collected in Pb–Pb collisions at√𝑠NN = 5.02TeV finding a larger value, 242+34
−38 (stat.) ± 17 (syst.) ps [100].

Excluding the latest measurement of ALICE, all the measurements after 2010 are
significantly below the free Λ value in contrast to what was expected. These short
lifetimes can be hardly reproduced by theoretical calculations assuming the very small
binding energy of 0.13 ± 0.05MeV. Table 3.2 reports the chronology of the experi-
mental data existing for the 3

ΛH lifetime, while Figure 3.3 shows the time series of the
measurements compared with the PDG value of the free Λ lifetime.

The hypertriton Λ-separation energy, as previously mentioned, is expected to be
strongly correlated to its lifetime, and this is also of great interest. The most accepted
value of BΛ (Equation (3.5)) relies on measurements dating back to the late 1960s and
early 1970s, performed with nuclear emulsions [82, 85]; therefore, it needs to be revis-
ited. Further experimental investigations of the hypertriton binding energy have not
been performed until 2020 when the STAR Collaboration published a new measure-
ment. They combined 3

ΛH and 3
ΛH data under the assumption of the CPT symmetry

invariance and found BΛ to be 0.41 ± 0.12 (stat.) ± 0.11 (syst.)MeV. This value is sig-
nificantly larger then the previously reported BΛ value of 0.13 ± 0.05MeV. However,
a firm conclusion can not be reached due to the significant uncertainty of the STAR’s
value.

Stimulated by the recent experimental outcomes, new theoretical works have been
published to reproduce these experimental results. The lifetime and the BΛ have been
calculated using a chiral effective field theory (𝜒EFT), finding a strong correlation be-
tween the lifetime and the binding energy [102]. A strong relation between lifetime
and binding energy has also been found by determining the lifetime and the partial de-
cay width ratio 𝑅 in an effective field theory approach [103]. The expected value of
the decay amplitude computed for BΛ = 0.13 ± 0.05MeV is Γ3

ΛH
= (0.975 ± 0.150)ΓΛ

which implies a 3
ΛH lifetime very close to the free Λ. Considering the higher value of

the binding energy measured by STAR, the lifetime is expected to be slightly reduced
but the value reported by STAR of ∼142 ps is significantly lower than the predicted
lifetime. STAR also measured the partial decay width ratio 𝑅 reporting the value of
𝑅𝑆𝑇 𝐴𝑅 = 0.32 ± 0.05 (stat.) ± 0.08 (syst.)which results significantly lower than the
calculations.

Thanks to the aforementioned theoretical effort, some progress has been made in
understanding the hypertriton nature. New experimental data with enhanced precision
on both the lifetime and the binding energy are necessary to improve the theoretical
calculations, aiming to come to a conclusion. Furthermore, it has been pointed out that
the solution of the so-called hypertriton puzzle may impact the understanding of the
hyperonic component of the nuclear interaction [66] with implications that stretch far
beyond the hypernuclear physics sector.
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Year Laboratory Beam Exp. method Lifetime (ps) Ref.

1963 LBL Bevatron stopped K− He bubble
105+20

−18 [86]chamber

1964 BNL AGS K− 2.3–2.5GeV/c nucl. emulsions 90+220
−40 [90]

1965
BNL AGS and K− 2.3GeV/c

nucl. emulsions 340+820
−140 [91]LBL Bevatron K− 790MeV/c

1968 ANL ZGS stopped K− He bubble
232+45

−34 [87]chamber

1968 LBL Bevatron K− 1.1GeV/c nucl. emulsions 274+110
−72 [92]

1969 BNL AGS K− 1.1GeV/c nucl. emulsions 285+127
−105 [93]

1970 CERN PS stopped K− nucl. emulsions 128+35
−36 [94]

1970 ANL ZGS stopped K− He bubble
264+84

−52 [88]chamber

1973 ANL ZGS stopped K− He bubble
246+62

−41 [89]chamber

1992 Dubna
He, Li ions digital

240+170
−100 [95]2.2–5GeV/c readout

2010 BNL RHIC
Au+Au HIC digital

182+89
−45 [81]200GeV readout

2013 BNL RHIC
Au+Au HIC digital

123+26
−22 [96]7.7–200GeV readout

2013 GSI SIS
Li ions digital

183+42
−32 [97]2GeV readout

2016 CERN LHC
Pb–Pb HIC digital

181+54
−38 [98]2.76TeV readout

2018 STAR RHIC
Au+Au HIC digital

142+24
−21 [99]7.7–200GeV readout

2019 CERN LHC
Pb–Pb HIC digital

242+34
−38 [100]5.02TeV readout

2021 STAR RICH
Au+Au HIC digital

221+15
−15 [101]3.0 and 7.2 GeV readout

Table 3.2: Chronology of 3
ΛH lifetime measurements: year, laboratory, beam, experi-

mental method, measured lifetime and publication Reference are given. HIC stands for
heavy-ions collisions and the related energy value refers to the center-of-mass energy
per nucleon pair.
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Chapter 4

Principles of Machine Learning

Machine learning (ML) is a branch of artificial intelligence dedicated to studying com-
puter algorithms that can automatically solve given tasks. The algorithms are pro-
grammed to learn the solution through experience and by the use of data, progressively
improving their performance. ML is handy in situations where the analytical solution
of the problem is unknown; however, we have data with which we can build an empiri-
cal solution. This view covers many domains, and indeed ML is one of the most widely
used approaches in the industry and in science nowadays.

The first part of this chapter provides the basics of Machine Learning, giving par-
ticular attention to the binary classification problem – the task addressed in this thesis.
The second part presents and analyses the Boosted Decision Trees (BDTs) model em-
ployed in this thesis and the adopted training methods.

4.1 The Learning Problem
The learning problem, in general, can be seen as the task of finding the hidden relation
between input data and output data.

The main components of the learning problem, are the following. The unknown
target function 𝑓 ∶ 𝑋 ⟼ 𝑌, where 𝑋 represents the input space, and 𝑌 is the output
space. The input space 𝑋 is the set of all the possible input data ⃗𝑥, and the output space
𝑌 is the set of all the possible output data 𝑦. The data set 𝐷 is the set of examples of the
input-output relation ( ⃗𝑥1, 𝑦1), ⋯ , ( ⃗𝑥𝑁, 𝑦𝑁), where 𝑦𝑖 = 𝑓(𝑥𝑖) for 𝑖 = 1, … , 𝑁. The
examples belonging to 𝐷 are usually referred to as data points. Finally, the learning
algorithm 𝒜 that finds the function 𝑔 ∶ 𝑋 ⟼ 𝑌 that approximates 𝑓 by using the
examples in 𝐷. The learning algorithm is equipped with a set of candidate functions
𝐻. The process by which the algorithm 𝒜 selects 𝑔 in 𝐻 is called training, and 𝐻 is
called the hypothesis set. A hypothesis set with the associated learning algorithm is
called learning model.
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For instance, 𝐷 could be a set of time-position measurements of a projectile in mo-
tion under the action of gravity only. 𝐻 would be the set of all the second-degree
polynomials, and 𝐴 an algorithm to find the parabola that best fits the data points.

UNKNOWN TARGET FUNCTION

𝑓 ∶ 𝑋 ⟼ 𝑌

TRAINING EXAMPLES

(𝑥1, 𝑦1), ⋯ , ( ⃗𝑥𝑁, 𝑦𝑁)

TRAINING

ALGORITHM

𝒜

HYPOTHESIS SET

𝐻

FINAL HYPOTHESIS

𝑔 ≈ 𝑓

Figure 4.1: Basic layout of the learning problem.

Figure 4.1 conveys the basic layout of the learning problem and it is a simplified
illustration of a vastly more complex topic. Some refinements and adaptations to this
simple setup should be considered to have a complete panorama of the learning prob-
lem. However, the core of the problem will remain identical.

It would be too restrictive to think aboutML just as a valid tool to describemappings
between data. The profound nature of machine learning is predictive, not descriptive,
with very few exceptions. The learning models are designed to generalise the patterns
learned from the training examples to unseen data. Moreover, the generalisation power
is exactly what makes ML models so attractive and valuable in countless applications.
The term learning itself is used precisely for this reason. The ability to accomplish
tasks by generalising the patterns learned through experience to new scenarios and,
eventually, the possibility to improve the performances on the tasks are conceptually
analogous to what humans and other animals do.

4.2 Types of Machine Learning
The illustration of the learning problem provided in the previous section is very broad:
an algorithm operates on a set of observations to unveil an underlying process. Multiple
ML paradigms have emerged to address various problems and different situations. All
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the paradigms share the basic concept of programming amachine to learn from data, but
each has different premises and peculiarities. In this section, the main ML paradigms
are introduced.

4.2.1 Supervised Learning
When the learning task provides explicit input-output examples, it consists of Super-
vised Learning (SL). In SL each data point is a ( ⃗𝑥, 𝑦) pair where the value of the target
𝑦𝑖 is known for each input object ⃗𝑥𝑖. The training algorithm processes the labelled
training data to infer the mapping between the input and the output.

In SL, the idea behind the training process is pretty straightforward. The hypothesis
set 𝐻 is a collection of functions ℎ with parameters w = {𝑤𝑗 for 𝑗 = 0, … , 𝑀}. Each
set of possible parameters w defines a particular model hypothesis ℎ(w, ⃗𝑥). Therefore,
for each data point, it is possible to compute the model prediction ℎ(w, ⃗𝑥𝑖) = ̂𝑦𝑖. Since
the pairs ( ⃗𝑥𝑖, 𝑦𝑖) are known for the training dataset 𝐷, it is feasible to assess how well

̂𝑦𝑖 approximate 𝑦𝑖. The evaluation of the approximation quality enables tuning the
parameters w to minimise the difference between the target value and the predicted
one. Once the approximation is satisfactory, the parameters w′ are determined, and
the final hypothesis is 𝑔( ⃗𝑥) = ℎ(w′, ⃗𝑥). The learning process can be highly complex,
and the number ofmodel parameters can be huge; however, it follows this basic concept.

From the above arise the importance of evaluating the goodness of the approxima-
tion. To assess how well 𝑔 approximates 𝑓, we ought to define an error measure1 that
quantifies the distance between the model and the target function. The error measure

Error = 𝐸(ℎ, 𝑓)

assign to each hypothesis ℎ a value derived from the comparison with the target 𝑓. 𝐸
relies on the whole ℎ and 𝑓 functions; however, 𝑓 is unknown except in 𝐷. Therefore,
an estimator ̂𝐸 - at least computable on 𝐷 - is used as a proxy for 𝐸. A typical example
of error estimator is the mean pointwise error. The pointwise error 𝑒(ℎ( ⃗𝑥𝑖), 𝑓( ⃗𝑥𝑖)) is
computed for each data points, and the estimator is the average value on 𝐷. In the light
of the essential function of the error measure in the context of SL, the learning problem
setup shown in Figure 4.1 is updated for the supervised learning scenario in Figure 4.2.

It is worth saying a few more words about the error measure since it plays a critical
role in SL. It is of utter importance to stress that ̂𝐸 is used to estimate two different
errors: the in-sample error 𝐸in and the out-of-sample error 𝐸out. 𝐸in represents the
estimate of the model error on the training data, while 𝐸out is the estimate of the error
on unseen data and can be seen as an estimate of the generalisation error. ̂𝐸(𝐷) that
is ̂𝐸 computed on 𝐷 is a reliable estimate of 𝐸in; however, it could be a too optimistic

1The error measure is also referred to as the error function in the literature. Other terms are used,
such as cost, objective or loss.
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Figure 4.2: Basic layout of the supervised learning problem.

estimate of 𝐸out. The training relies on the minimisation of ̂𝐸(𝐷), bringing an ad hoc
minimisation of 𝐸in. For this reason it is reasonable to expect a larger value for 𝐸out.

The key to overcoming this problem is to split 𝐷 into two sub-samples: a training
set (𝐷train) and a test set (𝐷test). The training set continues to feed the learning algo-
rithm with the information needed to learn the input-output relation. Instead, the test
set provides an independent sample to estimate 𝐸out with the estimator: ̂𝐸(𝐷test). It is
crucial not to include any information coming from 𝐷test in the training process; oth-
erwise, the estimate of the generalisation error would be biased. ̂𝐸(𝐷test) is only used
to evaluate the expected model performance out-of-sample and can not be employed in
the training.

The definition of the test set clarifies how to assess the model performance when
dealing with out-of-sample data. The test set requirement is not to include any of its
elements in the training process. It must be used for the estimation of ̂𝐸(𝐷test) only. It
remains unclear how it is possible to optimise the model to achieve a small 𝐸out.

In fact, the minimisation of ̂𝐸(𝐷train) does not ensure the contextual minimisation
of 𝐸out. The extreme consequence of this behaviour is that a model could perfectly
describe the training data without any ability to make predictions on new data. If a
model has enough parameters could even get ̂𝐸(𝐷) = 0, having at the same time a
huge 𝐸out. The situation where a model has too good in-sample performance at the
cost of lacking generalisation power is called overfitting.

The clue to avoiding overfitting is twofold. On the one hand, there is regularisation,
a set of techniques designed specifically for this purpose. The regularisation idea is to
reduce the number of degrees of freedom of the model to limit its ability to describe
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the data leading to better generalisation performances. The regularisation relies on a
solid theoretical framework, the Vapnik-Chervonenkis theory [104, 105]. However, the
regularisation techniques – aswell asmany othersML tools – are developed empirically.
On the other hand, there is the possibility to reserve a portion of 𝐷train to estimate
the generalisation error. This sample belonging to the training set is usually called
the validation set (𝐷val). The model is then optimised to minimise ̂𝐸(𝐷val) during the
different training phases. ̂𝐸(𝐷val) provides a biased estimate of the generalisation error
but allows the model optimisation. Once the model is optimised, the test set – that
remains entirely independent – is available for the unbiased estimate of the error out-
of-sample.

Many different techniques have been developed to optimise an ML model using a
validation set. However, they follow the same simple concept. A portion of the available
data is reserved for estimating the generalisation error to assess themodel performances
out-of-sample. This portion of the data is not included in any phases of the optimisation
and training of the model. Instead, the other data are dedicated to the model training
and optimisation. Usually, the optimisation relies on the minimisation of a proxy for
the out-of-sample error that is computed on a sub-sample of 𝐷train called validation set.
This proxy is a biased estimate of 𝐸out; nevertheless, it enables the model optimisation.

4.2.2 Unsupervised Learning
In the unsupervised learning (UL) domain, the output associated with the data points –
i.e. the value of 𝑦 – is unknown. UL can be regarded as the task of spontaneously uncov-
ering structures and patterns in the data. The model aims to construct a representation
of the data and obtain valuable information from the representation. UL models are
successfully operated in many applications, among the main are:

• clustering;

• anomaly detection;

• latent variable models.

4.2.3 Reinforcement Learning
Reinforcement learning (RL) is a ML area regarding learning tasks where the explicit
relation between input and output is unknown, just like unsupervised learning. How-
ever, RL concerns the implementation of intelligent agents (IA) – i.e. any object that
senses the environment and acts autonomously to reach a goal – able to act in a de-
fined environment to maximise the reinforcement signal, also called reward. RL mimic
the behaviour of biological systems in learning comportments by receiving positive or
negative feedback from the environment – such as pain or pleasure – in response to
actions.
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Figure 4.3: Typical layout of the reinforcement learning scenario.

A typical scenario in reinforcement learning is presented in Figure 4.3. The IA per-
ceives the environment and interprets it in the form of states and rewards. The state is
nothing but the system configuration, while the rewards measure the goodness of the
state, given the IA goal. Based on the system state, the agent act on the environment,
trying to maximise the future reward. The agent does not take into account the present
reward only. IA considers a cumulative reward for promoting a series of rewarding
moves instead of single advantageous actions. A policy is the set of the agent actions,
based on the environment states, intended to maximise the future reward. Once the
IA has gained enough experience in the environment, it has developed an optimal – or
nearly optimal – policy.

RL demonstrated outstanding performances in tackling problems where exploring
all the possible configurations of the systems is unfeasible from a computational point
of view. Autonomous driving[108] and playing games[109] are among the fields where
RL is widely applied. The most famous RL application is AlphaGo Zero[110], a software
developed by DeepMind that learned to play Go2, tabula rasa, achieving superhuman
proficiency.

2Go is a Chinese strategy board game for two players. The goal of the players is to surround the
opponent’s territory. It is incredibly complex, despite being based on simple rules. The game board is
estimated to have ∼ 2.1 × 10170 allowed configurations [106]. Go is way more complex than the chess
game – which has a number of legal configurations between 1040 and 1050[107].
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4.3 Binary Classification Problem
Classification is the recognition and grouping of a population into predefined sub-groups
called categories or classes. The grouping is based on given attributes – also called
features – of the population elements. The task is called clustering when the sub-
populations are unknown a priori – i.e. in an unsupervised learning context. Another
and more abstract way of thinking about classification is that it is involved when the
output space 𝑌 consists of categorical variables.

In supervised learning, classification is a prevalent task. Exploiting pre-classified
data, the model detects patterns and structures in the input, learning the correct classi-
fication. The goal – as always in ML – is not just to learn patterns; instead, it consists
in extrapolating what is learned from the training to new and unseen data. There is
a broad spectrum of ML models to classify data ranging from simple decision trees to
extremely complex convolutional neural networks with billions of parameters. In ad-
dition, the scope of the application of these models is very broad, ranging from email
spam filters to super-human proficiency image classification.

The most straightforward classification problem is binary classification when the
target categories are just two. This thesis aims to apply aMLmodel to the task of select-
ing hypertritons from the background. It is, therefore, a binary classification problem.

4.3.1 Assessing Performances in Binary Classification Tasks
The confusionmatrix (CM) is the starting point for assessing themodel performances in
every binary classification task. The CM is a table layout that returns a representation
of a classifier performance. The matrix rows denote the instances of the true values,
while the columns denote the predicted values. The value 𝐶𝑖𝑗 - element on the 𝑖-th
row and 𝑗-th column - is the number of data points belonging to the 𝑖 class to which
the model assigned the 𝑗 class. Figure 4.4 reports an example of the confusion matrix.
It is worth mentioning that the CM is usually expressed in terms of two classes: Posi-
tive and Negative. This nomenclature derives from the medical diagnostic, a field that
extensively uses CM.

From the definition of the CM elements, follow that:

• TP is the number of True Positive that are the Positive data classified as Positive
by the model;

• FP is the number of False Positive that are the Negative data classified as Positive
by the model – therefore, a misclassification error;

• FN is the number of False Negative that are the Positive data classified as Negative
by the model – therefore, a misclassification error;

• TN is the number of True Negative that are the Negative data classified as Nega-
tive by the model.
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Figure 4.4: Layout of the confusion matrix.

This matrix is so important because starting from the matrix elements it is possi-
ble to define many metrics used to assess the performance of a classifier. Different be-
haviours characterise every metric in different conditions, and the choice of the specific
metric is task-dependent. It is worth mentioning some metrics which, either directly
or indirectly, are employed in this thesis:

• True Positive Rate or sensitivity: being P the number of Positive in the given
sample TPR = TP/P;

• True Negative Rate or specificity: being N the number of Negative in the given
sample TNR = TN/N;

• False Positive Rate or fall-out : FPR = FP/N = 1 − TNR.

Another widely used metric is the Receiver Operating Characteristic (ROC) curve and
the value of its Area Under Curve (AUC): the ROC AUC. Since it is the metric employed
in this thesis to assess the classification performance of the models, it is worth spending
a few words on the ROC AUC.

To explain the ROCAUC and how it is computed, it should be anticipated that many
classifiers do not assign the class directly to a data point. They assign a number – called
score in this thesis – to each data point that is proportional to the probability to belong
to the target class, assigned to the specific input. After that, the final classification
relies on an external decision of the classification threshold: the data points with a
score above the threshold are considered Positive, the others negative. The choice of
the classification threshold is not trivial and can be done with different approaches.
However, it must be said that usually, it is not done by the model itself but it is in
charge of the user.
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Figure 4.5: Example of a ROC curve.

The ROC curve is built by plotting the points with coordinates (TPR, FPR) as a
function of the classification threshold in a plane where FPR is the x-axis and TPR is
the y-axis. Figure 4.5 shows a basic example of a ROC curve. The AUC is the value
of the area between the curve and the x-axis. It ranges from 0.5, corresponding to a
random classifier, to 1 in the case of a perfect classifier. The advantages of using the
ROC AUC are basically two. It is not dependent on the specific threshold used for the
final classification, instead gives a global estimation of the performance. It does not
depend on the relative abundances of the classes in the data sample. It is for these
reasons that the ROC AUC is employed in the analysis described in this thesis.

4.4 BDTs for Classification
The ML model used in this thesis is the Boosted Decision Trees (BDTs). This section
briefly presents the BDTs, also giving some insight into its learning algorithm and the
optimisation of this class of models.

4.4.1 The BDTs and its learning algorithm
The BDTs [111] is a class of ML models widely employed for regression and classifi-
cation tasks. The BDTs is an ensemble model based on simple Decision Trees (DT). A
Decision Tree is a flowchart-like system of nodes, each defining a test on a single at-
tribute of the data points. In each test, the attribute is compared with a threshold value
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– or against a set of possible values if the attribute is categorical. After a series of tests,
each tree branch ends with a terminal node – usually called a leaf – that represents
a class label. From the root to the leaf, the paths followed by the data represent the
classification rules. Figure 4.6 shows a basic example of a DT, where the green leaves
represent the Positive class and the red leaves the Negative class.

Root

Node

Leaf

Node

Leaf

Node

Leaf

Node

LeafNode

Leaf Node

Node

LeafLeaf

LeafLeaf

Figure 4.6: Example of Decision Tree. Each node corresponds to a test on a single
attribute of the data points. After the node, the data are split according to the test
outcome. The green leaves are related to the Positive class, and the red leaves to the
Negative class.

The training algorithm of a DT is described in the following. The tree is built by
selecting recursively the attribute of the data that maximises the class separation after
the node split. The data are partitioned again and again by building new nodes until a
user-defined condition is reached.

A treewith enough nodes can always classify a training set correctly. However, such
a tree would have poor generalisation performances. Therefore a DT is considered a
weak learner.

The boosting technique [112] has been applied to the DTs to overcome this weak-
ness, obtaining a muchmore reliable and robust MLmodel: the Boosted Decision Trees.
The boosting sequentially builds a series of trees in which each one is built to take care
of the data points misclassified by the previous one. This is done by weighting the data
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points and giving a higher weight to the misclassified data. The trees are built until the
algorithm fulfils a user-defined condition. The final model is the ensemble of the single
trees, and the output of the model is a weighted mean of the single tree outputs, where
the weights are connected to the classification performances of each tree. The ensemble
model outperforms the single tree in generalisation power thanks to the boosting.

Root

NodeLeaf

LeafLeaf

Root

Node Leaf

LeafLeaf

+ + . . . +

Root

Node Leaf

Leaf Node

LeafLeaf

Figure 4.7: Example of a Boosted Decision Trees model. The single DTs are built
recursively to compensate for the previous tree classification error. The final model
is a succession of very simple DTs, each providing an output for each data point. The
output of the ensemble model is a weighted mean of the single outputs, and the weights
are connected to the classification performance of each tree.

The BDTs, like every ML model, have a set of parameters that are not tuned dur-
ing the training process called hyperparameters. These parameters steer the training
process and the regularisation of the model. They determine the maximum depth and
number of the DTs and many other aspects of their structure. Furthermore, they are in-
volved in regulating the random process used to diversify the single trees and its related
to the regularisation of the model.

It is crucial to tune the hyperparameters properly to take full advantage of the BDTs’
performances since the optimal set of hyperparameters is task-dependent.

4.4.2 Cross-Validation for hyperparameters tuning
There are many ways to perform the hyperparameter optimisation of a ML model.
However, all of them share the same basic process. The idea is to define a metric -
also called objective function - to assess the model out-of-sample performance and to
study how the metric variates as a function of the hyperparameters.

This process involves two crucial factors. The first is the definition of the objective
function; the second is the implementation of a strategy to explore the hyperparame-
ter space. The objective function is function 𝑜 ∶ 𝑆𝑃 ⟼ IR which returns a real value
for each set 𝑃 of hyperparameters belonging to the hyperparameter space 𝑆𝑃. In this
Section the cross-validation method to compute the metric and evaluate the model per-
formance employed in this analysis will be described. Instead, the following Section
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presents the Bayesian Optimisation, a state-of-the-art technique to efficiently explore
the hyperparameter space.

In Section 4.2.1, the performance assessment problem has already been introduced,
highlighting the necessity to use a validation set. The validation set allows estimating
the model performance and using this estimate to drive the model optimisation. The
test set is not involved in this process. It remains independent and is used after the
optimisation to evaluate the final model.

Cross-validation (CV) [113] is a class of model validation techniques for the general-
isation performance assessment. CV uses different, randomly-defined complementary
data portions to train and validate the model in various iterations. First, the training
set is split into 𝑘 subsets or folds. Then in 𝑘 iterations, the model is trained on 𝑘 − 1
subsamples and validated on the remaining one; the left-off sample is different at each
iteration. The validation produces an error/loss for the model in each iteration on a
different data set. Finally, the CV error/loss is the 𝑘-average of the single errors/losses.

The CV allows validating the model against all the available data, obtaining a reli-
able estimate of the generalisation performance. In fact, the multiple rounds of training
and validation using different data samples reduce the error/loss estimate variability.
Figure 4.8 shows an example of a 7-fold data partitioning for CV. The orange rectan-
gles represent the validation set left off the training in each iteration, while the blue
rectangles represent the training data in each iteration.

. .
 .

. .
 .

Training

Validation

Figure 4.8: Example of the train/validation data split in 7-fold cross-validation. Blue
rectangles represent the training data in each iteration, while the orange rectangle is
the validation set.

4.4.3 Bayesian Optimisation of the Hyperparameters
In this analysis, the hyperparameter optimisation strategy - i.e. the policy for the hy-
perparameter space exploration - is done using a Bayesian Optimization (BayesOpt)

74



4.4 – BDTs for Classification

algorithm [114].
In general, BayesOp allows to explore the domain 𝐷 of an unknown target function

𝑓( ⃗𝑥) – that is, however, possible to evaluate on any given value ⃗𝑥 ∈ 𝐷 – looking for
the maximum of 𝑓 in as few iterations as possible. The Bayesian strategy is to treat 𝑓
as a random function since it is unknown and assign a prior probability to it. The prior
encodes the beliefs about the function behaviour. The target function is evaluated on a
defined number (𝑁init) of random points, obtaining a set of observations of 𝑓. These ob-
servations are treated as data points to build the posterior distribution of functions that
best describes 𝑓. The posterior distribution is used, in turn, to construct an acquisition
function that estimates the most probable position of the maximum ( ⃗𝑥guess) based on the
available observations of the objective function. Then 𝑓 is evaluated on ⃗𝑥guess and the
posterior is updated with the new observation of 𝑓. The posterior improves with the
increase of the number of iterations, and the acquisition function becomes more confi-
dent about which regions in 𝐷 are worth exploring to find the maximum. This process
is repeated for a defined number of iterations (𝑁iter) or until it reaches a user-defined
condition.

There are many possible methods to define and build the prior/posterior distribu-
tions, the most common is the Gaussian Process [115], which is employed in this thesis.
Bayesian optimisation is a general method for function optimisation and can be easily
adapted to the hyperparameter optimisation task by identifying the target function of
the optimisation with the error/loss function of the ML model.

BayesOpt proved to be more efficient than other optimisation tools based on a ran-
dom sampling of the hyperparameter space. In fact, BayesOpt improves the description
of the target function in each step and uses this knowledge to improve the research of
the best hyperparameters. Therefore, in a defined number of iterations 𝑁iter, it ensures
having a better chance to find an optimal or near-optimal set of hyperparameters than
a random search in the same number of iterations.

75



76



Chapter 5

(Anti)Hypertriton Identification in
ALICE Reconstructing the 2-body
Decay

The previous chapter discussed the importance of a new and more precise measure-
ment of the hypertriton lifetime and Λ-separation energy. This thesis aims to perform
the most precise measurement of the hypertriton lifetime and revisit the BΛ value by
analysing the data collected with the ALICE experiment.

The starting point for these measurements is reconstructing the 2-body decay of the
(anti)hypertriton. First, the decay products are identified, and all the possible (anti)hy-
pertriton candidates1 are built by pairing the possible combinations of the decay prod-
ucts. Then, a set of BDTs Section 4.4 is trained on dedicated data to discriminate be-
tween signal (real hypertritons) and background (combinatorial background). Finally,
the BDTs are used to select the candidates, obtaining a high purity sample of the iden-
tified (anti)hypertritons.

ML-based classifiers are intended to boost the classification performances with re-
spect to standard kinematic and topological selections on the hypertriton candidates.
The goal is to obtain a high signal selection efficiency – that is the true positive rate
(TPR) or sensitivity – having a high background rejection efficiency – that is the true
negative rate (TNR) or specificity.

This chapter discusses the analysis methods used in these steps and the study of the
performances of the analysis method itself, using dedicated Monte Carlo data samples.

1In this thesis the term hypertriton candidate or 3
ΛH candidate refers to each pair of 3He + 𝜋− and

3He + 𝜋+ tracks, with the associated hypothetical decay vertex and mother particle.
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Note: naming convention

The CPT theorem [116] states that the physical laws are symmetric under the si-
multaneous operations of charge conjugation (C), parity transformation (P) and
time-reversal (T). This implies that particles and antiparticles have the samemass
and lifetime but opposite charge and magnetic moment. The CPT symmetry of
the hypertriton has been tested recently by the STAR Collaboration [117], so it
is fair to assume it as the working hypothesis of this thesis. Therefore, in this
analysis, hypertriton and antihypertriton are generically referred to as hypertri-
ton or 3

ΛH for simplicity. By the same principle, the hypertriton decay products
are referred to as 3He and 𝜋. Explicit reference is made only when necessary
to avoid ambiguity and explain particular differences. The same applies to the
other particle species mentioned in this chapter and the following ones. Unless
necessary, both particles and antiparticles are referred to by the particle name
and symbol for simplicity.

5.1 Data and Monte Carlo Samples
The work presented in this thesis is based on the data collected by the ALICE experi-
ment in the winter of 2018 during the LHC runs dedicated to the heavy-ion programme.
In this data taking period the LHC delivered Pb–Pb collisions at

√𝑠NN = 5.02TeV and
with a high interaction rate of 1–8 kHz for a total of 248 LHC runs [118].

The data were collected with a combination of a minimum bias (MB) trigger and an
online selection to enhance the recording of the most central (0–10 %) and semi-central
(30–50 %) collisions. The MB trigger is given by the coincident signals of the V0A and
V0C detectors, while the online selection is based on the sum of the signal amplitudes
of the V0 detectors.

An additional offline selection is applied to reduce possible biases from particular
data taking conditions and it is discussed inmore details in the next section (Section 5.2).
After the offline selection the data sample consist of about 2.79 × 108 MB events. Fig-
ure 5.1 shows the centrality distribution of the events used in this analysis, with the
0–10 % and 30–50 % centrality classes enhanced by the online event selection.

The Monte Carlo simulations2 play a crucial role in this thesis. The machine learn-
ing models deployed to select the hypertritons are trained and tested on a data and MC
simulation combination. Furthermore, the analysis performances and systematic un-
certainties study employ the MC data. The simulations are based on a complete and
detailed description of the geometry of the whole ALICE apparatus and the response of
the detectors. They are tuned to reproduce the experimental conditions of the different
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Figure 5.1: Centrality distribution Pb–Pb collisions at
√𝑠NN = 5.02TeV used in this

thesis.

detectors along the data taking period.
The Monte Carlo data are obtained by simulating a number of 3

ΛH decays on top of
Pb–Pb collisions that are simulated independently. The hijing generator [119] is used
for the underlying Pb–Pb event, while an ad-hoc generator is used for the injection
of the 3

ΛH decay in the event. In order to reproduce the centrality distribution of the
data (Figure 5.1), the MC sample has been split into three sub-sample according to the
centrality and each sub-sample has a flat centrality distribution. The three sub-sample
reproduce the 0–10 %, 10–30 % and 30–50 % centrality classes of the real data and are
composed by 1.2 × 105, 4 × 105 and 4 × 105 MC events, respectively.

Since little is known about the production spectra of the hypernuclei in HIC, their
kinematics is arbitrarily determined. The transverse momentum 𝑝T is extracted from
a uniform distribution in the 0 to 10GeV/c interval. Also the azimuthal angle 𝜑 and
the rapidity 𝑦 are extracted from an uniform distribution, in the 0 to 2𝜋 and −1 to 1
intervals, respectively. In each simulated Pb–Pb collision 20 3

ΛH and 20 3
ΛH decaying

into the 2-body channel are injected.
Once the kinematics of the particles is simulated they are propagated through the

ALICE apparatus using the GEANT3 transport code [53]. This includes both particles

2In this thesis the termsMonte Carlo data orMC data refer to Monte Carlo simulations used to mimic
real data.
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produced in the decay of the (anti)hypertritons and particles belonging to the underly-
ing event. The GEANT4 toolkit [54–56] is used to cross-check the performances of the
simulations and for the study of some components of the systematic uncertainties as
will be described later.

5.2 Offline Event Selection
Identifying the hypertriton decay in a heavy-ion collision is particularly challenging
due to the large combinatorial background. In order to reduce the background and
avoid the analysis of low-quality data, further selections on the recorded events are
applied offline. The set of offline event selections used in this analysis and described in
the following is the standard set used to analyse the Pb–Pb collisions in ALICE. Thus it
is tested and validated by many analyses, ensuring a high-quality sample of events.

The background events caused by the machine-induced beam-gas interactions are
discarded using the timing information provided by the ZDC (Section 2.3.5) and V0
(Section 2.3.3) detectors. After the primary vertex reconstruction – described in Sec-
tion 2.5.2 – the events with a reconstructed primary vertex outside a ±10 cm region
around the nominal position, along the beam direction, of the interaction point are re-
jected (|𝑉𝑧| < 10 cm). This ensures symmetric geometrical acceptance of the detectors,
allows each ITS layer to have a |𝜂| < 0.8 pseudorapidity coverage, and helps to discard
satellite collisions.

Because of the high interaction rate delivered by the LHC during the 2018 data tak-
ing, a significant part of the events, named as pile-up events, contains more than one
primary vertex. The pile-up events are rejected by applying a selection based on the
tracklets used to build the SPD vertex. After finding the first vertex, the algorithm tries
to build a new vertex using the SPD tracklets not pointing to the primary vertex. If a
second vertex is found, the selection is applied to the number 𝑛 of tracklets contributing
to the secondary vertex. If 𝑛 is larger than an event-dependent threshold, the event is
tagged as a pile-up event and rejected. Since previous analyses have shown a multiplic-
ity dependence of the false-positive rate of pile-up events, the threshold on 𝑛 depends
on the total number of tracklets in the event. It is set to 3 for the events with less than
20 tracklets, to 4 for the events with tracklets number ranging from 20 to 50 and for all
the remaining events it is set to 5. This criterion removes the pile-up due to multiple
vertices in the same bunch crossing3 and out-of-bunch pile-up within the SPD readout
time of 300 ns. However, this method based on the SPD vertex finding is not able to
identify pile-up vertices closer than 8mm along the beam direction due to the finite
spatial resolution of the SPD detector.

3The bunch crossing is defined as the time at which two particle bunches – whether they are protons
or ions – coming from the LHC beams cross each other at the ALICE interaction point.
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Other selections based on the correlations between centrality estimators help reduce
the effect of the pile-up and reject events with multiple vertices that were not rejected
by applying the SPD cut. The number of clusters in the innermost layer of the SPD (CL0)
correlates to the V0M centrality estimator. The outliers of the CL0-V0M correlation are
interpreted as residual pile-up events and discarded. Another selection is applied to
the correlation between the V0M amplitude and the number of SPD tracklets; this final
selection cleans up the correlation between the two centrality estimators. The outliers
are suppressed with a request of a 5 𝜎 selection on the correlations mentioned above
(Figure 5.2).

One apparent effect of the multiple vertices pile-up is the presence of spikes in the
distribution of the 𝑧 coordinate for the reconstructed vertices as visible in Figure 5.3a.
When the pile-up rejection based on the SPD vertex fails to resolve two vertices, the
vertex finding algorithm based on the full tracks information is not able to determine
the correct primary vertex position4. This effect is suppressed by a selection of the dif-
ference along the 𝑧 between the SPD vertex and the tracks vertex (|Δ𝑉𝑧|). For multiple
vertices events, |Δ𝑉𝑧| is large due to the incorrect vertex position determined by the
tracks algorithm. Therefore a selection based on the resolution of the two vertex finder
algorithm can reject multiple vertices events. In particular |Δ𝑉𝑧| < 10 𝜎𝑆𝑃𝐷 for the
SPD vertex and |Δ𝑉𝑧| < 20 𝜎𝑡𝑟𝑎𝑐𝑘𝑠 for the tracks vertex where 𝜎𝑆𝑃𝐷 and 𝜎𝑡𝑟𝑎𝑐𝑘𝑠 are
the resolutions of the SPD vertex and the track based vertex, respectively. Moreover,
|Δ𝑉𝑧| < 0.2 cm is required to improve the quality of the selected data sample.

Variable Selection

|𝑉𝑧| ≤ 10 cm
|V0M−CL0| ≤ 5 𝜎

|V0M−𝑛𝑡𝑟𝑎𝑐𝑘𝑙𝑒𝑡𝑠| ≤ 5 𝜎
|Δ𝑉𝑧| ≤ 20 𝜎𝑡𝑟𝑎𝑐𝑘

|Δ𝑉𝑧| ≤ 10 𝜎𝑆𝑃𝐷

|Δ𝑉𝑧| ≤ 0.2 cm

Table 5.1: Summary of the event selection applied for the pile-up rejection and to
increase the quality of the data sample.

Figure 5.2 shows the correlations between the centrality estimators V0M and CL0
and between the number of SPD tracklets and V0M before (Figure 5.2a and Figure 5.2c
respectively) and after (Figure 5.2b and Figure 5.2d respectively) the event selection. Fig-
ure 5.3, similarly, shows the 𝑉𝑧 and Δ𝑉𝑧 distributions before (Figure 5.3a and Figure 5.3c

4This behaviour could be explained by the failure of the analytical minimisation procedure used to
find the global minimum in the vertex finding process.
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Figure 5.2: Correlation plots between different centrality estimators. (top row) Corre-
lation between the CL0 centrality estimator – proxy for the number of clusters in the
SPD innermost layer – and the V0M centrality estimator; (bottom row) correlation be-
tween the number of tracklets reconstructed in the SPD and the V0M estimator. The left
column (a and c) shows the correlations before the event selection, while the right col-
umn (b and d) shows the correlations after the event selection, highlighting the cleaning
effect of the event selection.

respectively) and after (Figure 5.3b and Figure 5.3d respectively) the event selections.
Table 5.1 summarises the set of event selections used in this analysis.
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Figure 5.3: Distribution of the vertex position along the 𝑧 axis (top row) and the differ-
ence between the 𝑧 vertex reconstructed with the track based and the SPD only vertex
finding algorithms (bottom row). The left column (a and c) shows the distributions
before the event selection, where the spikes indicate pile-up events; while the right
column (b and d) shows the distributions after the event selection, highlighting the
cleaning effect of the event selection.

5.3 Track Selection
This section presents the set of selections applied for each track used in the analysis.
The precise tracking of the 3

ΛH decay products and their identification is of utter impor-
tance in this analysis. Therefore, these selections aim at rejecting low-quality tracks in
terms of momentum and d𝐸/ d𝑥 resolution and reliability of the track fitting procedure.

The tracks outside the pseudorapidity region |𝜂| < 0.8 are rejected to ensure using
only the geometrical region in which the ALICE detectors can perform the full tracking
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and provide the highest quality PID information. In addition, it is required to each
track to have at least 50 clusters in the TPC to guarantee a momentum resolution of
2 % and a ∼6 % resolution on the d𝐸/ d𝑥 used for the PID. A successful TPC refit is
also required for the selected tracks, and the 𝜒2 per TPC cluster, computed during the
track fitting procedure, is required to be ≤4. Finally, tracks coming from weak decays
involving neutral particles in the final state are rejected by a routine that looks for rapid
changes in the trackmomentum (kink topologies). Table 5.2 summarises the set of track
selections used in this analysis.

Track selections

|𝜂| < 0.8
𝑛TPCcluster ≥ 50
𝜒2/𝑛TPCcluster ≤ 4

Kink topology rejected

Table 5.2: Summary of the selections applied to the analysed tracks.

5.4 Reconstruction of the (Anti)Hypertriton Candi-
dates

Once the events and the tracks are selected, the next step in the analysis is to reconstruct
the 3

ΛH candidates. This is done in two phases, event-by-event.
First, the possible decay products belonging to the same event – that are the 3He,

3He, 𝜋+ and 𝜋− – are identified exploiting the PID capabilities of the TPC detector.
Additional selections, based on the study of the Monte Carlo data, are applied to the
tracks depending on the particle species. Then, the 3He + 𝜋− and 3He + 𝜋+ pairs are
matched combining – within the same event – each 3He track with every 𝜋− track
and each 3He track with every 𝜋+ track. Finally, for each pair the hypothetical decay
vertex5 and the hypothetical mother particle are reconstructed. Further selections are
then applied to reject unlikely decay vertices.

The purpose of this part of the analysis is to define the set of 3
ΛH candidates to be

used in the data analysis. The actual selection of the 3
ΛH is done in a further step with

the use of BDTs models. Therefore, the selection criteria applied at this level of the
analysis are quite loose, since it is crucial to have the highest number of real 3

ΛH – i.e.

5The decay vertex is usually referred as secondary vertex, as alreadymentioned in Section 2.5.2. There-
fore, in the context of this thesis decay vertex and secondary vertex are to be considered synonyms.
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high TPR – even at the cost of including a sizeable percentage of background –i.e. high
false positive rate (FPR). In fact, the background is widely rejected at the BDTs level.

In the following sections (Section 5.4.1 and Section 5.4.2) a detailed description of
the methods used to identify the decay products and to reconstruct the decay vertices
and the mother particles is given.

5.4.1 Identification of the Decay Products
The identification of the daughter particles6 is performed track-by-track, using the
TPC measurement of the specific energy loss (d𝐸/ d𝑥|𝑇 𝑃𝐶) in the detector gas (Sec-
tion 2.6.1).

The 𝑛𝜎𝑇 𝑃𝐶 variable is defined for each track as the deviation of the d𝐸/ d𝑥 mea-
sured in the TPC (𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) from the expected value for the species 𝑖 (𝑆𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑), in
terms of the detector resolution (𝜎𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑):

𝑛𝜎𝑇 𝑃𝐶 =
𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑆𝑖

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝜎𝑖
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

(5.1)

and it is used to select the sample of particles identified as belonging to the 𝑖 species. The
expected values of the TPC response as a function of 𝑝T for the different particle species
are parametrised as splines. The splines are stored in the ALICE Offline framework and
are shared among the different analyses.

The TPC is the primary detector used for the identification of low-to-mid momen-
tum particles in ALICE, and usually, a |𝑛𝜎𝑇 𝑃𝐶| ≤ 3 selection is applied to select a
defined species. This selection also leads to considerable sample contamination in the
case of case of multiple minimum ionising particles (MIP) in the considered momen-
tum range – e.g. 𝜋+,𝜋− and K+,K− for 𝑝 > 1GeV/c. The information provided by
other detectors is usually integrated to enhance the PID performance and suppress this
contamination. However, it is not crucial to avoid sample contamination in this phase
of the analysis since the discrimination between true hypertritons and fake candidates
is subsequently done at the BDTs level. Therefore a |𝑛𝜎𝑇 𝑃𝐶| ≤ 5 selection is applied
to both the species we are interested in, 3He and 𝜋.

The problem of the sample contamination concerns mainly the pions. The expected
d𝐸/ d𝑥|𝑇 𝑃𝐶 for the 3He, is very well separated from those of the other particle species
for 𝑝 > 1GeV/c, thanks to its electric charge 𝑧 = ± 2. The Bethe–Bloch formula
[4, Chapter 34.2] for the specific energy loss shows that the d𝐸/ d𝑥 depends on 𝑧2.
Contamination from the 4He is expected but is negligible because of its low production
yield. ALICE preliminary results [120] show that it is about 2 orders of magnitude
lower with respect to the 3He yield. In the low rigidity region, the specific energy loss

6The term daughter particles refers to decay products and the two terms are considered synonyms
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Figure 5.4: Transverse momentum distribution of the decay products – 3He in the left
panel (a) and 𝜋 in the right panel (b) – of the reconstructed (anti)hypertritons in the
Monte Carlo data.

of the 3H becomes similar to that of the 3He, thus leading to contamination in the low
momentum region.

Monte Carlo data shows that the 𝑝T spectrum of the 3He produced by the 3
ΛH decay

(Figure 5.4a) is bounded below by ∼ 1.7GeV/c. Thus, 𝑝T ≥ 1.7GeV/c is required
for the 3He tracks. The 𝑝T spectrum of the daughter (𝜋+)𝜋− (Figure 5.4b), similarly, is
bounded below at ∼ 0.1GeV/c and 𝑝T ≥ 0.1GeV/c is required for the (𝜋+)𝜋− tracks.
The DCA to primary vertex (DCApv) distributions, instead, are bounded above as shown
in Figure 5.8. Thus, DCApv < 8 cm is required for the 3He tracks and DCApv < 50 cm
for the (𝜋+)𝜋− tracks. Table 5.3 summarises the selections used for the identification
of the decay products.

5.4.2 Building the Hypertriton Candidates
Once all the possible daughter particles are identified within the same event, the 3

ΛH
candidates are built by associating a decay vertex and a mother particle hypothesis to
each daughter particles pair. A dedicated algorithm7 – based on the offline V0-finder al-
readymentioned in Section 2.5.2 and optimised for the hypertriton decay – reconstructs
the decay vertices.

First, the distance of closest approach between the daughter tracks (DCAdaug) is

7In the context of this thesis, the algorithm dedicated to the hypertriton decay vertex reconstruction
is called V0-finder. The name comes after the fact that the algorithm derives from the default ALICE
offline V0-finder.
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Figure 5.5: Distribution of the distance of closest approach of the decay products to the
primary vertex: 3He in the left panel (a) and 𝜋+,𝜋− in the right panel (b). Data refers
to the reconstructed Monte Carlo (anti)hypertritons.

Decay products identification

|𝑛𝜎𝑇 𝑃𝐶| ≤ 5
3He 𝑝T > 1.7GeV/c

DCApv < 8 cm

|𝑛𝜎𝑇 𝑃𝐶| ≤ 5

(𝜋+)𝜋− 𝑝T > 0.1GeV/c

DCApv < 50 cm

Table 5.3: Summary of the selections used for the identification of the decay products.

analytically computed. The pairs of tracks with DCAdaug > 2 cm are discarded since
the MC data show that the fraction of real hypertritons having a DCAdaug above this
threshold is negligible. Then, the initial decay vertex position is roughly estimated as
the midpoint of the minimum segment connecting the two tracks. In those events for
which the distance between the decay vertex and the primary vertex – the so-called
decay radius (𝑅) – is greater than 200 cm, the pairs of tracks are rejected. In order to
have a better momentum estimate, the daughter tracks are propagated to the point of
minimum distance to the preliminary vertex. Finally, the offline V0-finder – provided
by the ALICE offline framework – is used to compute the decay vertex position and to
reconstruct the four-momentum of the mother particle.
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At this point, further selections are required. The distance between the secondary
and the primary vertex is required to be less than 200 cm – using the best estimate
of the secondary vertex position instead of the preliminary estimate. The invariant
mass of the mother particle (𝑚3He𝜋) is required to be in the hypertriton mass region
2.9GeV/c2 ≤ 𝑚3He𝜋 ≤ 3.1GeV/c2.

The pointing angle (𝜃pa) is defined as the angle between the momentum of the
mother particle and the straight line connecting the primary and the secondary ver-
tex. If the hypothetical mother particle is generated in the primary vertex and decayed
in the secondary vertex, the momentum vector should point to the primary vertex and
𝜃pa is expected to be ∼ 0. Therefore, the cos(𝜃pa) is computed, and the candidates with
cos(𝜃pa) < 0.99 are rejected. Figure 5.6 represents a sketch of the 3

ΛH 2-body decay
where the topological variables used to select the candidates are highlighted.

Secondary vertex selections

DCAdaug < 2 cm

𝑅prel. < 200 cm

𝑅 < 200 cm

cos(𝜃pa) > 0.99

2.9GeV/c2 ≤ 𝑚3He𝜋 ≤ 3.1GeV/c2

Table 5.4: Summary of the selections applied during the reconstruction of the sec-
ondary vertex.

The 3He + 𝜋− pairs with the corresponding decay vertex and mother particle hy-
pothesis, passing all the selections described before – and summarised in Table 5.4 –
form the set of hypertritons candidates.

5.4.3 Pre-selection Efficiency
In this thesis, the set of selections used to determine the hypertriton candidates are
referred to as pre-selections. This specification is helpful to distinguish them from the
discrimination of the hypertriton candidates carried out by the BDTs and referred to as
ML-selections. The pre-selections include the track selection (Section 5.3), the PID cuts
(Section 5.4.1) and the selections concerning the reconstruction of the decay vertex
(Section 5.4.2).

The performance of the pre-selections is evaluated in the Monte Carlo data by cal-
culating the pre-selection efficiency (Effp.s.) that is the ratio between the number of the
MC 3

ΛH which has passed all the pre-selections (𝑁rec.) and the total number of the 3
ΛH
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DCApv (π)

Figure 5.6: Sketch of the 3
ΛH 2-body decay. The topological variables used to select the

candidates are highlighted.

generated in the MC (𝑁gen.). The Effp.s., as it is defined, do not only takes into account
the efficiency of the whole process of the decay reconstruction (Efficiency), but also the
geometrical acceptance of the ALICE detectors as well as their possible inefficiencies
(named as Acceptance). The pre-selection efficiency (Effp.s.) is defined as:

Effp.s. = Efficiency(𝑐𝑡) × Acceptance(𝑐𝑡) = 𝑁rec.(𝑐𝑡)
𝑁gen.(𝑐𝑡)

. (5.2)

Effp.s. is evaluated as a function of the particle proper time (𝑐𝑡) – that is closely linked
to the decay length 𝐿 by the relation 𝐿/𝛽𝛾 = 𝑐𝑡 – in order to take into account the
dependence on the 𝑐𝑡 and it is shown in figure Figure 5.7.

The Effp.s. assesses the performances of the reconstruction process, but it also plays
a key role in the lifetime measurement since it is necessary to estimate the absolute
number of (anti)hypertriton decays from the number of observed ones.
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Figure 5.7: Pre-selection efficiency as a function of the hypertriton proper time 𝑐𝑡.

5.5 Training and Test Set Preparation
This section presents and discusses the data used to train and test the BDTs models
employed to identify the real hypertritons among all the candidates.

The task of discriminating the real 3
ΛH from the combinatorial background is a bi-

nary classification problem (Section 4.3). The 3
ΛH represents the signal class, while the

combinatorial background – the only known background source for this channel – rep-
resents the background class.

In principle, the data used to train and test a supervised ML model and the data on
which themodel is applied should be homogeneous. However, a pure (anti)hypertritons
sample is not available for obvious reasons. Similarly, a sample of pure 3He + 𝜋− pairs
not originating in a 3

ΛH decay vertex is unavailable. It is necessary to use proxy data
capable of mimicking the properties of the signal and the background as faithfully as
possible.

For the signal, Monte Carlo data specially tuned for this purpose are used, while
for the background, like-sign pairs are employed. In the following sections these proxy
data are discussed inmore details (Section 5.5.1 and Section 5.5.2) as well as the Training
and Test Set (TTS) (Section 5.5.3).

5.5.1 The Signal Proxy: Monte Carlo Data
The Monte Carlo data used as a proxy for the signal are the simulated 3

ΛH already de-
scribed in Section 5.1 with appropriate modifications.
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As already mentioned, the momentum distribution of the simulated (anti)hypertri-
tons is uniform from 0 to 10GeV/c since it is handy for performance studies but do not
describe the actual distribution. The transverse momentum distribution of the hadrons
produced in HIC is usually described with a Blast-Wave (BW) model [27]. A precise
determination of the (anti)hypertritons momentum distribution, on the other hand, is
not available because of the lack of data needed for the BW fit. Therefore, the BW fit
to the 3He spectrum measured by ALICE [121] it is used as a surrogate.

The (anti)hypertriton spectrum is reshaped implementing a sampling method [122]
– also called accept-reject method – that uses the 3He BW as target function. Figure 5.8a
shows the flat 𝑝T distribution of the simulated 3

ΛH, while Figure 5.8b shows the shape
of the distribution after the reshaping.
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Figure 5.8: Transverse momentum distribution of the simulated 3
ΛH before (a) and after

(b) the reshaping performed by using a sampling method with the 3He BW fit as the
target function.

After the 𝑝T reshaping, the MC 3
ΛH pass through the same reconstruction process

used to reconstruct the real data and the pre-selections are then applied, ensuring ho-
mogeneity with respect to the real data. The number of MC (anti)hypertritons passing
the pre-selections and thus available for the TTS is 9.515 22 × 105.

5.5.2 The Background Proxy: Like-Sign Pairs
For the background component of the training and test set, the choice fell on the like-
sign pairs, which are 3He+𝜋+ and 3He+𝜋− pairs taken in the data. The electric charge
of the like-sign pairs ensures not to include any actual signal.

The like-sign method is commonly used for the background subtraction in dipion
[123] and dilepton [124–126] analyses at high energy. It can be shown that it is an exact
method in certain cases, while in general, it is an approximation of the combinatorial
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background. The like-sign method brings two main advantages to this analysis. First,
it ensures a sample size comparable to that of the data. Second, it provides a reliable
description of the data, especially the 𝑝T distribution. The 𝑝T distribution of the mother
particle – whether it is built from a like-sign or an unlike-sign pair – is dominated by
the 3He transverse momentum. So, building the background from the real 3He ensures
a reliable momentum distribution for the background.

Other methods, commonly used for combinatorial background subtraction, were
considered: the sidebands background and the event-mixing method.

The sidebands background consists in using the real 3He+ 𝜋− and 3He+ 𝜋+ pairs,
excluding those with the invariant mass in the 3

ΛH mass region. It is necessary to ex-
clude a wide region around the expected 3

ΛH peak, at least 3𝜎, to rule out any possible
signal pairs. The sidebands background is not a surrogate of the background, while
the like-sign and the event-mixing methods are. It is a portion of the real combinatorial
background, which is the great advantage of this method. On the other hand, excluding
the 3

ΛH invariant mass region prevents a representation of the background in the signal
region where the background reproduction is critical. The performances of the BDTs
may suffer from the lack of information about decay kinematics and topology in the
region of interest. Furthermore, excluding the 3

ΛH invariant mass region significantly
reduces the sample size. For both these reasons, the sidebands background has not been
used.

The event-mixing method consists in building the uncorrelated 3He+ 𝜋− pairs tak-
ing one particle species from one event – e.g. all the 3He identified in a specific event
– and the other particle species from a different event – e.g. all the 𝜋+ identified in an-
other event. This ensures having totally uncorrelated pairs. The main advantage of this
method is that it can provide an – almost – arbitrarily large background sample, just
increasing the number of events combinations. However, the event-mixing method has
two main disadvantages. First of all, it is costly in computing resources since it requires
keeping in memory many events for the mixing, while the usual workflow provides to
process the events one at a time. In addition, it requires to be appropriately tuned to
ensure a fair description of the background. Drijard et al., in an extensive review on
this method [127], pointed out that the kinematic cuts induced by the event and track
selections can lead to biases in the representation of the combinatorial background. To
avoid this problem, it is necessary to mix similar events only, but the definition of sim-
ilar events is not unique. In HIC, it is usual to mix only events belonging to the same
centrality class and with similar 𝑉𝑧, but, again, the definition of similar centrality and
𝑉𝑧 is not unique. Therefore, it is necessary to deeply examine the parameters of the
mixing procedure with a trial and error approach to ensure a fine description of the
background.

Hence, the choice of the like-sign pairs as combinatorial background proxy relies
on the simplicity, reliability, and sample size assured by this method compared to the
others. Like-sign pairs are processed with the same method used for the hypertriton
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candidates, and the same pre-selections are applied, ensuring homogeneity of the data.
The number of like-sign pairs passing the pre-selections and thus available for the TTS
is 5.055 × 107.

5.5.3 Features Variables Studies
Once the training and test set elements are defined, each element is processed to extract
the features used to train the BDTs. The features are also extracted for the real data the
BDTs will select – the application sample.

After the features extraction, the TTS and the application sample are stored in ROOT
files for a total size of ∼ 3GB. Thanks to the event selection and the pre-selections,
the data size at this point of the analysis is dramatically reduced with respect to the
whole data sample and do not require the WLCG and the ALICE central resources to
be processed. Therefore the selected data and the TTS are moved on a dedicated lo-
cal machine that provides computing resources for training, testing and applying the
BDTs. Furthermore, the use of local resources provided an agile and flexible solution
for developing the software employed for the ML part of this analysis.

The choice of the features takes place in several steps. The complete list of the
physical quantities measured for each data point was considered at first. Then, the un-
necessary features – for the classification performances of the BDTs – were excluded,
obtaining the list of features reported in Table 5.5. Some of them are related to the PID
of the daughter particles – the first four in Table 5.5 – while the others are related to
the decay topology. The distribution of the features in the signal and the background
sample is different, as shown in Figure 5.9, and it is possible to exploit these differences
to select the signal and reject the background. During the training, the BDTs learn how
to take full advantage of these differences to maximize the signal/background discrim-
ination.

Figure Figure 5.10 shows the correlations between the features, with the addition of
the invariant mass (𝑚3He𝜋) and the proper time (𝑐𝑡) of the mother particle. In particular
Figure 5.10a reports the correlations for the signal component and Figure 5.10b for the
background component and a comparison between the two figures clearly shows differ-
ences in the correlations. The BDTs can also exploit these deviations in the correlations
to optimize the classification.

The correlations between 𝑚3He𝜋 and the other features are pretty small, basically
irrelevant. It is essential because a feature strongly correlated with 𝑚3He𝜋 could lead to
an artefact peak in the invariant mass distribution of the hypertriton candidates. We
call this effect mass shaping and cross-checks are performed in this analysis to avoid
it. However, the absence of strongly 𝑚3He𝜋-correlated features suggests that no mass
shaping is expected. Furthermore, the 𝑐𝑡 of the mother particle is not included in the
training features since it is recommended not to include both the 𝑐𝑡 and the 𝑝T in train-
ing to avoid mass shaping.
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Figure 5.9: Comparison, for all the features, between the signal component (red) and
the background component (green water) of the training and test set.
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Figure 5.10: Correlation matrix of the features of the signal (a) and the background (b)
components of the training and test set. The invariant mass and the proper time of the
mother particle are also reported.
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Figure 5.11: Evolution of the probability density functions of the signal (scale of reds)
and the background (scale of blues) component of the TTS, in the 9 𝑐𝑡-bins, for the
DCAdaug (a) and the 3He DCApv (b) features. The p.d.f.s are derived with a KDE.
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Features variables Category

𝑛𝜎TPC
3He

particle id.
𝑛𝜎TPC 𝜋
𝑛clsITS

3He

𝑛clsPID
3He

DCApv
3He

decay topology

DCAXYpv
3He

DCApv 𝜋
DCAXYpv 𝜋
DCAdaug

𝑝T (mother)

cos(𝜃pa)

Table 5.5: List of the features with which the BDTs are fed.

The training and test set is finally split into 9 sub-samples – or 𝑐𝑡-bins – as sum-
marized in Table 5.6. In the table, the number of signal (Nsig.) and background (Nbkg.)
examples available for each 𝑐𝑡-bin is also reported. Then, for each subsample, a differ-
ent BDTs model is trained. The variation of some features distribution as a function of
the 𝑐𝑡 supports this choice. On the other hand, the 𝑐𝑡 is not included in the training;
therefore, the ML models could miss this dependence. Splitting the training helps the
BDTs catch and exploit the distributions’ peculiarities in the different 𝑐𝑡 bins.

For example, in Figure 5.11 the evolution of the DCAdaug (Figure 5.11a) and the
DCApv for the

3He track (Figure 5.11b) in the different 𝑐𝑡 bins are presented. In particu-
lar, the figures show a data-driven estimate8 of the probability density function (p.d.f.) of
the features for both the signal and the background, highlighting the variations in the
p.d.f. of the signal sample. It is reasonable to suppose that a dedicated model for each
𝑐𝑡 bin would better exploit the features. This approach actually ensures a total number
of extracted hypertritons larger than by training a single model for the full ct range.
Finally, for each 𝑐𝑡-bin, the training and test set is split into two subsamples. One half
is to train the model; the other one is dedicated to testing the performances. The split
is done after a random shuffling of the data sets, avoiding any bias induced by the data
ordering.

8The p.d.f. are obtained from the TTS with a Kernel Density Estimation (KDE).

97



(Anti)Hypertriton Identification in ALICE Reconstructing the 2-body Decay

Bin number 𝑐𝑡 interval (cm) Nsig. Nbkg.

1 1 < 𝑐𝑡 ≤ 2 240 000 233 000

2 2 < 𝑐𝑡 ≤ 4 409 000 217 000

3 4 < 𝑐𝑡 ≤ 6 301 000 122 000

4 6 < 𝑐𝑡 ≤ 8 224 000 80 000

5 8 < 𝑐𝑡 ≤ 10 171 000 65 000

6 10 < 𝑐𝑡 ≤ 14 222 000 110 000

7 14 < 𝑐𝑡 ≤ 18 123 000 105 000

8 18 < 𝑐𝑡 ≤ 23 78 000 134 000

9 23 < 𝑐𝑡 ≤ 35 58 000 500 000

Table 5.6: List of the 𝑐𝑡 bins in which the training and test set is split. A dedicated ML
model is trained for each bin. The number of signal and background available examples
(Nsig. and Nbkg. respectively) is also reported.

5.6 Training and Testing the BDTs
According to Section 5.5.3, the TTS is split into 9 𝑐𝑡-bins, and for each one, a different
BDTs model is trained. The procedure for the training is the same for each model and
takes place in two stages: First, a series of iterative training is done with training and
validation sets of reduced size to optimise the hyperparameters of the BDTs. Then a
final training on the whole training set is done using the optimal set of hyperparam-
eters. After the training, the models are evaluated by estimating their out-of-sample
performances on the test set.

The training, optimisation and testing phases of this analysis have been carried out
with the help of the hipe4ml library. hipe4ml is a minimal environment to simplify
some common aspects of the machine learning analysis in heavy-ion physics. In par-
ticular, it provides a unique interface to load and manage ROOT files in Python and
to train, optimise, test and deploy different ML models on heavy-ion data. It is dis-
tributed under the free copyleft licence GNU General Public License v3 [GPL] and it
is freely available on PyPi [128]. hipe4ml born from the idea to share and reuse the
code developed independently by different ALICE members, including myself, for their
analyses. The skeleton of the project was indeed the code developed for this analysis.
Now it is maintained and developed by a team of 7 people, including myself, and it is
used by 15+ analysers for their work. In particular, I took care of the package’s tests.
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5.6.1 Models Training and Hyperparameter Optimisation
As already mentioned in the previous sections, the machine learning model used in this
analysis is the Boosted Decision Trees, and in particular, the XGBoost [129] implemen-
tation of such model. The website of the XGBoost project declares: “XGBoost is an
optimised distributed gradient boosting library designed to be highly efficient, flexible
and portable”. It implements a parallel tree boostingmodel under the Gradient Boosting
framework. XGBoost is widely used in the data science field to solve many problems in
a fast and accurate way. In fact, it has been chosen by many teams of machine learning
competitions in their winning solutions [130].

The XGBoost model has a set of hyperparameters that rules the learning process
and helps to avoid the overfitting, the situation in which the models learn how to repro-
duce the data in the training set too well at the cost of poor performances on the test
set. A sub-set of the hyperparameters for the optimisation and an optimisation domain
for each were defined. The choice relies on the documentation provided by XGBoost
on its operation and heuristic considerations. For the remaining hyperparameters, the
default value was used. Table 5.7 reports the list of the optimised hyperparameters,
together with their optimisation domain and the optimal value found with the optimi-
sation process. It also provides a brief description of the hyperparameters to explain
their function in the training algorithm. A detailed description is available in the official
XGBoost documentation.

The output function is set to binary:logistic that is the standard configuration
for binary classification problems. In this configuration, the BDTs return for each data
point an output value proportional to the probability to belong to a defined class, the
signal class in this analysis. Furthermore, the histmethod is used as the tree-building
algorithm. This algorithm discretises the continuous variables in histograms. The node
splits are then performed on the histograms rather than on the variable. This method
speeds up the training and does not compromise the model performances for variables
that are physical measurements with a finite resolution.

The hyperparameter optimisation is done using the Byesian Optimisation described
in Section 4.4.3 and implemented in the BayesianOptimization library [131]. The tar-
get function 𝑓 optimises the ROC AUC score computed with a 5-fold cross-validation
(Section 4.4.2) as a function of the hyperparameters. The optimisation has been done
independently for each model – i.e. for each 𝑐𝑡-bin –, however the set of optimal val-
ues 𝐻opt found by the algorithm are the same for all the models and are reported in
Table 5.7. The models are then re-trained on the whole training set with the hyperpa-
rameters 𝑃opt and the ROC AUC score is computed on the test set. The ROC AUC score
obtained for each model is reported in Table 5.8.
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Name Description Opt. domain 𝐻opt value

max_depth
maximum number of nodes
from the root to the deepest
leaf of the tree

[5, 20] 13

learning_rate
makes the model more
robust by shrinking the
weights on each step

[0.01, 0.3] 0.0982

n_estimators
number of trees composing
the model

[50, 500] 181

gamma

minimum reduction of the
loss function required to
make a further split on a
leaf node

[0.3, 1.1] 0.4467

min_child_weight
minimum number of
instances required to create
a new node in the tree

[1, 12] 5.75

subsample

fraction of randomly
sampled training data used
to growing the trees to
prevent overfitting

[0.5, 0.9] 0.74

colsample_bytree
subsample ratio of columns
when constructing each
tree to prevent overfitting

[0.5, 0.9] 0.57

Table 5.7: List of the XGBoost model hyperparameters included in the optimisation.
In addition, a brief description of their role in the model’s training is provided with the
optimisation domain and the optimised value.

5.6.2 Models Performances
Once the models are trained, they return a BDTs score for each given data point. As
already mentioned, the BDTs score is connected to the probability the model assign to
the data point to belong to the signal class. Therefore, the higher the BDTs score, the
higher the probability of being a true hypertriton according to the BDTs. Figure 5.12a
shows the distribution of the BDTs score obtained in the training set (markers) and the
test set (filled area) for both the signal (red) and the background (blue). The figure refers
to themodel trained for the third 𝑐𝑡-bin (4 < 𝑐𝑡 ≤ 6 cm), while the figures referred to all
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Bin number ROC AUC score

1 0.996 199

2 0.997 432

3 0.997 857

4 0.997 736

5 0.997 850

6 0.998 115

7 0.998 104

8 0.998 478

9 0.999 066

Table 5.8: ROC AUC score for each optimised model, computed on the test set.

the analysed 𝑐𝑡-bins can be found in Appendix A and they exhibit a similar behaviour.
This figure highlights two significant aspects of the model performances.
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Figure 5.12: (a) distribution of the BDTs score in the training set (markers) and the test
set (filled area) for both the signal (red) and the background (greenwater). (b) sensitivity
(red) and specificity (blue) of the model selection as a function of the threshold on the
BDTs score. The sensitivity and the specificity are estimated on the Test Set. Both the
plots are referred to the 2 < 𝑐𝑡 ≤ 4 cm 𝑐𝑡-bin.
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First, the distributions in the training set are well reproduced in the test set, except
for minor discrepancies in the tails – note the log-linear scale of the figure. This means
that the models can – generalise – well, in the sense that they can reproduce the clas-
sification pattern learned in the training set also on new data, the test set. There is no
overfitting a part for the minor discrepancies in the tails. It was tried to limit the model
complexity by reducing the number of trees by hand, a sort of early stop regularisation
[132]. It reduced the discrepancies in the tails and the ROC AUC score simultaneously;
basically, the regularisation penalised out-of-sample performances. Therefore this level
of overfitting is not pathological since it does not affect the performances on the test
set. In addition, the overestimate of the models’ capabilities observed in the training
set is not taken into account in any aspect of the analysis. Therefore the conclusion is
that the models are well trained, and the slight discrepancies between the performance
on the train set and the test set are under control.

Second but not least, the distribution of the signal examples is well separated from
that of the background examples. It is the crux of this analysis since it means that the
BDTs have an excellent classification power. More specifically, when the hypertriton
candidates are processed by BDT, they are assigned a score. Putting a threshold (Th) on
the BDTs score and rejecting all the candidates with scores under the threshold makes
it possible to reject most of the background without losing too much signal. The choice
of the optimal threshold (Thbest) is, thus, crucial for the hypertriton selection.

Figure 5.12b shows the BDTs signal selection efficiency (EffBDTs) and the background
rejection efficiency as a function of the threshold on the BDTs score of one of themodels
– in particular, the model of the 𝑐𝑡-bin 4, the figures related to the other models can
be found in Appendix A. From this picture, it is clear that the choice of the Thbest is
not trivial. It is a matter of balancing the signal’s preservation and maximising the
background rejection. However, in the region around 5, it is possible to achieve a good
trade-off between the two. The following section (Section 5.6.3) presents the algorithm
responsible for the choice of the BDTs score threshold. It implements a data-driven
optimisation and provides a reliable method to determine the BDTs score threshold for
each model.

5.6.3 BDTs Selection Optimisation
The BDTs selection optimisation method relies on the estimation of the expected statis-
tical significance 𝑆 for the hypertriton signal as a function of the threshold on the BDTs
score. Since the number of expected hypertritons is different for each 𝑐𝑡-bin, the selec-
tion threshold of each model is optimised independently. The statistical significance is
computed as:

𝑆 = √ 𝑁S

𝑁S + 𝑁B
(5.3)

where 𝑁S and 𝑁B are the signal and background counts respectively.
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The significance 𝑆 is estimated for 1000 values of Th corresponding to as many
EffBDTs values, from 0.0 to 1.0 in steps of 0.001. For each Th, the number of expected 3

ΛH
is computed starting from theALICEmeasurement of the hypertriton production in Pb–
Pb collisions [98]. Then, correction factors are applied to consider the different collision
energy, the number of analysed events, and the considered 𝑝T and 𝑐𝑡 intervals under
analysis. The expected signal 𝑁S derives from the number of expected 3

ΛH corrected for
the EffBDTs corresponding to the considered threshold.

The background counts 𝑁B, instead, are estimated from the data. A region of inter-
est (RoI) in the invariant distribution of the candidates is defined as the ±3𝜎 interval
around the hypertriton mass – both mass and 𝜎 come from MC simulations. The data
with invariant mass in the RoI are excluded from the analysis to prevent possible bias.
Then the remaining data, the data in the sidebands that are only background, are passed
to the BDTs and selected according to Th. The selected data are fitted with a 2nd-degree
polynomial. The fit function allows extrapolating the number of expected background
counts 𝑁B in the RoI. Finally, 𝑆 is computed, and the procedure is repeated for the
next Th value. After estimating the 𝑆 for each Th value, the threshold that maximises
𝑆 × EffBDTs is chosen as Thbest.

Figure 5.13 shows an example of this computation referred to the 2 < 𝑐𝑡 ≤ 4 cm
𝑐𝑡-bin. The right figure presents the estimate of 𝑆. The signal counts (orange points)
are referred to as pseudo-data, while the blue points represent the real hypertriton can-
didates outside the RoI, selected with threshold Thbest and fitted with the 2nd-degree
polynomial (red line). The red shaded area represents the background extrapolated in
the RoI (𝑁B), and the orange area corresponds to the estimated number of hypertritons
(𝑁S). The plot on the left, instead, shows 𝑆 × EffBDTs as a function of the 1000 Th val-
ues in which it is computed, with the related uncertainty. In Table 5.9 the Thbest values
found with this method are reported for each 𝑐𝑡-bin. Those values are used to reject all
the hypertriton candidates with lower scores in the related bin.
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Figure 5.13: Both the figures refer to the BDTs selection optimisation procedure in
the 2 < 𝑐𝑡 ≤ 4 cm 𝑐𝑡-bin. (a) expected 𝑆 × EffBDTs as a function of the Th, the ±1𝜎
uncertainty on the estimation derives from the uncertainty on the expected number of
3
ΛH. (b) the invariant mass distribution of the data in the sidebands (blue points) – used
to extrapolate the background in the signal region – is represented together with the
pseudo-data used as an estimate of the signal (orange points), properly reshaped. The
plot is related to the Thbest value obtained for this 𝑐𝑡-bin.

Bin number Thbest

1 5.43
2 5.83
3 5.61
4 5.45
5 5.74
6 5.47
7 5.21
8 5.02
9 5.56

Table 5.9: Thbest obtained for each model.
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Chapter 6

Measurement of the Hypertriton
Lifetime and 𝐵Λ

6.1 Signal Extraction
After estimating the Thbest values by using themethod presented in the previous section
(Section 5.6.3), the 3

ΛH candidates are split into bins according to their 𝑐𝑡 (see Table 5.6
for the definitions of the bins) and passed to the corresponding BDTs. The BDTs assign
the score to each candidate. If the score is below the Thbest, the candidate is rejected.
Finally, the invariant mass distribution of the selected candidates (𝑚3He𝜋) is built for
each 𝑐𝑡-bin.

The invariant mass distributions are then fitted to extract the number of observed
hypertritons and the mass value. The fit is done using the RooFit package [133], a
library designed to build complex fit models in the ROOT environment. RooFit al-
lows using many different classes of functions to build p.d.f.s and to combine them to
build composite models that are arbitrary linear combinations of individual p.d.f.s. The
composite model used to fit the invariant mass distributions is:

𝑀(𝑥) = 𝑓 ⋅ 𝑆(𝑥) + (1 − 𝑓) ⋅ 𝐵(𝑥) (6.1)

where 𝑀(𝑥) is the fit model, 𝑆(𝑥) is the p.d.f. of the signal component, 𝐵(𝑥) is the
p.d.f. of the background component and 𝑓 is the fraction of the events that belongs
to the signal. The normalization of the model is automatically kept into account by
RooFit. The signal p.d.f. 𝑆(𝑥) is derived from the MC data. The MC hypertritons are
split according to the 𝑐𝑡 and selected by the BDTs with the same procedure adopted for
the real data. Then, in each 𝑐𝑡-bin, the invariant mass distribution of the selected MC
hypertritons is used to build 𝑆(𝑥) with an adaptive KDE implemented in RooFit [134].
For the background model 𝐵(𝑥) a first degree polynomial is used.

The choice of the KDE for 𝑆(𝑥) is due to the necessity to faithfully model the signal
component of the data in order to obtain the mass value with extremely high precision.
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Figure 6.1: The invariant mass distribution of the MC hypertritons after the recon-
struction is compared with the p.d.f. obtained with the KDE and a gaussian p.d.f. fitted
to the distribution for the (a) 1 ≤ 𝑐𝑡 < 2 cm and (b) 23 ≤ 𝑐𝑡 < 35 cm 𝑐𝑡-bins. The
gaussian is clearly not suitable for the description of the invariant mass distributions.

The study of the MC data shows that, after the reconstruction process, the invariant
mass distribution of the selected 3

ΛH does not have a Gaussian shape (Figure 6.1). Hence
a data-driven p.d.f. based on the MC data provides a more reliable model for the signal.
Finally, an unbinned maximum likelihood fit is performed for each 𝑐𝑡-bin as presented
in Figures 6.2 and 6.3. The figures also report the value of the 3

ΛH mass (𝑚3
ΛH

) and the
number of observed 3

ΛH (Nobs) for each fit. The following paragraphs provide more
details about the procedure adopted to estimate 𝑚3

ΛH
and Nobs from the invariant mass

fit.

3
ΛH mass value The only parameter estimated in the fit of a non-parametric p.d.f. to
a given data set is, in general, the normalisation. In fact a non-parametric p.d.f. can not
slide with respect to the independent variable. RooFit provides a tool to allow such
a p.d.f. to slide along the independent variable to adjust the peak position to the data
correctly. This is done by adding a fit parameter Δ𝑚 defined as follow:

Δ𝑚 = 𝑚MCrec − 𝑚fit, (6.2)

where 𝑚MCrec is the value of the mass corresponding to the peak in the data used to
build the KDE – the reconstructed and ML-selected 3

ΛH in this case, hence the name
– and 𝑚fit is the mass value corresponding to the peak of the fitted data. Basically
RooFit simultaneously fits the MC data to build 𝑆(𝑥) finding 𝑚MCrec and the real data
with 𝑆(𝑥) finding 𝑚fit. Therefore the parameter estimated in the simultaneous fit is
Δ𝑚.
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In theMonte Carlo data, the hypertritons are generatedwith amass value of𝑚MCgen. =
2.991 31GeV/c2. After the reconstruction, the 𝑚3He𝜋 distribution of the ML-selected
hypertritons shows a gaussian-like shape with the peak at 𝑚MCrec, where the value of
𝑚MCrec depends on the 𝑐𝑡-bin. Therefore, a systematic error equal to 𝑚MCgen − 𝑚MCrec
is expected – referred as reconstruction shift in this thesis. The measured hypertriton
mass 𝑚3

ΛH
is derived from the fitted parameter Δ𝑚 by using a formula that takes into

account the correction for the reconstruction shift and it is reported in the following:

𝑚3
ΛH

= 𝑚MCgen − Δ𝑚 = 𝑚MCgen − (𝑚MCrec − 𝑚fit)
= 𝑚fit + (𝑚MCgen − 𝑚MCrec).

(6.3)

number of observed 3
ΛH The number of observed 3

ΛH (Nobs) derives from the invari-
ant mass fit by multiplying the parameter 𝑓 of 𝑀(𝑥) for the number of selected 3

ΛH
candidates.
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Figure 6.2: Invariant mass distribution of the 3
ΛH and 3

ΛH candidates fitted with the
composite model (blue line) used to extract the number of observed hypertritons and
the mass value. The figures refers to the first 4 𝑐𝑡-bins.
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Figure 6.3: Invariant mass distribution of the 3
ΛH and 3

ΛH candidates fitted with the
composite model (blue line) used to extract the number of observed hypertritons and
the mass value. The figures refers to the last 5 𝑐𝑡-bins.
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6.2 Lifetime Measurement
The method used to measure the 3

ΛH and 3
ΛH lifetime is the so-called d𝑁/ d𝑐𝑡 spectrum

method. The method relies on the exponential fit of the number of 3
ΛH and 3

ΛH 2-body
decays over 𝑐𝑡. The number of the 2-body decays as a function of the 𝑐𝑡 (d𝑁/ d𝑐𝑡)
derives from the number of observed decays (Nobs) in the different 𝑐𝑡-bins. Those num-
bers are then corrected with appropriate correction factors, considering the absorption
in the detectors material, the pre-selection efficiency and the BDTs efficiency. Finally,
the exponential fit of the d𝑁/ d𝑐𝑡 distributions provides the mean lifetime parameter
𝜏( 3

ΛH). The d𝑁/ d𝑐𝑡 spectrum is the method used by the ALICE Collaboration for pre-
vious hypertriton lifetime measurements [98, 100].

While the corrections for the pre-selection and the BDTs efficiencies are trivial,
the absorption correction needs a detailed discussion. The following section provides
insights into the calculation of the absorption correction.

6.2.1 Absorption Correction
The absorption correction (𝐶abs) is evaluated by simulating the passage of the 3

ΛH through
the detector with GEANT4. In GEANT4 the transport of both 3

ΛH and 3
ΛH is not distin-

guishable from that of the triton, underestimating the hypernuclei cross-section in the
detector material. Therefore, the 3He is used as a proxy for the 3

ΛH to study the absorp-
tion probability in the detectors.

According to [135] the 3
ΛH inelastic cross-section in the detector material is expected

to be ≈ 1.5 times that of the 3He (𝜎
inel.

3He ). Thus, dedicated Monte Carlo data with
injected 3He are used to estimate the absorption correction.

The 3He 𝑝T distribution has been reshaped with a sampling method – as was done
for the MC hypertritons (Section 5.5.1) – to reproduce the measured distribution [121]
and the passage of the 3He has been simulated in GEANT4with an inelastic cross-section
increased by a factor 1.5 with respect to the nominal value. Each 3He is assigned with
a decay length (𝑙) extracted from an exponential distribution with parameter 𝐿3

ΛH
=

7.25 cm. 𝐿3
ΛH

represents the hypertriton mean decay length measured by ALICE in
2019 [100]. After travelling a distance 𝑙 the 3He is considered decayed. Thereby the
3He mimics the hypertriton decay. Then, if the 3He has any inelastic interactions with
the material before getting to 𝑙 it is considered absorbed. The fraction of absorbed 3He
defines the absorption probability 𝑃(abs) = Nabs/Ntot, where Nabs is the number of
absorbed 3He and Ntot is the number of total 3He. The absorption correction 𝐶abs is
finally defined as 𝐶abs = 1/(1 − 𝑃(abs)). Figure 6.4 shows 1 − 𝑃(abs) estimated in the
𝑐𝑡-bins used in this analysis.
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Figure 6.4: The inverse of the absorption correction 𝐶abs as a function of 𝑐𝑡 in the 9
𝑐𝑡-bins used to build the d𝑁/ d𝑐𝑡 spectrum in this analysis.

6.2.2 d𝑁/ d𝑐𝑡 Spectrum
The d𝑁/ d𝑐𝑡 spectrum is obtained fromNobs(𝑐𝑡), the number of observed 2-body decays
in a defined 𝑐𝑡 interval. In this analysis it is defined through the following formula:

d𝑁/ d𝑐𝑡 = Nobs(𝑐𝑡) ⋅ 𝐶eff. ⋅ 𝐶BDTs ⋅ 𝐶abs ⋅ 1
Δ𝑐𝑡

(6.4)

where 𝐶eff. = 1/Effp.s. and 𝐶BDTs = 1/EffBDTs are the pre-selection and the BDTs ef-
ficiency respectively, 𝐶𝑖

abs follows the definition provided in the previous section and
1

Δ𝑐𝑡 is the width of the 𝑐𝑡 interval. The obtained d𝑁/ d𝑐𝑡 spectrum is fitted with an
exponential function

𝑁(𝑐𝑡) = 𝑁0 ⋅ 𝑒− 𝑐𝑡
𝑐𝜏 (6.5)

where𝑁0 is the normalisation of the parameter and 𝜏 is themean 3
ΛH lifetime. The result

of the fit is shown in Figure 6.5 where the blue dots represent the d𝑁/ d𝑐𝑡 distribution
and the red line the fit function.

6.2.3 Systematic Uncertainties
The systematic uncertainties originate from the 3

ΛH selection, the signal extraction and
the input cross-section used to estimate the 3

ΛH absorption in the detector. The different
contributions are considered uncorrelated, and the total uncertainty derives from the
quadratic sum of the individual contributions. A detailed description of each contribu-
tion to the total systematic uncertainty is reported in the following.
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Figure 6.5: Corrected number of the hypertritons 2-body decays (blue points) fitted to
extract the mean lifetime parameter with an exponential function (red line). The error
bars represent the statistical uncertainties on the number of hypertritons dominated by
the uncertainty onNobs. The reported uncertainty on the mean lifetime is the statistical
uncertainty obtained from the fit.

3
ΛH selection and signal extraction

The impact of the BDTs selection and the signal extraction in determining the 3
ΛH life-

time is assessed with a multi-trial approach, allowing to estimate the related systematic
uncertainty.

For each 𝑐𝑡-bin 21 possible thresholds on the BDTs score and 3 possible fit models
for the signal extraction are considered. The 21 thresholds corresponds to a span of
±10 % for the efficiency range around the Thbest value with 1 % steps. This range
ensures a good signal extraction for all the thresholds. The 3 fit models, instead, differs
for the p.d.f. used for the background component 𝐵(𝑥). In addition to the first-degree
polynomial, a second-degree polynomial and an exponential function are used. Those
options for 𝐵(𝑥) ensure a fair background description in the signal region.

Considering 21 possible BDTs selections and 3 fit models, there are 63 possible sig-
nal extraction configurations for each 𝑐𝑡-bin. It is possible to obtain a lifetime measure-
ment by choosing a signal extraction configuration in each bin and then following the
procedure described in Section 6.2.2 to compute the lifetime starting from Nobs. There-
fore, having 9 𝑐𝑡-bins and 63 configurations in each bin, there are 639 possible and
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independent lifetime measurements. The variation of the lifetime measurement with
the different signal extraction configurations provides an estimate of the systematic
uncertainties related to the candidates’ selection and the signal extraction. The huge
number of available combinations – 639 ≈ 1.6 × 1016 – makes the evaluation of all
the possible measurements unfeasible. Therefore, 105 randomly sampled combinations
have been considered. Figure 6.6 shows the distribution of the lifetime values obtained
for the considered combinations. The standard deviation (RMS) of the distribution rep-
resents the systematic uncertainty related to the 3

ΛH selection and signal extraction, and
it amounts to 5.3 ps.

Mean   0.1669±  263.1 
Std Dev     0.118±  5.278 
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Figure 6.6: Distribution of the 105 lifetime values obtained by varying the 3
ΛH candi-

dates selection and signal extraction configuration in each 𝑐𝑡-bin. The variations of the
configurations are randomly sampled in a ±10 % range around the EffBDTs value. The
background model used for the fit of the invariant mass distribution is also randomly
chosen between a first degree polynomial, a second degree polynomial and an expo-
nential. The variations in each 𝑐𝑡-bin are independent.

Absorption Correction

As already mentioned, the absorption correction derives from the 3He cross-section in-
creased by a factor 1.5, employed as a proxy for the 3

ΛH cross-section in the detector
material. The systematic uncertainty related to this correction is estimated by com-
puting an absorption correction with the nominal 3He cross-section and measuring the
corresponding lifetime. Then this lifetime value is compared to the one found using the
increased 3He cross-section. The absolute difference between the two measurements is
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3 ps and represents the estimated systematic uncertainty associated with the absorption
correction.

Table 6.1 summarises the contributions to the systematic uncertainty.

Systematic uncertainties

Source Value

Candidates selection
and signal extraction

2 %

Absorption correction 1.1 %

Total 2.3 %

Table 6.1: Summary of the systematic uncertainties for the lifetime measurement. The
total uncertainty is the quadratic sum of the single sources.

6.2.4 Results
The value of the 3

ΛH lifetime measured in this thesis is:

𝜏( 3
ΛH) = 261 ± 10 (stat.) ± 6 (syst.) ps. (6.6)

With a relative statistical uncertainty of ∼ 0.038 %, this result increases the preci-
sion of the ALICE measurement of a factor ∼ 4. Regarding the relative systematic un-
certainty, the improvement with respect to the previous ALICE measurement amounts
to a factor ∼ 3. The ML selection simplified the systematic uncertainty estimation
related to the hypertriton selection. The BDTs maps the features - 11 in this case -
in just one selection variable, the BDTs score. This allowed estimating the systematic
uncertainty by only varying the BDTs score selection instead of varying 11 different
selections independently. Furthermore, the multi-trial approach implemented for the
exploration of the BDTs score space allows sampling of a considerable number of se-
lection configurations (105), making the estimate robust.

The systematic uncertainty of the previous lifetime measurement, published by AL-
ICE in 2019, was dominated by the contribution of the absorption correction estimate.
The absorption correction contribution has been reduced with the improved method
based on the 3He cross-section. In the present analysis, with a relative value of ∼ 1.1 %,
it is not prevalent; indeed, it has an almost negligible contribution to the total systematic
uncertainty.

The extremely small statistical and systematic uncertainties make this measurement
the most precise ever achieved. Thanks to the increased number of events collected
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by ALICE and the innovative analysis methods, including the ML-based selection of
the hypertriton and the enhanced systematic uncertainty estimate, it was possible to
achieve this outstanding result.

6.3 𝐵Λ Measurement
The Λ-separation energy (BΛ) of the hypertriton is calculated by using the following
formula:

BΛ = 𝑚d + 𝑚Λ − 𝑚3
ΛH

(6.7)

where 𝑚d is the mass of the deuteron (d), 𝑚Λ is the mass of the Λ baryon and 𝑚3
ΛH

is
the mass of the 3

ΛH. Therefore the determination of the BΛ relies on the measurement
of the 3

ΛH mass.
The deuteron mass used in this analysis is that recommended by the Committee on

Data of the International Science Council (CODATA) [136], while the Λ mass is taken
from the PDG [4]. In Table 6.2 the values of the masses are reported. The following
sections discuss and illustrate the 3

ΛH mass measurement achieved in this analysis and
the related BΛ value.

The accuracy of the invariant mass fit and the candidates’ reconstruction are crucial
elements to reaching a highly accurate and reliablemassmeasurement. Therefore, these
aspects of the analysis have been cross-checked. The analysis of Monte Carlo data has
shown that dedicated corrections are needed to avoid biases in the fit. Section 6.3.1
discuss the check of the fit procedure and the resulting mass correction. The possibility
of a mass shift effect in the reconstruction of the invariant mass distribution, instead,
has been checked by measuring the mass of the Λ baryon and comparing the measured
mass with the PDG value [4]. The difference between the Λ mass obtained in this
analysis and the PDG value serves to correct the mass shift. This part of the analysis is
discussed in Section 6.3.2

Particle Mass (MeV/c2)

d 1875.612 942 57(57)

Λ 1115.683(6)

Table 6.2: Values of the mass of the deuteron and the Λ baryon used in this analysis
to compute BΛ. The value of the deuteron mass is taken from the CODATA [136] while
the value of the Λ mass is taken from the PDG [4].
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6.3 – 𝐵Λ Measurement

6.3.1 Correction for the Fit Bias
The crux of measuring the BΛ is to have a precise and accurate measurement of the
3
ΛH mass. As already discussed, in each 𝑐𝑡-bin, the fit of the invariant mass distribution
provides a measurement of the 3

ΛH mass. In particular, in Section 6.1, it is highlighted
that the actual fit parameter is not the 3

ΛH mass itself. It is, instead, the Δ𝑚 parameter
and the 3

ΛH mass is derived using Equation (6.3). Thus, it is crucial to check the fit
procedure’s accuracy and correct for any possible systematic error.

The fit of the Monte Carlo data with the model 𝑀(𝑥) provides an estimate of the
accuracy of the mass measurement. It is important to remember here the definition of
the fit parameter Δ𝑚 = 𝑚MCrec − 𝑚fit, where 𝑚MCrec is the mass of the MC used to
build the signal p.d.f. with the KDE and 𝑚fit is the mass of the fitted data. Based on
this definition, if the fitted distribution is the MC itself, Δ𝑚 is expected to be 0. Any
deviation from 0 that is statistically significant represents a systematic error in the fit
procedure – called fit bias in the context of this thesis. The mass measurement must
consider the fit bias and correct this effect.

In Figure 6.7 the values found for the fit bias (𝐶fit) in all the 𝑐𝑡-bins are reported.
These values represent the correction to the value of the mass extracted from the in-
variant mass fit.
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Figure 6.7: 𝐶fit represent the value of the fit parameterwhen the fit procedure is applied
to the Monte Carlo data used to build the KDE p.d.f. of the signal.
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6.3.2 Correction for the Mass Shift
In this thesis, the mass shift effect is defined as the shift of the mass value of the mea-
sured particle with respect to the true value. It is due to the distortion of the invariant
mass distribution induced by the experiment. The true value of the mass of any parti-
cle is unknown; however, it is possible to have an estimate of the mass shift measuring
a particle whose mass is known with high precision1 from different experiments (ref-
erence value). The comparison between the measured value and the reference value
provides an estimate of the mass shift, allowing the application of a correction factor to
overcome this systematic error.

The Λ baryon is the obvious choice for this test. In the assumption of loosely bound
3
ΛH, the microscopic mechanism of the Λ decay is – almost – the same as that of the
3
ΛH. Furthermore, the lifetimes of the Λ and the 3

ΛH are similar, and the same goes for
the decay products, as already discussed in Section 3.1.1. Therefore, the experimental
conditions for measuring the Λ mass are very close to those of the 3

ΛH mass, which
makes this test on the Λ extremely reliable.

The study is done on a sample of Λ baryon candidates belonging to the same data
set of Pb–Pb collisions at

√𝑠NN = 5.02TeV used for the 3
ΛH analysis. The Λ candidates

are handled with the same procedure used for the 3
ΛH candidates. The process follows

what is already discussed in Chapter 5. This section gives only a brief description, and
more details are given where it is needed to highlight the differences with respect to
the 3

ΛH analysis.
TheΛ are identified reconstructing the chargedmesonic 2-body decay (Equation (3.1)).

The track cuts listed in Table 6.3 are applied to all the possible daughter tracks and
the decay products – the protons and the pions – are then identified with the 𝑛𝜎𝑇 𝑃𝐶
method described in Section 5.4.1 by requiring 𝑛𝜎𝑇 𝑃𝐶 < 3 for both species. The offline
V0-finder builds the Λ candidates starting from the identified daughter tracks, and the
candidates with decay radius 𝑅 > 3 cm are rejected. Furthermore, only the candidates
with 0.5 ≤ 𝑝T < 3GeV/c are considered for this analysis.

Track selections

|𝜂| < 0.8
𝑛TPCcluster ≥ 70
𝜒2/𝑛TPCcluster ≤ 4

Kink topology rejected

Table 6.3: Summary of the selections applied to the analysed tracks.

1The uncertainty should be, in principle, negligible if compared to the expected uncertainty of the
method to be tested.
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6.3 – 𝐵Λ Measurement

The Training and Test set employs the Monte Carlo Λ for the signal, in analogy
to what was done for the hypertriton. The background candidates are taken from the
sidebands of the invariant mass distribution – see Section 5.5.1 and Section 5.5.2 for
more details. The limits imposed to the invariant mass to define the sidebands are
𝑚p𝜋 < 1100MeV/c2 and 𝑚p𝜋 > 1130MeV/c2, considering that the expected value
of the Λ mass is 1115.683MeV/c2. The training features included in the Training and
Test Set are listed in Table 6.4. A BDTs model is trained using the same set of hyper-
parameters used for the 3

ΛH analysis, and the BDTs score threshold is set to the value
corresponding to EffBDTs = 80 % that is the average value of the EffBDTs for the hyper-
triton selection. Thanks to the extremely high number of selected Λ, it is possible to
extract the signal as a function of the 𝑐𝑡 in more bins than those used in the 3

ΛH analy-
sis. Finally, the invariant mass distribution is fitted using RooFit. The composite p.d.f.
model used for the fit is similar to the one used for the 3

ΛH. The only difference, in this
case, is that the 𝑆(𝑥) p.d.f. is represented by a double-Gaussian Crystal Ball (DSCB)
function [137, Appendix D] instead of a KDE model. The signal has been extracted in
60 𝑐𝑡-bins, from 5 to 35 ps.

Features variables Category

𝑛𝜎TPC p particle id.

DCApv p

decay topology

DCApv 𝜋
DCAdaug ≤ 1 cm
DCAmother-pv

cos(𝜃pa)

Table 6.4: List of the features with which the BDTs are fed.

In each 𝑐𝑡-bin, the reconstruction shift – that is the difference between the mass of
the generated MC Λ, and the mass of the reconstructed Λ: 𝑚MCgen − 𝑚MCrec – is mea-
sured using the Monte Carlo data, and the Λ mass is consequently corrected. There-
fore, after the correction, a value for the Λ mass experimentally measured (𝑚ALICE

Λ )
is obtained in each 𝑐𝑡-bin. Finally, the difference (Δ𝑚𝑙𝑚𝑏) between 𝑚ALICE

Λ and the
PDG value of 𝑚Λ is computed. In Figure 6.8 the values obtained for Δ𝑚𝑙𝑚𝑏 are pre-
sented. In the plot the weighted average with the associated uncertainty Δ𝑚Λ =
35.8 ± 3.5 keV/c2 is also reported. It represents the estimate of the mass shift used
to correct the value of the 3

ΛH mass in this analysis.
The correction for the mass shift is further checked with a multi-trial approach,

similar to that used to estimate the systematic uncertainty for the candidates’ selection
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Figure 6.8: Difference between the Λ massmeasured by ALICE using the same analysis
techniques employed for the 3

ΛH in this thesis and the PDG value, as a function of the
particle proper time. The weighted mean – reported in the top left of the plot and
represented as a red line – is used as correction factor for the mass shift effect.

and signal extraction. For each 𝑐𝑡-bin a set of variations of the Th corresponding to a
±10 % EffBDTs range is considered. Randomly picking a threshold among the possible
21, for each bin, one obtains a 𝑚Λ measurement and consequently an estimate of the
mass shift correction. By repeating this operation a sufficient number of times, one
can estimate the mass shift correction variation for different signal selection configura-
tions. Figure 6.9 shows the distribution of 104 mass shift corrections obtained follow-
ing this procedure. The mean value of the distribution (𝐶shift = 38.14 ± 0.04 keV/c2,
𝜎𝐶shift

= 3.68 ± 0.03 keV/c2) is compatible within 1𝜎 with the mass shift correction
(Δ𝑚Λ = 35.8 ± 3.5 keV/c2). This confirms that the choice of the correction obtained
using EffBDTs = 80 % in all the bins is adequate.

6.3.3 3
ΛH Mass Measurement

The value of 3
ΛH mass extracted from the invariant mass fit is corrected to consider the

fit bias and the mass shift presented in the previous sections. Therefore, the corrected
value of the 3

ΛH mass (𝑚cor
3
ΛH

) is:

𝑚cor
3
ΛH

= 𝑚3
ΛH

+ 𝐶fit − 𝐶shift (6.8)

where 𝑚3
ΛH

is the mass obtained from the invariant mass fit (Equation (6.3)), 𝐶fit is the
correction for the fit bias and 𝐶shift is the correction for the reconstruction shift – that
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Figure 6.9: Distribution of 104 different mass shift corrections obtained by randomly
variating the signal selection configuration for the measurement of the Λ mass.

is 𝐶shift = Δ𝑚Λ. Finally, the measured value for the 3
ΛH mass (𝑚ALICE

3
ΛH

) is the weighted
mean of the corrected masses measured in each 𝑐𝑡-bin and it corresponds to:

𝑚ALICE
3
ΛH

= 2991.219 ± 0.063MeV/c2. (6.9)

Figure 6.10 shows the 𝑚ALICE
3
ΛH

as a function of the 𝑐𝑡; the red line represents the weighted
mean and the orange area the statistical uncertainty related to the mean.

6.3.4 Systematic Uncertainties
The systematic uncertainty originates mainly from the candidates’ selection and signal
extraction as it is for the lifetime measurement presented in Section 6.2.3. A further
cross-check is done to test the robustness of the analysis method by measuring the 3

ΛH
mass on a sample of candidates selected using linear cuts instead of the BDTs. The
study of the systematic uncertainty has been done directly on the BΛ, the target of this
analysis.

3
ΛH Selection and Signal Extraction

The estimate of the systematic uncertainty related to the 3
ΛH selection and signal ex-

traction is done, basically, in the same way as that of the lifetime measurement (Sec-
tion 6.2.3). For each 𝑐𝑡-bin 21 possible thresholds on the BDTs score, corresponding
to a ±10 % efficiency range around the Thbest value, are considered. The variations
on the fit model are done by changing the signal component 𝑆(𝑥) since, in the case
of the mass measurement, it is more critical to evaluate the impact of the signal shape
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Figure 6.10: The corrected values of the hypertriton mass 𝑚cor
3
ΛH

(blue points) are shown
as a function of the 𝑐𝑡, together with the weighted average of the values (red line) that
represent measured value of the 3

ΛH mass obtained in this work: 𝑚ALICE
3
ΛH

. The orange
area represents the statistical uncertainty on the weighted average.

on the measurement than the background shape. On the other hand, the background
shape has been checked and found irrelevant in the derivation of the mass value. Two
signal models are considered, the p.d.f. built using the KDE and the double-Gaussian
Crystal Ball. It is possible to obtain a mass measurement – and consequently a BΛ –
by choosing a signal extraction configuration among the 42 available in each 𝑐𝑡-bin,
correcting the mass with the adequate factors and by computing the weighted average
of the corrected values. However, again, the number of possible measurements is enor-
mous. Therefore, 105 examples among the 429 possibilities are sampled, obtaining as
many BΛ measurements. The RMS of the distribution of the BΛ values – shown in Fig-
ure 6.11 – corresponds to 27.5 keV. This value represents the estimate of the systematic
uncertainty related to the 3

ΛH selection and signal extraction.

Cross-Check on the Λ Mass

The correction for the mass shift effect plays an essential role in this analysis. Since it
relies on the ALICE measurement of the Λ mass (𝑚ALICE

Λ ), it is essential to check this
result.

The value of the Λ mass used for the mass shift correction derives from anML-based
selection of the Λ candidates, in analogy to what was done for the 3

ΛH selection. This
value is cross-checked by measuring the Λ mass, selecting the candidates without the
BDTs and using linear selections on the physical properties of the candidates. The set
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Figure 6.11: Distribution of the 105 BΛ values obtained by varying the 3
ΛH candidates

selection and signal extraction configuration in each 𝑐𝑡-bin. The variations of the con-
figurations are randomly sampled in a ±10 % range around the EffBDTs value. The sig-
nal model used for the fit of the invariant mass distribution is also randomly chosen
between an MC based KDE of the signal and a double-Gaussian Crystal Ball. The vari-
ations in each 𝑐𝑡-bin are independent.

of linear selections – reported in Table 6.5 – is the same used in ALICE for the mea-
surement of the lambda lifetime. Using the linear selection, the mass of the Λ baryon is
measured in different 𝑐𝑡-bins. Figure 6.12 reports the difference between the measured
mass and the PDG value, computed in each bin. The weighted mean of the differences is
50.3±4.2 keV, and it represents an independent estimation of the mass shift correction
factor.

The difference between the correction factor obtained with the ML selection (𝐶ML
shift)

and the one obtained applying linear selections (𝐶 lin
shift) is about 14 keV/c2. The dis-

crepancy between the two values is significant in terms of Λ mass but well within the
uncertainty on the 3

ΛH mass. The goal of the Λ mass measurement is to estimate the
correction factor for the mass shift effect applied to the 3

ΛH mass. Therefore, the differ-
ence between the two methods results in uncertainty on the mass shift correction, and
it is taken into account, introducing a further systematic uncertainty of 14 keV/c2.

Table 6.6 summarises all the contributions to the systematic uncertainty.

121



Measurement of the Hypertriton Lifetime and 𝐵Λ

Features variables Category

|𝜂| < 0.8

track quality
𝑛TPCcrossrows ≥ 80
𝑛TPCcluster ≥ 80
𝜒2/𝑛TPCcluster ≤ 2.5

𝑛𝜎TPC p < 3
particle id.

𝑛𝜎TPC 𝜋 < 3

0.2 < 𝑝p
T < 10GeV/c

V0-finder

0.2 < 𝑝𝜋
T < 2GeV/c

DCAdaug < 1 cm
DCAV0pv < 0.5 cm
𝑅pv−sv > 3 cm
cos(𝜃pa) > 0.995

Table 6.5: List of the linear cuts used for the selection of the Λ candidates.

Systematic uncertainties

Source Value

Candidates selection
and signal extraction

27.5 keV

𝐶shift - ML Vs. linear 14 keV

Total 31 keV

Table 6.6: Summary of the systematic uncertainties for the BΛ measurement. The total
uncertainty is the quadratic sum of the single sources.
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Figure 6.12: Difference between the Λ massmeasured by ALICE using linear selections
and the PDG value, as a function of the particle proper time. The weighted mean –
reported in the top left of the plot and represented as a red line – is used to estimate the
systematic uncertainty related to the correction factor for the mass shift effect.

6.3.5 Results
The final value of the 3

ΛH mass measured in this thesis is:

𝑚3
ΛH

= 2991.219 ± 0.063 (stat.) ± 0.030 (syst.) MeV/c2 (6.10)

and consequently the value obtained for the Λ-separation energy is:

BΛ = 77 ± 63 (stat.) ± 30 (syst.) keV. (6.11)

The excellent precision of these measurements is the result of the innovative tech-
niques adopted for signal extraction, the invariant mass fit, and the ALICE apparatus’s
tracking capabilities. The use of the ML-based selections, combined with the multi-trial
approach for the selection variation, allowed the minimisation of the systematic uncer-
tainties. Another crucial factor for the systematic uncertainty is the direct estimate of
the mass shift effect obtained by measuring the Λ mass. This estimate made it possi-
ble to precisely correct the value extracted from the invariant mass fit. The correction
allowed avoiding a large systematic uncertainty induced by a conservative estimate
of the ALICE’s bias in the reconstruction of the 2-body decay, leading the systematic
uncertainty down to just 30 keV.

With a statistical uncertainty of 63 keV and a systematic uncertainty of 30 keV, this
measurement outperforms the precision of the only other measurement obtained in
modern digital-readout experiments [117], and it is more precise and robust than any
other measurement of the hypertriton mass and BΛ measurements.
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Chapter 7

Conclusions

The focus of the research project carried on with this thesis is the study of the hy-
pertriton features by measuring its lifetime and separation energy. In particular, the
purpose was to address the hypertriton lifetime puzzle by measuring its lifetime and
Λ-separation energy with the highest precision possible. In fact, these measurements
are of utter importance to finally shed light on the hypertriton structure and provide
new insight for a better understanding of the hyperon-nucleon interactions.

The ALICE experiment, in past years, had already proved to be highly competi-
tive with the other leading experiments worldwide for the study of the hypertriton.
Moreover, thanks to its outstanding tracking and PID performances and the increased
integrated luminosity delivered by the LHC during the Run 2 data taking, a step for-
ward in the precision of the lifetime and BΛ measurement was expected. However, the
innovative analysis techniques adopted for the hypertriton identification and the im-
provements in the systematic uncertainty analysis allowed to exceed the expectations.

This final chapter is devoted to discussing the findings of this research by compar-
ing both the lifetime and the Λ-separation energy to the previous experimental results
and the theoretical expectations. Ultimately, these results can be summarised by two
summary plots that are reported in Figure 7.1 and Figure 7.2.

In Figure 7.1, the lifetime obtained in this thesis (𝜏( 3
ΛH)thesis) is compared with the

other measurements performed in recent years with digital readout experiments and
with state-of-the-art theoretical calculations. As mentioned in the previous chapter,
𝜏( 3

ΛH)thesis is the most precise determination of the 3
ΛH lifetime ever achieved. It is in

agreement with the earlier ALICE measurements [98, 100], with a maximum discrep-
ancy lower than 1.5𝜎. Excluding the STAR (2018) measurement [99] - around 3𝜎 away
- 𝜏( 3

ΛH)thesis is also compatible with the previous measurements obtained by STAR [81]
and HypHI [96]. However, the compatibility between the measurements is mainly due
to the significant uncertainties of STAR (2010) and HypHI (2013). In addition, the value
of 𝜏( 3

ΛH)thesis is compatible with the lifetime of the free Λ baryon.
The value of 𝜏( 3

ΛH)thesis is also in full agreement with one of the most recent pre-
diction reported in [103]. In this work, Hildenbrand et al. computed the hypertriton
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Figure 7.1: 3
ΛH lifetime value (red point) obtained in this analysis compared to pub-

lished results from digital readout experiments (black points). The vertical lines and
bands represent state-of-the-art theoretical calculations of the 3

ΛH lifetime.

lifetime as a function of the 𝜏( 3
ΛH) in an effective field theory with Λ and deuteron

as degrees of freedom. Assuming BΛ = 130 keV, which means the hypertriton is
loosely bound, they found 𝜏( 3

ΛH) ≈ 268 ps that is extremely close to the 𝜏(Λ) and in
complete agreement with the outcomes of the present thesis. Kamada et al. estimated
𝜏( 3

ΛH) = 256 ps [84], also in good agreement with 𝜏( 3
ΛH)thesis. Their calculation relies

on a rigorous determination of the 3
ΛH wave function as a solution of the three-body

Faddeev equations and includes realistic NN and YN interactions. The predictions of
Pérez-Obiol et al., obtained in a chiral effective field theory framework [102], are partic-
ularly interesting. They predict a wide range of lifetimes depending on the assumption
of the B value. So, it follows that for compact hypertriton -i.e. high BΛ- the predicted
lifetime is much lower than the result of this thesis. Instead, the predictions are com-
patible with the value of 𝜏( 3

ΛH)thesis expected for a loosely bound hypertriton -i.e. low
BΛ. Therefore, one can conclude that the hypertriton lifetime measured in this thesis
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strongly supports the loosely bound nature of the hypertriton.
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Figure 7.2: 3
ΛH BΛ value (red point) obtained in this analysis com- pared to published

results (black points). The vertical lines and bands represent state-of-the-art theoretical
calculations of the 3

ΛH BΛ.

The second crucial plot of this thesis is Figure 7.2, in which the hypertriton Λ-
separation energy measured in this thesis (BΛ thesis) is compared with previous mea-
surements and theoretical calculations. A direct comparison with the late sixties [85,
138] and early seventies measurements [82, 88] is not trivial. Those measurements
performed in bubble chambers and nuclear emulsions were affected by systematic un-
certainties of which an estimate is not available. However, the most accepted value of
BΛ (0.13 ± 0.05 (stat.) ± 0.04 (syst.)MeV) relies on a combined analysis of the data
collected in [82] and [85] and BΛ thesis is in full agreement with this value. The most re-
cent measurement performed by STAR [117] instead is 1.8𝜎 from BΛ thesis, but it should
be noted that it is affected by large uncertainties. For what concerns the theoretical
calculations, the predictions from SU(6) quark model for baryon-baryon interactions
[140] and auxiliary field diffusion Monte Carlo [141] are disfavoured. The predictions
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from SU(3) 𝜒EFT [102] and Dalitz et al. [139] - based on a simple model employing ΛN
and ΛNN potentials - are in full agreement with BΛ thesis.

It is essential to mention that the STARmeasurement showed some tension with the
common view of a loosely bound hypertriton, leading the community to question the
hypertriton nature. However, the uncertainties of those measurements did not allow to
discern among different hypothesis. In the light of the results presented in this thesis,
it is possible to say that the experimental findings strongly support the hypothesis that
the hypertriton is a loosely bound hypernucleus, with a BΛ compatible with zero and a
mean lifetime close to that of a free Λ baryon. Therefore, it is questionable whether it
still makes sense to talk about a ”hypertriton puzzle”.
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Appendix A

Additional figures

In this appendix, additional figures that could not be found space in the text are reported
for completeness.

The comparison of the features distributions for each 𝑐𝑡-bin of the training and
test set are presented in Figures A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8 and A.9. The
evolution of the probability density functions of each feature through the different 𝑐𝑡-
bins are presented in Figures A.10a, A.10b, A.10c, A.10d, A.11a, A.11b, A.11c, A.11d,
A.12a, A.12b and A.12c. The signal and the background components are compared to
show their different behaviour. Figures A.13, A.14 and A.15 shows the comparisons of
the correlation matrix of the signal and the background component of the training and
test set for each 𝑐𝑡-bin. The distributions of the BDTs score in the training and test
set are compared, and the sensitivity and the specificity of the models in the different
𝑐𝑡-bins are presented in Figures A.16 and A.17 and ??. Figures A.18, A.19 and A.20 are
related to the BDTs selection optimization procedure. On the left the target functions of
the optimization – i.e. the 𝑆 ×EffBDTs – as a function of the threshold on the BDTs score
are presented for all the models. On the right, the invariant mass distributions of the
data and pseudo-data – used to estimate the expected significance – obtained selecting
with the optimized threshold are presented.

The comparison of the invariant mass distribution of the reconstructed MC hyper-
tritons with the p.d.f. obtained with the KDE and a gaussian fitted to the distribution,
for all the 𝑐𝑡-bins, is presented in Figure A.21.
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Additional figures
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Figure A.1: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 1 < 𝑐𝑡 ≤ 2 cm interval.
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Figure A.2: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 2 < 𝑐𝑡 ≤ 4 cm interval.
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Figure A.3: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 4 < 𝑐𝑡 ≤ 6 cm interval.
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Figure A.4: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 6 < 𝑐𝑡 ≤ 8 cm interval.
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Figure A.5: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 8 < 𝑐𝑡 ≤ 10 cm interval.
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Figure A.6: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 10 < 𝑐𝑡 ≤ 14 cm interval.
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Figure A.7: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 14 < 𝑐𝑡 ≤ 18 cm interval.
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Figure A.8: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 18 < 𝑐𝑡 ≤ 23 cm interval.
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Figure A.9: Comparison between the signal component (red) and the background com-
ponent (green water) of the training and test set in the 23 < 𝑐𝑡 ≤ 35 cm interval.
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Figure A.10: Evolution of the p.d.f.s of the signal (scale of reds) and background (scale
of blues) components of the TTS in the 9 𝑐𝑡-bins, for the 𝑝T (a), the 𝑛𝜎TPC

3He (b),
𝑛𝜎TPC 𝜋 (c) and the 𝑛clsITS

3He features. The p.d.f.s are derived with a KDE.
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of blues) components of the TTS in the 9 𝑐𝑡-bins, for the DCAXYpv 𝜋 (a), the DCAdaug
(b) and the cos(𝜃pa) (c) features. The p.d.f.s are derived with a KDE.
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Figure A.13: Correlation matrix of the features of the signal (a, c and e) and the
background (b, d and f) components of the training and test set in the 𝑐𝑡 intervals
1 < 𝑐𝑡 ≤ 1 cm (first row), 2 < 𝑐𝑡 ≤ 4 cm (second row) and 4 < 𝑐𝑡 ≤ 6 cm (third
row). The invariant mass and the proper time of the mother particle are also reported.
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Figure A.14: Correlation matrix of the features of the signal (a, c and e) and the
background (b, d and f) components of the training and test set in the 𝑐𝑡 intervals
6 < 𝑐𝑡 ≤ 8 cm (first row), 8 < 𝑐𝑡 ≤ 10 cm (second row) and 10 < 𝑐𝑡 ≤ 14 cm
(third row). The invariant mass and the proper time of the mother particle are also
reported.
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Figure A.15: Correlation matrix of the features of the signal (a, c and e) and the
background (b, d and f) components of the training and test set in the 𝑐𝑡 intervals
14 < 𝑐𝑡 ≤ 18 cm (first row), 18 < 𝑐𝑡 ≤ 23 cm (second row) and 23 < 𝑐𝑡 ≤ 35 cm
(third row). The invariant mass and the proper time of the mother particle are also
reported.
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Figure A.16: (a, c and e) BDTs score distribution in the training (markers) and test
(filled area) sets for the signal (red) and the background (green water). (b, d and f) TPR
in red and TNR in blue of the model selection computed in the test set as a function
of the threshold on the BDTs score. The plots are referred to the 1 < 𝑐𝑡 ≤ 2 cm (first
row), 2 < 𝑐𝑡 ≤ 4 cm (second row) and 4 < 𝑐𝑡 ≤ 6 cm (third row) 𝑐𝑡-bins.
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Figure A.17: (a, c and e) BDTs score distribution in the training (markers) and test
(filled area) sets for the signal (red) and the background (green water). (b, d and f) TPR
in red and TNR in blue of the model selection computed in the test set as a function
of the threshold on the BDTs score. The plots are referred to the 6 < 𝑐𝑡 ≤ 8 cm (first
row), 8 < 𝑐𝑡 ≤ 10 cm (second row) and 10 < 𝑐𝑡 ≤ 14 cm (third row) 𝑐𝑡-bins.
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Figure A.18: Figures related to the BDTs selection optimization in the 1 < 𝑐𝑡 ≤ 2 cm
(first row), 2 < 𝑐𝑡 ≤ 4 cm (second row) and 4 < 𝑐𝑡 ≤ 6 cm (third row) 𝑐𝑡-bin. (a, c and
e) expected𝑆×EffBDTs as a function of theTh. (b, d and f) the invariantmass distribution
– obtained selecting with the estimated best threshold – of the data in the sidebands is
represented together with the pseudo-data used as an estimate of the signal.
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Figure A.19: Figures related to the BDTs selection optimization in the 6 < 𝑐𝑡 ≤ 8 cm
(first row), 8 < 𝑐𝑡 ≤ 10 cm (second row) and 10 < 𝑐𝑡 ≤ 14 cm (third row) 𝑐𝑡-bin.
(a, c and e) expected 𝑆 × EffBDTs as a function of the Th. (b, d and f) the invariant
mass distribution – obtained selecting with the estimated best threshold – of the data
in the sidebands is represented together with the pseudo-data used as an estimate of
the signal.
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FigureA.20: Figures related to the BDTs selection optimization in the 14 < 𝑐𝑡 ≤ 18 cm
(first row), 18 < 𝑐𝑡 ≤ 23 cm (second row) and 23 < 𝑐𝑡 ≤ 35 cm (third row) 𝑐𝑡-bin. (a,
c and e) expected 𝑆 × EffBDTs as a function of the Th. (b, d and f) the invariant mass
distribution – obtained selecting with the estimated best threshold – of the data in the
sidebands is represented togetherwith the pseudo-data used as an estimate of the signal.
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Figure A.21: The invariant mass distribution of the MC hypertritons after the recon-
struction is compared with the p.d.f. obtained with the KDE and a gaussian p.d.f. fitted
to the distribution for all the 𝑐𝑡-bins. The gaussian is clearly not suitable for the de-
scription of the invariant mass distributions.

150



Bibliography

[1] J. P. Ostriker et al., “Cosmic concordance,” 10.48550/arXiv.astro-
ph/9505066 (1995) (cit. on p. 1).

[2] P. A. R. Ade et al. (Planck Collaboration), “Planck 2015 results - XIII. Cosmo-
logical parameters,” A&A 594, A13 (2016) (cit. on p. 1).

[3] N. Aghanim et al. (Planck Collaboration), “Planck 2018 results - VI. Cosmolog-
ical parameters,” A&A 641, A6 (2020) (cit. on p. 1).

[4] P. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020,
083C01 (2020) (cit. on pp. 1, 3–4, 57, 59, 85, 114, 126).

[5] M. E. Peskin et al., An introduction to quantum field theory (Westview, Boulder,
CO, 1995) (cit. on p. 1).

[6] H. Fritzsch et al., “Advantages of the Color Octet Gluon Picture,” Phys. Lett. B
47, 365–368 (1973) (cit. on p. 1).

[7] J. C. Ward, “On the Renormalization of Quantum Electrodynamics,” Proc. Phys.
Soc. London, Sect. A 64, 54–56 (1951) (cit. on p. 2).

[8] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?” Phys.
Rev. Lett. 30, 1346–1349 (1973) (cit. on p. 3).

[9] D. J. Gross et al., “Ultraviolet Behavior of Non-Abelian Gauge Theories,” Phys.
Rev. Lett. 30, 1343–1346 (1973) (cit. on p. 3).

[10] K. G. Wilson, “Confinement of quarks,” Phys. Rev. D 10, 2445–2459 (1974)
(cit. on p. 4).

[11] S. Dürr et al., “Ab Initio Determination of Light Hadron Masses,” Science 322,
1224–1227 (2008) (cit. on p. 4).

[12] H. Bohr et al., “Hadron Production from a Boiling Quark Soup,” Nucl. Phys. B
128, 275–293 (1977) (cit. on p. 5).

[13] M. G. Alford et al., “Color superconductivity in dense quark matter,” Rev. Mod.
Phys. 80, 1455–1515 (2008) (cit. on p. 5).

[14] M. Alford, “Color-Superconductins Quark Matter,” Annu. Rev. Nucl. Part. Sci
51, 131–160 (2001) (cit. on p. 5).

151

https://doi.org/10.48550/arXiv.astro-ph/9505066
https://doi.org/10.48550/arXiv.astro-ph/9505066
https://doi.org/10.48550/arXiv.astro-ph/9505066
https://doi.org/10.48550/arXiv.astro-ph/9505066
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1016/0370-2693(73)90625-4
https://doi.org/10.1088/0370-1298/64/1/309
https://doi.org/10.1088/0370-1298/64/1/309
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1126/science.1163233
https://doi.org/10.1126/science.1163233
https://doi.org/10.1016/0550-3213(77)90032-3
https://doi.org/10.1016/0550-3213(77)90032-3
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1146/annurev.nucl.51.101701.132449
https://doi.org/10.1146/annurev.nucl.51.101701.132449


BIBLIOGRAPHY

[15] T. Tanimoto et al., “Massive neutron stars with a color superconducting quark
matter core,” Phys. Rev. C 101, 055204 (2020) (cit. on p. 5).

[16] M. G. Orsaria et al., “Phase transitions in neutron stars and their links to grav-
itational waves,” J. Phys. G: Nucl. Part. Phys. 46, 073002 (2019) (cit. on p. 6).

[17] M. Harrison et al., “The RHIC Accelerator,” Annu. Rev. Nucl. Part. Sci. 52, 425–
469 (2002) (cit. on p. 7).

[18] M. L. Miller et al., “Glauber Modeling in High-Energy Nuclear Collisions,”
Annu. Rev. Nucl. Part. Sci. 57, 205–243 (2007) (cit. on pp. 7–8).

[19] C. Gale et al., “Hydrodynamic Modeling of Heavy–Ion Collision,” Int. J. Mod.
Phys. A 28, 1340011 (2013) (cit. on p. 11).

[20] U. W. Heinz et al., “Evidence for a new state of matter: An Assessment of
the results from the CERN lead beam program,” 10.48550/arXiv.nucl-
th/0002042 (2000) (cit. on p. 13).

[21] S. Acharya et al. (ALICE Collaboration), “Production of charged pions, kaons,
and (anti–)protons in Pb–Pb and inelastic 𝑝𝑝 collisions at

√𝑠NN = 5.02 TeV,”
Phys. Rev. C 101, 044907 (2020) (cit. on p. 15).

[22] B. I. Abelev et al. (STARCollaboration), “Systematic measurements of identified
particle spectra in pp, 𝑑 + Au, and Au + Au collisions at the STAR detector,”
Phys. Rev. C 79, 034909 (2009) (cit. on pp. 14–15).

[23] S. S. Adler et al. (PHENIX Collabboration), “Identified charged particle spectra
and yields inAu+Au collisions at S(NN)**1/2 = 200-GeV,” Phys. Rev. C 69, 034909
(2004) (cit. on pp. 14–15).

[24] B. Abelev et al. (ALICE Collaboration), “Pion, Kaon, and Proton Production
in Central Pb–Pb Collisions at

√𝑠NN=2.76 TeV,” Phys. Rev. Lett. 109, 252301
(2012) (cit. on pp. 14–15, 17).

[25] P. Bozek, “Flow and interferometry in 3+1 dimensional viscous hydrodynam-
ics,” Phys. Rev. C 85, 034901 (2012) (cit. on p. 14).

[26] Y. A. Karpenko et al., “Femtoscopic scales in central A+A collisions at RHIC
and LHC energies in hydrokinetic model,” J. Phys. G 38, edited by Y. Schutz
et al., 124059 (2011) (cit. on p. 14).

[27] E. Schnedermann et al., “Thermal phenomenology of hadrons from 200A GeV
S+S collisions,” Phys. Rev. C 48, 2462–2475 (1993) (cit. on pp. 15, 91).

[28] L. Adamczyk et al. (STARCollaboration), “Beam-Energy Dependence of Charge
Separation along the Magnetic Field in Au+Au Collisions at RHIC,” Phys. Rev.
Lett. 113, 052302 (2014) (cit. on p. 16).

[29] J. Adam et al. (ALICE Collaboration), “Anisotropic flow of charged particles
in Pb-Pb collisions at

√𝑠NN = 5.02 TeV,” Phys. Rev. Lett. 116, 132302 (2016)
(cit. on p. 17).

152

https://doi.org/10.1103/PhysRevC.101.055204
https://doi.org/10.1088/1361-6471/ab1d81
https://doi.org/10.1146/annurev.nucl.52.050102.090650
https://doi.org/10.1146/annurev.nucl.52.050102.090650
https://doi.org/10.1146/annurev.nucl.57.090506.123020
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.1142/S0217751X13400113
https://doi.org/10.48550/arXiv.nucl-th/0002042
https://doi.org/10.48550/arXiv.nucl-th/0002042
https://doi.org/10.48550/arXiv.nucl-th/0002042
https://doi.org/10.48550/arXiv.nucl-th/0002042
https://doi.org/10.1103/PhysRevC.101.044907
https://doi.org/10.1103/PhysRevC.79.034909
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1103/PhysRevC.69.034909
https://doi.org/10.1103/PhysRevLett.109.252301
https://doi.org/10.1103/PhysRevLett.109.252301
https://doi.org/10.1103/PhysRevC.85.034901
https://doi.org/10.1088/0954-3899/38/12/124059
https://doi.org/10.1088/0954-3899/38/12/124059
https://doi.org/10.1103/PhysRevC.48.2462
https://doi.org/10.1103/PhysRevLett.113.052302
https://doi.org/10.1103/PhysRevLett.113.052302
https://doi.org/10.1103/PhysRevLett.116.132302


BIBLIOGRAPHY

[30] N. Armesto, “Nuclear shadowing,” J. Phys. G: Nucl. Part. Phys. 32, R367–R393
(2006) (cit. on p. 18).

[31] J. W. Cronin et al., “Production of hadrons at large transverse momentum at
200, 300, and 400 GeV,” Phys. Rev. D 11, 3105–3123 (1975) (cit. on p. 18).

[32] V. Khachatryan et al. (CMS Collaboration), “Charged-particle nuclear modifi-
cation factors in PbPb and pPb collisions at

√𝑠NN = 5.02TeV,” J. High Energy
Phys. 04, 039 (2017) (cit. on pp. 18–19).

[33] S. Acharya et al. (ALICE Collaboration), “Measurement of D0, D+, D∗+ and D+
𝑠

production in Pb-Pb collisions at
√
sNN = 5.02 TeV,” J. High Energy Phys. 10,

174 (2018) (cit. on pp. 19–20).

[34] A. M. Sirunyan et al. (CMS Collaboration), “In–medium modification of dijets
in PbPb collisions at

√𝑠NN = 5.02TeV,” J. High Energy Phys. 05, 116 (2021)
(cit. on p. 20).

[35] S. Acharya et al., “Centrality and transverse momentum dependence of inclu-
sive J/Ψ production at midrapidity in Pb–Pb collisions at

√𝑠NN = 5.02TeV,”
Phys. Lett. B 805, 135434 (2020) (cit. on pp. 21–22).

[36] X. Du et al., “Sequential regeneration of charmonia in heavy-ion collisions,”
Nucl. Phys. A 943, 147–158 (2015) (cit. on pp. 21–22).

[37] A. Andronic et al., “Transverse momentum distributions of charmonium states
with the statistical hadronization model,” Phys. Lett. B 797, 134836 (2019) (cit.
on pp. 21–22).

[38] A. Sirunyan et al. (CMS Collaboration), “Measurement of nuclear modifica-
tion factors of Υ(1S), Υ(2S), and Υ(3S) mesons in PbPb collisions at

√𝑠NN =
5.02TeV,” Phys. Lett. B 790, 270–293 (2019) (cit. on pp. 22–23).

[39] A. M. Sirunyan et al. (CMS Collaboration), “Constraints on the Initial State of
Pb-PbCollisions viaMeasurements of𝑍-Boson Yields andAzimuthal Anisotropy
at

√𝑠𝑁𝑁 = 5.02 TeV,” Phys. Rev. Lett. 127, 102002 (2021) (cit. on p. 23).

[40] C. Loizides et al., “Absence of jet quenching in peripheral nucleus–nucleus
collisions,” Phys. Lett. B 773, 408–411 (2017) (cit. on p. 24).

[41] J. Adam et al. (ALICE Collaboration), “Direct photon production in Pb–Pb col-
lisions at

√𝑠NN = 2.76TeV,” Phys. Lett. B 754, 235–248 (2016) (cit. on pp. 24–
25).

[42] C. Lefèvre, “The CERN accelerator complex. Complexe des accélérateurs du
CERN,” 2008 (cit. on p. 28).

[43] S. van der Meer, Calibration of the effective beam height in the ISR, tech. rep.
(CERN, Geneva, 1968) (cit. on p. 29).

[44] “LHC Machine,” J. Instrum. 3, edited by L. Evans et al., S08001 (2008) (cit. on
p. 29).

153

https://doi.org/10.1088/0954-3899/32/11/r01
https://doi.org/10.1088/0954-3899/32/11/r01
https://doi.org/10.1103/PhysRevD.11.3105
https://doi.org/10.1007/JHEP04(2017)039
https://doi.org/10.1007/JHEP04(2017)039
https://doi.org/10.1007/JHEP10(2018)174
https://doi.org/10.1007/JHEP10(2018)174
https://doi.org/10.1007/JHEP05(2021)116
https://doi.org/10.1016/j.physletb.2020.135434
https://doi.org/10.1016/j.nuclphysa.2015.09.006
https://doi.org/10.1016/j.physletb.2019.134836
https://doi.org/10.1016/j.physletb.2019.01.006
https://doi.org/10.1103/PhysRevLett.127.102002
https://doi.org/10.1016/j.physletb.2017.09.002
https://doi.org/10.1016/j.physletb.2016.01.020
https://doi.org/10.1088/1748-0221/3/08/S08001


BIBLIOGRAPHY

[45] M. L. Mangano, “Introduction to the theory of LHC collisions,” Les Houches
Lect. Notes 97, edited by L. Baulieu et al., 107–139 (2015) (cit. on p. 29).

[46] F. Carminati et al. (ALICE Collabboration), “ALICE: Physics Performance Re-
port, Volume I,” J. Phys. G: Nucl. Part. Phys. 30, 1517–1763 (2004) (cit. on
pp. 30–31).

[47] B. Alessandro et al. (ALICE Collaboration), “ALICE: Physics Performance Re-
port, Volume II,” J. Phys. G: Nucl. Part. Phys. 32, 1295–2040 (2006) (cit. on
pp. 30–31).

[48] K. Aamodt et al. (ALICE Collaboration), “The ALICE experiment at the CERN
LHC,” J. Instrum. 3, S08002–S08002 (2008) (cit. on pp. 31, 36, 42, 45).

[49] B. B. Abelev et al. (ALICE Collaboration), “Performance of the ALICE Experi-
ment at the CERN LHC,” Int. J. Mod. Phys. A 29, 1430044 (2014) (cit. on pp. 32–
33, 41, 45–46).

[50] B. Adeva et al. (L3 Collaboration), “The Construction of the L3 Experiment,”
Nucl. Instrum. Meth. A 289, 35–102 (1990) (cit. on p. 32).

[51] F. Carena et al. (ALICE Collaboration), “The ALICE data acquisition system,”
Nucl. Instrum. Meth. A 741, 130–162 (2014) (cit. on p. 39).

[52] M. Krzewicki et al., “The ALICE High Level Trigger: status and plans,” 664,
082023 (2015) (cit. on p. 39).

[53] R. Brun et al., “Geant3,” https://inspirehep.net/files/822595acd3e6c8936bd720fe973596f0
(1987) (cit. on pp. 40, 79).

[54] S. Agostinelli et al., “Geant4—a simulation toolkit,” Nucl. Instrum. Methods
Phys. Res., Sect. A 506, 250–303 (2003) (cit. on pp. 40, 80).

[55] J. Allison et al., “Geant4 developments and applications,” IEEE Trans. Nucl.
Sci. 53, 270–278 (2006) (cit. on pp. 40, 80).

[56] J. Allison et al., “Recent developments in GEANT4,” Nucl. Instrum. Methods
Phys. Res., Sect. A 835, 186–225 (2016) (cit. on pp. 40, 80).

[57] CERN, Official CERN FLUKA Website, https://fluka.cern/ (visited on
02/05/2022) (cit. on p. 40).

[58] G. Battistoni et al., “Overview of the FLUKA code,” Annals Nucl. Energy 82,
10–18 (2015) (cit. on p. 40).

[59] C. Ahdida et al., “New Capabilities of the FLUKA Multi-Purpose Code,” Front.
Phys. 9, 10.3389/fphy.2021.788253 (2022) (cit. on p. 40).

[60] R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl.
Instrum. Meth. A 262, 444–450 (1987) (cit. on p. 42).

154

https://doi.org/10.1093/acprof:oso/9780198727965.003.0005
https://doi.org/10.1093/acprof:oso/9780198727965.003.0005
https://doi.org/10.1088/0954-3899/30/11/001
https://doi.org/10.1088/0954-3899/32/10/001
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1142/S0217751X14300440
https://doi.org/10.1016/0168-9002(90)90250-A
https://doi.org/10.1016/j.nima.2013.12.015
https://doi.org/10.1088/1742-6596/664/8/082023
https://doi.org/10.1088/1742-6596/664/8/082023
https://doi.org/https://inspirehep.net/files/822595acd3e6c8936bd720fe973596f0
https://doi.org/https://inspirehep.net/files/822595acd3e6c8936bd720fe973596f0
https://doi.org/https://inspirehep.net/files/822595acd3e6c8936bd720fe973596f0
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1109/TNS.2006.869826
https://doi.org/10.1016/j.nima.2016.06.125
https://doi.org/10.1016/j.nima.2016.06.125
https://fluka.cern/
https://doi.org/10.1016/j.anucene.2014.11.007
https://doi.org/10.1016/j.anucene.2014.11.007
https://doi.org/10.3389/fphy.2021.788253
https://doi.org/10.3389/fphy.2021.788253
https://doi.org/10.3389/fphy.2021.788253
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4


BIBLIOGRAPHY

[61] G. Agakichiev et al., “A new robust fitting algorithm for vertex reconstruction
in the CERES experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 394,
225–231 (1997) (cit. on p. 45).

[62] R. Brun et al., “ROOT: An object oriented data analysis framework,” Nucl.
Instrum. Meth. A 389, edited by M. Werlen et al., 81–86 (1997) (cit. on p. 47).

[63] L. Rolandi et al., Particle Detection with Drift Chambers (2008) (cit. on p. 49).

[64] M. Danysz et al., “Delayed disintegration of a heavy nuclear fragment: I,” Lond.
Edinb. Dubl. Phil. Mag. 44, 348–350 (1953) (cit. on p. 53).

[65] D. Davis, “50 years of hypernuclear physics: I. The early experiments,” Nucl.
Phys. A 754, 3–13 (2005) (cit. on pp. 53, 58).

[66] T. R. Saito et al., “New directions in hypernuclear physics,” Nat. Rev. Phys. 3,
803–813 (2021) (cit. on pp. 54–55, 60).

[67] F. Weber, “Strangeness in neutron stars,” J. Phys. G: Nucl. Part. Phys. 27, 465–
474 (2001) (cit. on p. 54).

[68] F. Weber et al., “Strangeness in Neutron Stars,” Int. J. Mod. Phys. D 16, 231–245
(2007) (cit. on p. 54).

[69] P. B. Demorest et al., “A two-solar-mass neutron star measured using Shapiro
delay,” Nature 467, 1081–1083 (2010) (cit. on p. 54).

[70] J. Antoniadis et al., “AMassive Pulsar in a Compact Relativistic Binary,” Science
340, 1233232 (2013) (cit. on p. 54).

[71] E. D. Barr et al., “A massive millisecond pulsar in an eccentric binary,” Mon.
Not. R. Astron. Soc. 465, 1711–1719 (2016) (cit. on p. 54).

[72] Y. Yamamoto et al., “Hyperon mixing and universal many-body repulsion in
neutron stars,” Phys. Rev. C 90, 045805 (2014) (cit. on p. 54).

[73] H. Ekawa et al., “Observation of a Be double-Lambda hypernucleus in the
J-PARC E07 experiment,” Prog. Theor. Exp. Phys. 2019, 10.1093/ptep/
pty149 (2019) (cit. on p. 55).

[74] S. H. Hayakawa et al. (J-PARC E07 Collaboration), “Observation of Coulomb-
Assisted Nuclear Bound State of − −−14N System,” Phys. Rev. Lett. 126, 062501
(2021) (cit. on p. 55).

[75] K. Nakazawa et al., “Experimental Study of Double-ΛHypernuclei with Nuclear
Emulsion,” Prog. Theor. Phys. Suppl. 185, 335–343 (2010) (cit. on p. 55).

[76] H. Takahashi et al., “Observation of a 6
ΛΛHe double hypernucleus,” Phys. Rev.

Lett. 87, 2125021–2125025 (2001) (cit. on p. 55).

[77] E. Botta et al., “Status and perspectives of experimental studies on hypernuclear
weak decays,” Riv. del Nuovo Cim. 9, 387–448 (2015) (cit. on p. 56).

155

https://doi.org/10.1016/S0168-9002(97)00658-X
https://doi.org/10.1016/S0168-9002(97)00658-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1080/14786440308520318
https://doi.org/10.1080/14786440308520318
https://doi.org/10.1016/j.nuclphysa.2005.01.002
https://doi.org/10.1016/j.nuclphysa.2005.01.002
https://doi.org/10.1038/s42254-021-00371-w
https://doi.org/10.1038/s42254-021-00371-w
https://doi.org/10.1088/0954-3899/27/3/326
https://doi.org/10.1088/0954-3899/27/3/326
https://doi.org/10.1142/S0218271807009966
https://doi.org/10.1142/S0218271807009966
https://doi.org/doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.1126/science.1233232
https://doi.org/10.1093/mnras/stw2947
https://doi.org/10.1093/mnras/stw2947
https://doi.org/10.1103/PhysRevC.90.045805
https://doi.org/10.1093/ptep/pty149
https://doi.org/10.1093/ptep/pty149
https://doi.org/10.1093/ptep/pty149
https://doi.org/10.1093/ptep/pty149
https://doi.org/10.1103/PhysRevLett.126.062501
https://doi.org/10.1103/PhysRevLett.126.062501
https://doi.org/10.1143/PTPS.185.335
https://doi.org/10.1393/ncr/i2015-10116-x


BIBLIOGRAPHY

[78] E. Bauer et al., “Role of ground-state correlations in hypernuclear nonmesonic
weak decay,” Phys. Rev. C 81, 064315 (2010) (cit. on p. 56).

[79] K. Itonaga et al., “Hypernuclear Weak Decays,” Prog. Theor. Phys. Suppl. 185,
252–298 (2010) (cit. on p. 56).

[80] A. Bonetti et al., “On the possible ejection of a meson-active triton from a
nuclear disintegration,” Il Nuovo Cimento (1943-1954) 11, 210–212 (1954) (cit.
on p. 56).

[81] B. I. Abelev et al. (STAR Collaboration), “Observation of an Antimatter Hyper-
nucleus,” Science 328, 58–62 (2010) (cit. on pp. 57, 59, 61, 125–126).

[82] M. Jurič et al., “A new determination of the binding-energy values of the light
hypernuclei (A ≤ 15),” Nucl. Phys. B 52, 1–30 (1973) (cit. on pp. 57–58, 60, 127).

[83] B. Povh et al., “Nuclear Stability,” in Particles and Nuclei: An Introduction to the
Physical Concepts (Springer Berlin Heidelberg, 2015), pp. 25–40 (cit. on p. 57).

[84] H. Kamada et al., “𝜋-mesonic decay of the hypertriton,” Phys. Rev. C 57, 1595–
1603 (1998) (cit. on pp. 58, 126).

[85] G. Bohm et al., “A determination of the binding-energy values of light hyper-
nuclei,” Nucl. Phys. B 4, 511–526 (1968) (cit. on pp. 58, 60, 127).

[86] E. Harth et al., “Hyperfragment studies in the helium bubble chamber,” in (1964)
(cit. on pp. 58–59, 61).

[87] G. Keyes et al., “New Measurement of the ΛH
3 Lifetime,” Phys. Rev. Lett. 20,

819–821 (1968) (cit. on pp. 58–59, 61).

[88] G. Keyes et al., “Properties of ΛH
3,” Phys. Rev. D 1, 66–77 (1970) (cit. on

pp. 58–59, 61, 127).

[89] G. Keyes et al., “A measurement of the lifetime of the ΛH
3 hypernucleus,” Phys.

Lett. B 67, 269–283 (1973) (cit. on pp. 58–59, 61).

[90] R. J. Prem et al., “Lifetimes of Hypernuclei, ΛH
3, ΛH

4, ΛH
5,” Phys. Rev. 136,

B1803–B1806 (1964) (cit. on pp. 58–59, 61).

[91] Y. W. Kang et al., “Lifetimes of Light Hyperfragments,” Phys. Rev. 139, B401–
B406 (1965) (cit. on pp. 58–59, 61).

[92] R. E. Phillips et al., “Lifetime of ΛH
3,” Phys. Rev. Lett. 20, 1383–1386 (1968)

(cit. on pp. 58–59, 61).

[93] R. E. Phillips et al., “Lifetimes of Light Hyperfragments. II,” Phys. Rev. 180,
1307–1318 (1969) (cit. on pp. 58–59, 61).

[94] G. Bohm et al., “On the lifetime of the ΛH
3 hypernucleus,” Nucl. Phys. B 16,

46–52 (1970) (cit. on pp. 58–59, 61).

[95] S. Avramenko et al., “A study of the production and lifetime of the lightest
relativistic hypernuclei,” Nucl. Phys. A 547, 95–100 (1992) (cit. on pp. 59, 61).

156

https://doi.org/10.1103/PhysRevC.81.064315
https://doi.org/10.1143/PTPS.185.252
https://doi.org/10.1143/PTPS.185.252
https://doi.org/10.1007/BF02782920
https://doi.org/10.1126/science.1183980
https://doi.org/10.1016/0550-3213(73)90084-9
https://doi.org/10.1007/978-3-662-46321-5_3
https://doi.org/10.1007/978-3-662-46321-5_3
https://doi.org/10.1103/PhysRevC.57.1595
https://doi.org/10.1103/PhysRevC.57.1595
https://doi.org/10.1016/0550-3213(68)90109-0
https://doi.org/10.1103/PhysRevLett.20.819
https://doi.org/10.1103/PhysRevLett.20.819
https://doi.org/10.1103/PhysRevD.1.66
https://doi.org/10.1016/0550-3213(73)90197-1
https://doi.org/10.1016/0550-3213(73)90197-1
https://doi.org/10.1103/PhysRev.136.B1803
https://doi.org/10.1103/PhysRev.136.B1803
https://doi.org/10.1103/PhysRev.139.B401
https://doi.org/10.1103/PhysRev.139.B401
https://doi.org/10.1103/PhysRevLett.20.1383
https://doi.org/10.1103/PhysRev.180.1307
https://doi.org/10.1103/PhysRev.180.1307
https://doi.org/10.1016/0550-3213(70)90335-4
https://doi.org/10.1016/0550-3213(70)90335-4
https://doi.org/10.1016/0375-9474(92)90714-U


BIBLIOGRAPHY

[96] Beam Energy Scan on Hypertriton Production and Lifetime Measurement at RHIC
STAR, Vol. 904-905 (2013), pp. 551c–554c (cit. on pp. 59, 61, 125–126).

[97] C. Rappold et al., “Hypernuclear spectroscopy of products from 6Li projectiles
on a carbon target at 2A GeV,” Nucl. Phys. A 913, 170–184 (2013) (cit. on pp. 59,
61).

[98] J. Adam et al. (ALICE Collaboration), “ 3
ΛH And 3

ΛH production in pb–pb colli-
sions at

√𝑠NN = 2.76TeV,” Phys. Lett. B 754, 360–372 (2016) (cit. on pp. 59–61,
103, 109, 125–126).

[99] L. Adamczyk et al. (STAR Collaboration), “Measurement of the 3H lifetime in
Au+Au collisions at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 97,
054909 (2018) (cit. on pp. 59, 61, 125–126).

[100] S. Acharya et al. (ALICE Collaboration), “ 3
ΛH And 3

ΛH lifetime measurement in
pb–pb collisions at

√𝑠NN = 5.02TeV via two-body decay,” Phys. Lett. B 797,
134905 (2019) (cit. on pp. 59–61, 109, 125–126).

[101] M. Abdallah et al. (STAR Collaboration), “Measurements of 3
ΛH and 4

ΛH Life-
times and Yields in Au+Au Collisions in the High Baryon Density Region,” 10.
48550/arXiv.2110.09513 (2021) (cit. on pp. 59, 61, 126).

[102] A. Pérez-Obiol et al., “Revisiting the hypertriton lifetime puzzle,” Phys. Lett. B
811, 135916 (2020) (cit. on pp. 60, 126–128).

[103] F. Hildenbrand et al., “Lifetime of the hypertriton,” Phys. Rev. C 102, 064002
(2020) (cit. on pp. 60, 125–126).

[104] V. N. Vapnik et al., “On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities,” Theory of Probability & Its Applications 16, 264–
280 (1971) (cit. on p. 67).

[105] V. Vapnik, The Nature of Statistical Learning Theory (Springer, 2014) (cit. on
p. 67).

[106] J. Tromp et al., “Combinatorics of Go,” in Computers and Games, edited by
H. J. van den Herik et al. (2007), pp. 84–99 (cit. on p. 68).

[107] S. Steinerberger, “On the number of positions in chess without promotion,” Int.
J. Game Theory 44, 761–767 (2015) (cit. on p. 68).

[108] B. R. Kiran et al., “Deep Reinforcement Learning for Autonomous Driving: A
Survey,” 10.48550/ARXIV.2002.00444 (2020) (cit. on p. 68).

[109] K. Shao et al., “A Survey of Deep Reinforcement Learning in Video Games,”
arXiv e-prints, 10.48550/arXiv.1912.10944 (2019) (cit. on p. 68).

[110] D. Silver et al., “Mastering the game of Go without human knowledge,” Nature
550, 354–359 (2017) (cit. on p. 68).

157

https://doi.org/10.1016/j.nuclphysa.2013.05.019
https://doi.org/10.1016/j.physletb.2016.01.040
https://doi.org/10.1103/PhysRevC.97.054909
https://doi.org/10.1103/PhysRevC.97.054909
https://doi.org/10.1016/j.physletb.2019.134905
https://doi.org/10.1016/j.physletb.2019.134905
https://doi.org/10.48550/arXiv.2110.09513
https://doi.org/10.48550/arXiv.2110.09513
https://doi.org/10.48550/arXiv.2110.09513
https://doi.org/10.48550/arXiv.2110.09513
https://doi.org/10.1016/j.physletb.2020.135916
https://doi.org/10.1016/j.physletb.2020.135916
https://doi.org/10.1103/PhysRevC.102.064002
https://doi.org/10.1103/PhysRevC.102.064002
https://doi.org/10.1137/1116025
https://doi.org/10.1137/1116025
https://doi.org/10.1007/s00182-014-0453-7
https://doi.org/10.1007/s00182-014-0453-7
https://doi.org/10.48550/ARXIV.2002.00444
https://doi.org/10.48550/ARXIV.2002.00444
https://doi.org/10.48550/arXiv.1912.10944
https://doi.org/10.48550/arXiv.1912.10944
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270


BIBLIOGRAPHY

[111] S. B. Kotsiantis, “Decision trees: a recent overview,” Artif. Intell. Rev. 39, 261–
283 (2013) (cit. on p. 71).

[112] R. E. Schapire, “The Boosting Approach to Machine Learning: An Overview,” in
Nonlinear estimation and classification, edited by D. D. Denison et al. (Springer
New York, 2003), pp. 149–171 (cit. on p. 72).

[113] M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,”
Journal of the Royal Statistical Society: Series B (Methodological) 36, 111–133
(1974) (cit. on p. 74).

[114] J. Snoek et al., “Practical Bayesian Optimization of Machine Learning Algo-
rithms,” arXiv e-prints, 10.48550/arXiv.1206.2944 (2012) (cit. on p. 75).

[115] N. Quadrianto et al., “Gaussian Process,” in Encyclopedia of machine learning,
edited by C. Sammut et al. (Springer US, Boston, MA, 2010), pp. 428–439 (cit. on
p. 75).

[116] J. Schwinger, “The Theory of Quantized Fields. I,” Phys. Rev. 82, 914–927 (1951)
(cit. on p. 78).

[117] J. Adam et al. (STAR Collaboration), “Measurement of the mass difference and
the binding energy of the hypertriton and antihypertriton,” Nat. Phys. 16, 409–
412 (2020) (cit. on pp. 78, 123, 127).

[118] J. Jowett et al., “The 2018 heavy-ion run of the LHC,” WEYYPLM2. 4 p (2019)
(cit. on p. 78).

[119] X. N. Wang et al., “hijing: A Monte Carlo model for multiple jet production in
pp, pA, and AA collisions,” Phys. Rev. D 44, 3501–3516 (1991) (cit. on p. 79).

[120] E. Bartsch, “Recent results on light (anti-)nuclei production with ALICE at the
LHC,” J. Phys. Conf. Ser. 1602, 012022 (2020) (cit. on p. 85).

[121] S. Acharya et al. (ALICE Collaboration), “First measurement of the absorption
of 3He nuclei in matter and impact on their propagation in the galaxy,” 10.
48550/arXiv.2202.01549 (2022) (cit. on pp. 91, 109).

[122] C. P. Robert et al., Random Variable Generation (Springer New York, New York,
NY, 2004), pp. 35–77 (cit. on p. 91).

[123] J. Adams et al., “𝜌0 Production and possible modification in Au+Au and 𝑝 + 𝑝
collisions at

√𝑠𝑁𝑁 = 200 GeV,” Phys. Rev. Lett. 92, 092301 (2004) (cit. on
p. 91).

[124] M. Gazdzicki et al., “Background subtraction from the dilepton spectra in nu-
clear collisions,” 10.48550/arXiv.hep-ph/0003319 (2000) (cit. on p. 91).

[125] M. C. Abreu et al. (NA38 and NA50 Collaborations), “Dimuon and charm pro-
duction in nucleus-nucleus collisions at the CERN-SPS,” Eur. Phys. J. C 14, 443–
455 (2000) (cit. on p. 91).

158

https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1007/978-0-387-21579-2_9
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/10.48550/arXiv.1206.2944
https://doi.org/10.1007/978-0-387-30164-8_324
https://doi.org/10.1103/PhysRev.82.914
https://doi.org/10.1038/s41567-020-0799-7
https://doi.org/10.1038/s41567-020-0799-7
https://doi.org/10.18429/JACoW-IPAC2019-WEYYPLM2
https://doi.org/10.1103/PhysRevD.44.3501
https://doi.org/10.1088/1742-6596/1602/1/012022
https://doi.org/10.48550/arXiv.2202.01549
https://doi.org/10.48550/arXiv.2202.01549
https://doi.org/10.48550/arXiv.2202.01549
https://doi.org/10.48550/arXiv.2202.01549
https://doi.org/10.1103/PhysRevLett.92.092301
https://doi.org/10.48550/arXiv.hep-ph/0003319
https://doi.org/10.48550/arXiv.hep-ph/0003319
https://doi.org/10.1007/s100520000373
https://doi.org/10.1007/s100520000373


BIBLIOGRAPHY

[126] A. Adare et al. (PHENIX Collaboration), “Detailed measurement of the 𝑒+𝑒−

pair continuum in 𝑝 + 𝑝 and Au + Au collisions at
√𝑠NN = 200 GeV and

implications for direct photon production,” Phys. Rev. C 81, 034911 (2010) (cit.
on p. 91).

[127] D. Drijard et al., “Study of event mixing and its application to the extraction
of resonance signals,” Nucl. Instrum. Methods Phys. Res. 225, 367–377 (1984)
(cit. on p. 92).

[GPL] GNU General Public License, version 3, Free Software Foundation, June 29, 2007
(cit. on p. 98).

[128] Python Package Index - PyPI, https://pypi.org/ (visited on 02/15/2022)
(cit. on p. 98).

[129] T. Chen et al., “XGBoost: A Scalable Tree Boosting System,” in Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, KDD ’16 (2016), pp. 785–794 (cit. on p. 99).

[130] T. X. Contributors, XGBoost - ML Challenge Winning Solutions (incomplete list),
(1999) https://github.com/dmlc/xgboost/blob/master/demo/
README.md (visited on 02/14/2022) (cit. on p. 99).

[131] F. Nogueira, Bayesian Optimization: Open source constrained global optimization
tool for Python, 2014 (cit. on p. 99).

[132] Wikipedia, Early stopping — Wikipedia, L’enciclopedia libera, 2022 (cit. on
p. 102).

[133] W. Verkerke et al., “The RooFit toolkit for data modeling,” eConf C0303241,
edited by L. Lyons et al., MOLT007 (2003) (cit. on p. 105).

[134] K. S. Cranmer, “Kernel estimation in high-energy physics,” Comput. Phys.
Commun. 136, 198–207 (2001) (cit. on p. 105).

[135] “Interaction of hypertritons with nuclei at high energies,” Nucl. Phys. A 632,
624–632 (1998) (cit. on p. 109).

[136] E. Tiesinga et al., “CODATA recommended values of the fundamental physical
constants: 2018,” Rev. Mod. Phys. 93, 025010 (2021) (cit. on p. 114).

[137] M. J. Oreglia, “A Study of the Reaction 𝜓′ → 𝛾𝛾𝜓,” PhD thesis (Standford
University, 1980) (cit. on p. 117).

[138] W. Gajewski et al., “A compilation of binding energy values of light hypernu-
clei,” Nucl. Phys. B 1, 105–113 (1967) (cit. on p. 127).

[139] R. Dalitz et al., “Phenomenological study of s-shell hypernuclei with ΛN and
ΛNN potentials,” Nucl. Phys. B 47, 109–137 (1972) (cit. on pp. 127–128).

[140] Y. Fujiwara et al., “Addendum to triton and hypertriton binding energies cal-
culated from SU6 quark-model baryon-baryon interactions,” Phys. Rev. C 77,
027001 (2008) (cit. on p. 127).

159

https://doi.org/10.1103/PhysRevC.81.034911
https://doi.org/10.1016/0167-5087(84)90275-8
https://pypi.org/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://github.com/dmlc/xgboost/blob/master/demo/README.md
https://github.com/dmlc/xgboost/blob/master/demo/README.md
https://doi.org/10.48550/arXiv.physics/0306116
https://doi.org/10.48550/arXiv.physics/0306116
https://doi.org/10.1016/S0010-4655(00)00243-5
https://doi.org/10.1016/S0010-4655(00)00243-5
https://doi.org/10.1016/S0375-9474(98)00116-X
https://doi.org/10.1016/S0375-9474(98)00116-X
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/https://doi.org/10.1016/0550-3213(67)90095-8
https://doi.org/10.1016/0550-3213(72)90105-8
https://doi.org/10.1103/PhysRevC.77.027001
https://doi.org/10.1103/PhysRevC.77.027001


BIBLIOGRAPHY

[141] D. Lonardoni et al., “Medium-mass hypernuclei and the nucleon-isospin depen-
dence of the three-body hyperon-nucleon-nucleon force,” 10.48550/arXiv.
1711.07521 (2017) (cit. on p. 127).

160

https://doi.org/10.48550/arXiv.1711.07521
https://doi.org/10.48550/arXiv.1711.07521
https://doi.org/10.48550/arXiv.1711.07521
https://doi.org/10.48550/arXiv.1711.07521


This Ph.D. thesis has been typeset by
means of the TEX-system facilities. The
typesetting engine was LuaLATEX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TEX-system
installation.


	List of Tables
	List of Figures
	High Energy Nuclear Physics
	QCD: the Theory of the Strong Interaction
	States of the Hadronic Matter
	Heavy-Ion Collisions
	Glauber Model of Nucleus–Nucleus Collisions
	Space-time Evolution of the Collision

	Probing Quark-Gluon Plasma
	Soft Probes
	Hard Probes
	Electroweak Probes


	The ALICE Experiment
	The Large Hadron Collider
	ALICE Design
	The ALICE Detectors
	Inner Tracking System
	Time Projection Chamber
	VZERO
	TZERO
	Zero Degree Calorimeter

	Data Acquisition and Trigger
	ALICE Offline Framework
	Monte Carlo Simulations
	Event Reconstruction
	ALICE Analysis Framework

	Particle Identification
	TPC Particle Identification

	Centrality Determination in Pb–Pb Collisions

	(Anti)(Hyper)Nuclei in Heavy-Ion Collisions
	(Anti)Hypernuclei
	Weak Decay of Hypernuclei

	Hypertriton: the Lightest Known Hypernucleus
	The Hypertriton Puzzle


	Principles of Machine Learning
	The Learning Problem
	Types of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Binary Classification Problem
	Assessing Performances in Binary Classification Tasks

	BDTs for Classification
	The BDTs and its learning algorithm
	Cross-Validation for hyperparameters tuning
	Bayesian Optimisation of the Hyperparameters


	(Anti)Hypertriton Identification in ALICE Reconstructing the 2-body Decay
	Data and Monte Carlo Samples
	Offline Event Selection
	Track Selection
	Reconstruction of the (Anti)Hypertriton Candidates
	Identification of the Decay Products
	Building the Hypertriton Candidates
	Pre-selection Efficiency

	Training and Test Set Preparation
	The Signal Proxy: Monte Carlo Data
	The Background Proxy: Like-Sign Pairs
	Features Variables Studies

	Training and Testing the BDTs
	Models Training and Hyperparameter Optimisation
	Models Performances
	BDTs Selection Optimisation


	Measurement of the Hypertriton Lifetime and BΛ
	Signal Extraction 
	Lifetime Measurement
	Absorption Correction
	dN / dct  Spectrum
	Systematic Uncertainties
	Results

	BΛ Measurement
	Correction for the Fit Bias
	Correction for the Mass Shift
	Hypertriton Mass Measurement
	Systematic Uncertainties
	Results


	Conclusions
	Additional figures
	Bibliography

